初三数学 概率初步知识点归纳
2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。
必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。
2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。
取值范围:概率的取值范围是0≤p≤1。
特别地,P(必然事件)=1,P(不可能事件)=0。
二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。
树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。
三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。
即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。
四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。
2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。
如果概率相等,则游戏公平;否则,游戏不公平。
五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。
示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。
解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。
因此,抽到红桃的概率为P=13/54。
2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。
九年级数学概率初步知识点

九年级数学概率初步知识点
9年级数学的初步概率知识点包括:
1. 事件与概率:事件是指某种可能发生的结果,概率是指某个事件发生的可能性大小。
2. 随机事件与确定事件:随机事件是指其结果在每次试验中可能不同的事件,确定事
件是指其结果在每次试验中都相同的事件。
3. 样本空间与样本点:样本空间是指所有可能结果的集合,样本点是样本空间中的每
个具体结果。
4. 基本事件与复合事件:基本事件是指样本空间中的单个样本点,复合事件是指由基
本事件组成的事件。
5. 等可能性原理:在一次试验中,如果每个基本事件发生的可能性相等,则称这些事
件是等可能事件。
6. 事件的概率:事件A的概率表示为P(A),定义为事件A发生的次数与试验总次数之比。
7. 加法定理:对于两个互斥事件A和B(即A和B不能同时发生),则P(A或B) =
P(A) + P(B)。
8. 互斥事件与对立事件:互斥事件是指两个事件不能同时发生,对立事件是指在一次
试验中只能发生其中一个事件的概率。
9. 条件概率:指在已知事件B发生的条件下,事件A发生的概率,表示为P(A|B),计算公式为P(A|B) = P(A∩B)/P(B)。
10. 事件的独立性:当事件A的发生与事件B的发生是相互独立的,即事件A的概率不受事件B的发生与否影响时,称事件A与事件B独立。
11. 乘法定理:对于两个独立事件A和B,P(A∩B) = P(A) × P(B)。
12. 事件的补事件:指在一次试验中,事件A不发生的事件。
这些是九年级数学中概率的初步知识点,通过掌握这些知识,可以更好地理解和解决与概率相关的问题。
(完整版)初中概率初步知识点归纳

第九章概率初步知识点归纳【知识梳理】 济宁附中李涛1、事件类型:○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.○2不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件. ○3不确定事件: 许多事情我们无法确定它会不会发生,称为不确定事件(又叫随机事件). 说明:(1)必然事件、不可能事件都称为确定性事件.(2)事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ① 必然事件发生的概率为1,即P(必然事件)=1; ② 不可能事件发生的概率为0,即P (不可能事件)=0; ③ 如果A 为不确定事件,那么0<P(A)<12、概率定义(1)概率的频率定义:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
(2)概率的一般定义:就是刻划(描述)事件发生的可能性的大小的量叫做概率.又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。
是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。
3、概率表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示。
事件A 的概率p ,可记为P (A )=P4、概率的计算 ①等可能事件的概率• 古典概型古典概型讨论的对象是所有可能结果为有限个等可能的情形,每个基本事件发生的可能性是相同的。
历史上古典概型是由研究诸如掷骰子一类赌博游戏中的问题引起的。
计算古典概型,公式:分析方法:(1)列举法(适应一个过程):列出所有等可能基本事件结果,再数清所求事件所含的基本事件个数,最后相除。
以下补充是初三学习内容:(2)列表法(适应两个过程):当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.特别注意放回去与不放回去的列表法的不同.如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少?放回去 P (1和2)=92 不放回去P (1和2)=62(3,3)(3,2)(3,1)3(2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次结果321第二次(3,2)(3,1)3(2,3)(2,1)2(1,3)(1,2)1第一次结果321第二次(3)树状图法(适应一个两个或多个过程):当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 还是以上例题:(1)放回去,树状图如下:由树状图可知,总共有9种等可能结果,而两次抽到数字为数字1和2或者2和1的结果有两种。
九年级初步概率知识点总结

九年级初步概率知识点总结概率是数学中一个非常重要的概念,它在我们生活中无处不在。
无论是研究投资风险、棋牌游戏的胜率,还是天气预报的准确性,都离不开概率的运算和分析。
在九年级数学课程中,我们初步认识了概率的基本概念与运算法则。
本文将对九年级初步概率知识进行总结和归纳。
一、概率的定义和基本性质概率的定义是指某件事情发生的可能性,用数值来表示,其取值范围在0到1之间。
当事件A必然发生时,概率为1;当事件A 不可能发生时,概率为0。
性质上,事件A的概率加上事件A的对立事件的概率等于1,即P(A) + P(A') = 1。
二、概率的计算方法1. 等可能性原则:当所有可能发生的结果都是等概率时,可以通过相对频率来计算概率。
比如掷硬币的正反面,抽签时的抽中/不抽中等事件。
2. 集合运算法则:对于事件A和事件B,可以通过集合的交、并、差等运算来计算它们的概率。
比如事件A和事件B同时发生的概率为P(A∩B),表示为事件A和事件B的交集。
3. 频率计数法:当问题无法通过等可能性原则计算时,可以用计数法来求解概率。
比如上台阶的步数问题,每次只能上一阶或两阶楼梯,计算上到第n阶楼梯的步数有多少种可能组合。
三、加法公式与乘法公式1. 加法公式:对于不互斥的事件A和事件B,两者同时发生的概率为P(A∪B) = P(A) + P(B) - P(A∩B)。
其中P(A∩B)表示事件A 和事件B同时发生的概率。
2. 乘法公式:对于独立事件A和事件B,两者同时发生的概率为P(A∩B) = P(A) × P(B)。
其中P(A)和P(B)分别表示事件A和事件B发生的概率。
四、条件概率与贝叶斯定理1. 条件概率:当事件A的发生与事件B的发生有关时,事件B发生的条件下事件A发生的概率定义为P(A|B)。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同时发生的概率。
2. 贝叶斯定理:贝叶斯定理是利用条件概率来计算逆概率的公式。
(完整版)九年级概率初步

第二十五章 概率初步1、三种事件:必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件。
不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件。
随机事件: 许多事情我们无法确定它会不会发生,这些事情称为随机事件.注意:必然事件、不可能事件都是在事先能肯定它们会发生,或事先能肯定它们不会发生的事件,因此它们也可以称为确定性事件; 随机事件都是事先我们不能肯定它们会不会发生,我们把这类事件称为不确定事件.2.概率的定义:把刻划(描述)事件发生的可能性的大小的量叫做概率.概率通常用字母“P ”表示。
注意:概率通常用分数表示,有时也用小数表示。
不可能事件发生的概率为0;即P(不可能事件)=0;必然事件发生的概率为1;即P (必然事件)=1;随机事件发生的概率;0<P(随机)〈1。
3.概率的计算:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都 相等,事件A 包含其中的m 中结果,那么事件A 发生的概率为4。
用列举法求概率列表法求概率: 当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
树状图法求概率 :当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 注意:列表格只能解决两步完成事件的概率,树状图则可解决两步及两步以上事件的概率;无论是哪一种方法在求多步事件概率时首先应分清每一步干什么,其次还应分清属于“取完后放回还是不放回”5.用频率估计概率①利用频率估计概率 :在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率.②在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验.③随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作.把这些随机产生的数据称为随机数。
九年级概率初步知识点及题

九年级概率初步知识点包括:1. 概率的基本性质:概率是非负数,并且所有概率的和必须等于1。
2. 必然事件和不可能事件:必然事件发生的概率为1,不可能事件发生的概率为0。
3. 独立事件:一个事件的发生不受另一个事件是否发生的影响,这样的两个事件称为独立事件。
独立事件同时发生的概率是各自概率的乘积。
4. 条件概率:在某个事件B已经发生的情况下,另一个事件A发生的概率叫做条件概率,记作P(A|B)。
5. 事件的概率:一般地,如果一个试验有n个等可能的结果,事件A包含其中的k个结果,那么事件A发生的概率为P(A)=k/n。
6. 概率的加法公式:如果两个事件A和B是互斥的(即两个事件不能同时发生),那么P(A∪B)=P(A)+P(B)。
7. 概率的乘法公式:对于任意两个事件A和B,如果它们是独立的,那么P(A∩B)=P(A)×P(B)。
8. 贝叶斯定理:在已知某个事件的概率和一些条件概率的情况下,可以使用贝叶斯定理计算其他条件概率。
以上是九年级概率初步知识点,可以通过做题来巩固这些知识点。
例如:1. 小明和小颖按如下规则作游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后一次取完铅笔的人获胜。
如果小明获胜的概率为1,那么小明第一次应该取走几支铅笔?根据题意,我们知道小明获胜的概率为1,即他一定会赢。
所以我们需要找出小明第一次应该取走几支铅笔才能确保他获胜。
根据游戏规则,每次只能取1支或2支铅笔,如果小明第一次取走2支铅笔,那么无论小颖取走几支(1支或0支),小明都能在第二次取完剩下的所有铅笔,从而获胜。
因此,小明第一次应该取走2支铅笔。
人教版九年级第二十五章概率初步知识点

第二十五章概率初步知识点总结25.1 概率1.随机事件(1)确定事件事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.随机事件发生的可能性(概率)的计算方法:2.可能性大小(1)理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.(2)实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.3.概率的意义(1)一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.(3)概率取值范围:0≤p≤1.(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.25.2 用列举法求概率1.概率的公式(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.2. 几何概型的概率问题是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即P=g的测度G的测度简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.3.列举法和树状法(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.(5)当有两个元素时,可用树形图列举,也可以列表列举.4.游戏公平性(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)概率=所求情况数总情况数.25.3 利用频率估计概率1. 利用频率估计概率(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2.模拟实验(1)在一些有关抽取实物实验中通常用摸取卡片代替了实际的物品或人抽取,这样的实验称为模拟实验.(2)模拟实验是用卡片、小球编号等形式代替实物进行实验,或用计算机编号等进行实验,目的在于省时、省力,但能达到同样的效果.(3)模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,这部分内容根据《新课标》要求,只要设计出一个模拟实验即可.。
初中概率知识点总结大全

初中概率知识点总结大全一、概率基础知识1. 随机试验:指条件具备,结果不确定的实验,比如掷骰子、抛硬币等。
2. 样本空间:随机试验的所有可能结果组成的集合。
3. 事件:样本空间的子集称为事件,包含了我们关心的一些结果。
4. 必然事件和不可能事件:必然事件是指一定会出现的事件,比如抛硬币一定会出现正反面其中之一;不可能事件是指一定不会出现的事件,比如抛硬币会出现正反面之外的结果。
5. 等可能事件:指所有事件发生的可能性相等。
6. 概率:事件发生的可能性大小。
用符号 P(A) 表示事件 A 的概率。
二、概率计算1. 古典概型计算当样本空间中的元素个数有限且每个基本事件发生的可能性相等时,可使用古典概型计算概率。
例如:掷一枚骰子,求点数为偶数的概率。
样本空间 S = {1, 2, 3, 4, 5, 6},事件A是点数为偶数的结果,即 A = {2, 4, 6}。
所以 P(A) = n(A) / n(S) = 3 / 6 = 1/2。
2. 几何概型计算当事件的发生是与随机试验的空间几何结构有关时,可使用几何概型计算概率。
例如:在一个圆形的靶子上打靶,求打在靶心的概率。
由于靶心只有一个点,而靶子的面积是一个圆,所以 P(A) = 0。
3. 频率法计算当样本空间中的元素个数非常大,无法通过统计来确定每个基本事件的发生概率时,可使用频率法计算概率。
例如:抛掷硬币,实验多次后计算正面朝上的频率来估算正面朝上的概率。
4. 排列和组合排列和组合是概率计算中常用的计算方法。
排列是指从n 个不同元素中任取m(m ≤ n)个元素按照一定顺序排成一列的不同排列数。
排列数用 P(n, m) 或 n!/(n-m)! 表示。
组合是指从 n 个不同元素中任取 m(m ≤ n)个元素并成一组的不同组合数。
组合数用 C(n, m) 或 n!/m!(n-m)! 表示。
三、概率的运算1. 事件的关系事件的关系包括事件的和、差、积和余事件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率初步知识点归纳
1、事件类型:
○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.
○2不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件. ○3不确定事件: 许多事情我们无法确定它会不会发生,称为不确定事件(又叫随机事件). 说明:(1)必然事件、不可能事件都称为确定性事件.
(2)事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ① 必然事件发生的概率为1,即P(必然事件)=1; ② 不可能事件发生的概率为0,即P (不可能事件)=0; ③ 如果A 为不确定事件,那么0<P(A)<1
2、概率定义
(1)概率的频率定义:
一般地,在大量重复试验中,如果事件A 发生的频率
m
n
会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
(2)概率的一般定义:就是刻划(描述)事件发生的可能性的大小的量叫做概率.又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。
是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。
3、概率表示方法
一般地,事件用英文大写字母A ,B ,C ,…,表示。
事件A 的概率p ,可记为P (A )=P
4、概率的计算 ①等可能事件的概率
• 古典概型
古典概型讨论的对象是所有可能结果为有限个等可能的情形,每个基本事件发生的可能性是相同的。
历史上古典概型是由研究诸如掷骰子一类赌博游戏中的问题引起的。
计算古典概型,
公式:
分析方法:
(1)列举法(适应一个过程):列出所有等可能基本事件结果,再数清所求事件所含的基本事
件个数,最后相除。
以下补充是初三学习内容:
(2)列表法(适应两个过程):当一次试验要设计两个因素,可能出现的结果数目较多时,为
不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.
特别注意放回去与不放回去的列表法的不同.
如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少?
放回去 P (1和2)=
9
2 不放回去P (1和2)=62
(3,3)
(3,2)
(3,1)
3
(2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次
结果3
2
1
第二次
(3,2)
(3,1)
3(2,3)
(2,1)2
(1,3)(1,2)
1第一次
结果3
2
1第二次
(3)树状图法(适应一个两个或多个过程):当一次试验要设计三个或更多的因素时,用列
表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 还是以上例题:(1)放回去,树状图如下:
由树状图可知,总共有9种等可能结果,而两次抽到数字为数字1和2或者2和
1的结果有两种。
∴ P (1和2)=
9
2
不放回去, 树状图如下:
∴ P (1和2)=
6
2
注意:求概率的一个重要技巧:求某一事件的概率较难时,可先求其余事件的概率或考虑其反面的概率再用1减——即正难则反易.
•几何概型
几何概型讨论的对象是所有可能结果有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概型,于是产生了几何概型。
布丰投针问题是应用几何概型的一个典型例子。
公式:
目前掌握的有关于概率模型大致分为三类;第一类问题没有理论概率,只能借助实验模拟获得其估计值;第二类问题虽然存在理论概率但目前尚不可求,只能借助实验模拟获用频数估计概率;第三类问题则是简单的古典概型,几何概型,理论上用公式容易求出其概率。
2、概率应用
(1)通过设计简单的概率模型,在不确定的情境中做出合理的决策;
(2)概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性可以解决一些实际问题。
【易错点解析】
易错点1:随机事件概率的有关概念
例1 题目1:在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超.有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是
A.李东夺冠的可能性较小
B.李东和他的对手比赛l0局时,他一定赢8局
C.李东夺冠的可能性较大
D.李东肯定会赢
易错点2:计算简单随机事件的概率
例2 题目1:某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为。
【中考考点解读】
考点一、确定事件(必然事件、不可能事件)和不确定事件(随机事件).
(要会判断---用排除法)
考点二、概率的意义与表示方法
考点三、确定事件和随机事件的概率之间的关系
1、确定事件概率
(1)当A是必然发生的事件时,P(A)=1
(2)当A是不可能发生的事件时,P(A)=0
2、确定事件和随机事件的概率之间的关系
考点四、等可能性事件概率求法
古典概型
1、古典概型的定义
某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A
m
包含其中的m中结果,那么事件A发生的概率为P(A)=n
3.几何概型的概率的求法(面积比)
考点五、利用频率估计概率
利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。