概率初步知识点总结和题型
2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。
必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。
2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。
取值范围:概率的取值范围是0≤p≤1。
特别地,P(必然事件)=1,P(不可能事件)=0。
二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。
树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。
三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。
即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。
四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。
2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。
如果概率相等,则游戏公平;否则,游戏不公平。
五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。
示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。
解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。
因此,抽到红桃的概率为P=13/54。
2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。
概率初步例题和知识点总结

概率初步例题和知识点总结一、概率的定义在一定条件下,重复进行试验,如果随着试验次数的增加,事件 A 发生的频率稳定在某个常数 p 附近,那么这个常数 p 就叫做事件 A 的概率,记作 P(A) = p。
概率是对随机事件发生可能性大小的度量。
例如,抛一枚均匀的硬币,正面朝上和反面朝上的概率都是 05。
二、概率的基本性质1、0 ≤ P(A) ≤ 1:任何事件的概率都在 0 到 1 之间,0 表示不可能发生,1 表示必然发生。
2、P(Ω) = 1:必然事件的概率为 1,其中Ω 表示样本空间,即所有可能结果的集合。
3、 P(∅)= 0:不可能事件的概率为 0,∅表示空集。
4、如果事件 A 与事件 B 互斥(即 A 和 B 不能同时发生),那么P(A∪B) = P(A) + P(B)。
三、古典概型古典概型是一种最简单的概率模型,具有以下两个特点:1、试验中所有可能出现的基本事件只有有限个。
2、每个基本事件出现的可能性相等。
古典概型的概率计算公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个盒子里有 3 个红球和 2 个白球,从中随机取出一个球,求取出红球的概率。
基本事件的总数为 5(3 个红球+ 2 个白球),取出红球包含的基本事件个数为 3,所以取出红球的概率为 3/5。
四、例题解析例 1:掷一枚质地均匀的骰子,求点数为奇数的概率。
解:掷一枚骰子,出现的点数有 1、2、3、4、5、6 共 6 种可能,其中奇数有 1、3、5 共 3 种。
所以点数为奇数的概率为 3/6 = 1/2。
例 2:从 1、2、3、4 这 4 个数字中,任意取出两个数字,求取出的两个数字都是奇数的概率。
解:从4 个数字中任意取出两个数字,共有6 种可能的结果:(1,2)、(1,3)、(1,4)、(2,3)、(2,4)、(3,4)。
其中两个数字都是奇数的结果有(1,3),共 1 种。
所以取出的两个数字都是奇数的概率为 1/6。
中考数学概率题型知识点归纳

中考数学概率题型知识点归纳概率是中考数学中的一个重要知识点,它与我们的日常生活息息相关,能够帮助我们理解和预测各种随机现象。
下面就为大家归纳一下中考数学中常见的概率题型及相关知识点。
一、概率的基本概念1、随机事件在一定条件下,可能发生也可能不发生的事件称为随机事件。
2、必然事件在一定条件下,必然会发生的事件称为必然事件。
3、不可能事件在一定条件下,不可能发生的事件称为不可能事件。
4、概率表示一个事件发生的可能性大小的数,叫做该事件的概率。
概率通常用 P(事件)来表示。
二、概率的计算1、古典概型如果一次试验中可能出现的结果有 n 个,而且所有结果出现的可能性都相等,那么某个事件 A 发生的概率为 P(A)=事件 A 包含的结果数÷所有可能的结果数。
例如:一个袋子里装有 5 个红球和 3 个白球,从袋子中随机摸出一个球,摸到红球的概率是多少?总共有 8 个球,摸到红球的可能性有 5 种,所以摸到红球的概率为5÷8 = 5/8 。
2、列表法和树状图法当一次试验要涉及两个或两个以上因素时,为了不重不漏地列出所有可能的结果,通常采用列表法或树状图法。
例如:同时抛掷两枚质地均匀的硬币,求出现“一正一反”的概率。
我们可以通过列表法:|第一枚硬币|正|正|反|反||||||||第二枚硬币|正|反|正|反|共有 4 种等可能的结果,其中“一正一反”的结果有 2 种,所以概率为 2÷4 = 1/2 。
或者通过树状图法:```第一枚硬币/\正反/\/\正反正反```同样可以得出“一正一反”的概率为 1/2 。
3、几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
例如:在一个边长为 4 的正方形内随机取一点,求该点到正方形顶点的距离小于 2 的概率。
此时,点到正方形顶点的距离小于2 的区域是以正方形顶点为圆心,以 2 为半径的四分之一圆,其面积为π×2²×1/4 =π。
概率初步知识点总结和题型

概率初步知识点和题型【知识梳理】1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P〔不可能事件〕=0;③如果A为不确定事件,那么0<P(A)<12.随机事件发生的可能性〔概率〕的计算方法:①理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进展的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算。
②实验估算又分为如下两种情况:第一种:利用实验的方法进展概率估算。
要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率。
第二种:利用模拟实验的方法进展概率估算。
如,利用计算器产生随机数来模拟实验。
综上所述,目前掌握的有关于概率模型大致分为三类;第一类问题没有理论概率,只能借助实验模拟获得其估计值;第二类问题虽然存在理论概率但目前尚不可求,只能借助实验模拟获得其估计值;第三类问题那么是简单的古典概型,理论上容易求出其概率。
这里要引起注意的是,虽然我们可以利用公式计算概率,但在学习这局部知识时,更重要的是要体会概率的意义,而不只是强化练习套用公式进展计算。
3.概率应用:通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题。
【练习】随机事件与概率:一. 选择题1. 以下事件必然发生的是〔〕A. 一个普通正方体骰子掷三次和为19B. 一副洗好的扑克牌任抽一X为奇数。
C. 今天下雨。
D. 一个不透明的袋子里装有4个红球,2个白球,从中任取3个球,其中至少有2球同色。
概率初步例题和知识点总结

概率初步例题和知识点总结在我们的日常生活中,概率无处不在。
比如抽奖时中奖的可能性、明天是否会下雨的预测、体育比赛中获胜的概率等等。
概率是研究随机现象规律的数学分支,它能帮助我们更好地理解和应对不确定性。
接下来,让我们通过一些例题来深入了解概率的初步知识。
一、知识点回顾1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷一枚骰子,出现的点数就是一个随机事件。
2、概率的定义概率是指某个事件发生的可能性大小的数值度量。
通常用 0 到 1 之间的数来表示,0 表示不可能发生,1 表示必然发生。
3、古典概型如果一个随机试验具有以下两个特征:(1)试验的样本空间中样本点的总数是有限的;(2)每个样本点出现的可能性相等。
那么这样的随机试验称为古典概型。
在古典概型中,事件 A 的概率可以通过计算 A 包含的样本点个数与样本空间中样本点的总数之比得到。
4、概率的基本性质(1)对于任意事件 A,0 ≤ P(A) ≤ 1。
(2)必然事件的概率为 1,不可能事件的概率为 0。
(3)如果事件 A 与事件 B 互斥(即 A 和 B 不可能同时发生),则P(A∪B) = P(A) + P(B)。
二、例题解析例 1:从装有 3 个红球和 2 个白球的口袋中随机取出 2 个球,求取出的 2 个球都是红球的概率。
解:从 5 个球中取出 2 个球的组合数为 C(5, 2) = 10。
取出 2 个红球的组合数为 C(3, 2) = 3。
所以取出的 2 个球都是红球的概率为 3/10。
例 2:掷一枚均匀的骰子,求点数大于 4 的概率。
解:骰子的点数有 1、2、3、4、5、6,点数大于 4 的有 5、6 两种情况,所以点数大于 4 的概率为 2/6 = 1/3。
例 3:同时掷两枚均匀的骰子,求点数之和为 7 的概率。
解:同时掷两枚骰子,所有可能的结果有 6×6 = 36 种。
九年级概率初步知识点及题

九年级概率初步知识点包括:1. 概率的基本性质:概率是非负数,并且所有概率的和必须等于1。
2. 必然事件和不可能事件:必然事件发生的概率为1,不可能事件发生的概率为0。
3. 独立事件:一个事件的发生不受另一个事件是否发生的影响,这样的两个事件称为独立事件。
独立事件同时发生的概率是各自概率的乘积。
4. 条件概率:在某个事件B已经发生的情况下,另一个事件A发生的概率叫做条件概率,记作P(A|B)。
5. 事件的概率:一般地,如果一个试验有n个等可能的结果,事件A包含其中的k个结果,那么事件A发生的概率为P(A)=k/n。
6. 概率的加法公式:如果两个事件A和B是互斥的(即两个事件不能同时发生),那么P(A∪B)=P(A)+P(B)。
7. 概率的乘法公式:对于任意两个事件A和B,如果它们是独立的,那么P(A∩B)=P(A)×P(B)。
8. 贝叶斯定理:在已知某个事件的概率和一些条件概率的情况下,可以使用贝叶斯定理计算其他条件概率。
以上是九年级概率初步知识点,可以通过做题来巩固这些知识点。
例如:1. 小明和小颖按如下规则作游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后一次取完铅笔的人获胜。
如果小明获胜的概率为1,那么小明第一次应该取走几支铅笔?根据题意,我们知道小明获胜的概率为1,即他一定会赢。
所以我们需要找出小明第一次应该取走几支铅笔才能确保他获胜。
根据游戏规则,每次只能取1支或2支铅笔,如果小明第一次取走2支铅笔,那么无论小颖取走几支(1支或0支),小明都能在第二次取完剩下的所有铅笔,从而获胜。
因此,小明第一次应该取走2支铅笔。
概率初步例题和知识点总结

概率初步例题和知识点总结在我们的日常生活中,概率无处不在。
无论是在玩游戏、抽奖,还是在进行科学研究、经济决策时,概率都起着重要的作用。
下面,让我们一起来学习概率的初步知识,并通过一些例题来加深对概率的理解。
一、概率的基本概念概率,简单来说,就是用来衡量某个事件发生可能性大小的一个数值。
它的取值范围在 0 到 1 之间。
如果一个事件完全不可能发生,那么它的概率就是 0;如果一个事件肯定会发生,那么它的概率就是 1。
例如,抛一枚均匀的硬币,正面朝上的概率是 05,因为硬币只有正反两面,且两面出现的可能性相同。
二、概率的计算方法1、古典概型如果一个试验中所有可能的结果是有限的,并且每个结果出现的可能性相等,那么我们就可以使用古典概型来计算概率。
计算公式为:P(A) =事件 A 包含的基本事件数/基本事件总数例如,从装有 3 个红球和 2 个白球的袋子中随机取出一个球,取出红球的概率是多少?基本事件总数为 5(3 个红球+ 2 个白球),事件“取出红球”包含的基本事件数为 3,所以取出红球的概率 P(取出红球) = 3 / 5 = 062、几何概型如果一个试验的结果是无限的,且每个结果出现的可能性相等,那么我们就可以使用几何概型来计算概率。
计算公式为:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)例如,在一个边长为 1 的正方形内随机取一点,该点落在正方形内一个半径为 05 的圆内的概率是多少?圆的面积为π×(05)²=025π,正方形的面积为 1×1 = 1,所以该点落在圆内的概率 P(落在圆内) =025π / 1 =025π三、独立事件与条件概率1、独立事件如果事件 A 的发生与否不影响事件 B 发生的概率,那么事件 A 和事件 B 就是相互独立的事件。
例如,抛两次硬币,第一次抛硬币正面朝上和第二次抛硬币正面朝上就是两个独立事件。
概率初步例题和知识点总结

概率初步例题和知识点总结在我们的日常生活和学习中,概率是一个经常会遇到的概念。
它帮助我们理解和预测各种不确定事件发生的可能性。
接下来,让我们通过一些例题来深入理解概率的相关知识。
一、概率的基本概念概率是指某个事件在一定条件下发生的可能性大小的数值度量。
通常用介于 0 到 1 之间的数来表示。
如果一个事件不可能发生,其概率为 0;如果一个事件肯定会发生,其概率为 1;而介于 0 和 1 之间的概率值,则表示事件发生的可能性有大有小。
例如,抛一枚均匀的硬币,正面朝上的概率是 05,因为硬币只有正反两面,且两面出现的可能性相等。
二、概率的计算方法1、古典概型在古典概型中,假设样本空间中基本事件的总数为 n,事件 A 包含的基本事件数为 m,则事件 A 发生的概率为 P(A) = m / n 。
例 1:一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
解:总共有 8 个球,取出红球的情况有 5 种,所以取出红球的概率为 5 / 8 。
2、几何概型当试验的基本事件有无穷多个,且每个基本事件发生的可能性相等时,常用几何概型来计算概率。
例 2:在区间0, 10内随机取一个数,求这个数小于 5 的概率。
解:区间长度为 10,小于 5 的区间长度为 5,所以概率为 5 / 10 = 05 。
三、独立事件与互斥事件1、独立事件如果事件 A 的发生不影响事件 B 发生的概率,事件 B 的发生也不影响事件 A 发生的概率,那么称事件 A 和事件 B 是相互独立的。
例如,抛两次硬币,第一次抛硬币正面朝上和第二次抛硬币正面朝上就是两个独立事件。
2、互斥事件如果事件 A 和事件 B 不能同时发生,那么称事件 A 和事件 B 是互斥事件。
比如,从一副扑克牌中抽一张牌,抽到红桃和抽到黑桃就是互斥事件。
四、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
例 3:已知某班级中,男生占 60%,女生占 40%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率初步知识点和题型【知识梳理】1. 生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1 ;②不可能事件发生的概率为0,即P (不可能事件)=0;③如果A为不确定事件,那么0<P(A)<12•随机事件发生的可能性(概率)的计算方法:①理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算。
②实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算。
要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率。
第二种:利用模拟实验的方法进行概率估算。
如,利用计算器产生随机数来模拟实验。
综上所述,目前掌握的有关于概率模型大致分为三类;第一类问题没有理论概率,只能借助实验模拟获得其估计值;第二类问题虽然存在理论概率但目前尚不可求,只能借助实验模拟获得其估计值;第三类问题则是简单的古典概型,理论上容易求出其概率。
这里要引起注意的是,虽然我们可以利用公式计算概率,但在学习这部分知识时,更重要的是要体会概率的意义,而不只是强化练习套用公式进行计算。
3. 概率应用:通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题。
【练习】随机事件与概率:.选择题1. 下列事件必然发生的是()A. 一个普通正方体骰子掷三次和为19B. 一副洗好的扑克牌任抽一张为奇数。
C. 今天下雨。
D. 一个不透明的袋子里装有4个红球,2个白球,从中任取3个球,其中至少有2球同色。
2. 甲袋中装着1个红球9个白球,乙袋中装着9个红球1个白球,两个口袋中的球都已搅匀。
想从两个口袋中摸出一个红球,那么选哪一个口袋成功的机会较大?(A. 甲袋B.乙袋C.两个都一样D.两个都不行3. 下列事件中,属于确定事件的是()A. 发射运载火箭成功B. 2008年,中国女足取得冠军C•闪电、雷声出现时,先看到闪电,后听到雷声D.掷骰子时,点数“ 6”朝上4. 下列事件中,属于不确定的事件的是()A. 英文字母共28个B. 某人连续两次购买两张彩票,均中头奖C. 掷两个正四面体骰子(每面分别标有数字1,2,3,4)接触地面的数字和为9D. 哈尔滨的冬天会下雪5. 下列事件中属于不可能的事件是()A.军训时某同学打靶击中靶心B.对于有理数x,l x IW 0C. 一年中有365天D.你将来长到4米高6. 一个袋子中放有红球、绿球若干个,黄球5个,如果袋子中任意摸出黄球的概率为,那么袋子中共有球的个数为()A. 15B. 18C. 20D. 25用列举法求概率: 填空题:1、小华与父母一同从重庆乘火车到广安邓小平故居参观•火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是。
2、初三(一)星期二下午安排了数学、英语、生物各一节课,则把数学课安排在最后一节的概率3、甲乙两人去某风景区游玩,每天某一时段开往风景区有三辆汽车(票价相同)。
两人分别采取不同的乘车方案:甲无论如何总是上开来的第一辆车;乙是观察后上车,当第一辆车开来时都不上,如果第二辆车比第一辆车好就上第二辆,第二辆车没第一辆好就等着上第三辆车,则甲坐上好车的概率为,乙坐上好车的概率为.4、有两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,则两把钥匙同时打开两把锁的概率 _________________ 。
5、三个茶杯只有花色不同,其中一个无盖,突然停电,小伟只好把茶盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率 ____________________ .6、三张完全相同的贺卡分别送给三位同学,则三位同学都拿到的是送给自己那张贺卡的概率是7、在平面直角坐标系xOy中,直线y x 3与两坐标轴围成一个△ AOB现将背面完全相同,正面分1 1别标有数1、2、3、一、-的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的2 3横坐标,将该数的倒数作为点P的纵坐标,则点P落在△ AOB内的概率为__________________ 。
&有四张正面分别标有数学一3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a,则使关于x的分式方程L_ax 2丄有正x 2 2 x整数解的概率为________________ 。
9、将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5, 2, 1和1 , 5, 2),那么截成的三段木棍能构成三角形的概率是____________________________ . 10、从3, 0, - 1, - 2, - 3这五个数中,随机抽取一个数,作为函数y=(5 —m i) x和关于x的方程(m+1)x2+m)+仁0中m的值,恰好使所得函数的图像经过第一、三象限,且方程有实数根的概率为11、有七张正面分别标有数字-3 , -2 , -1,0, 1,2, 3 的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的方程x2-2(a-1)x+a(a-3)=0有两个不相等的实数根,且以x为自变量的函数y=x2-(a+1)x-a+2 的图像不经过点(1,0 )的概率是12、m的值可以取0、1、2、3中的一个数,n可以取0、1、3中的一个数,则使方程mx-2=n(x+1|n)的解是正整数的概率________________ .13、已知a i不等于0 (i=1、2、3…….2012 )满足使直线y=a i+i(i=1 、2、3……..2012)的图像经过一、二、四象限的a i概率 ____________________ .解答题:1、减负提质“ 1+5”行动计划是我市教育改革的一项重要举措。
某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时内”、“2小时一3小时”、“3小时一4小时”、“4小时以上”四个等级,分别用A、B、C D表示,根据调查结果绘制成了如图所示的两幅不完整的统计图,由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人参加学校的知识抢答赛,用列表法或画树状图的方法求选出的2人来自同不同小组的概率。
2.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通高中招生指标到校是我市中考招生制度改革的一项重要措施•某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是_____________________ •请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况•请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.3 •为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率。
4 •在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图:(1) 求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;(2) 如果发了3条箴的同学中有两位同学,发了4条箴言的同学中有三位女同学. 现要从发了3条箴和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.5、有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4 (如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同)。
小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积。
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢。
你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平。
概率的实际应用:1、集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1- 20号),另外袋中还有1只红球,而且这21只球除颜色外其余完全相同。
规定:每次只摸一只球。
摸前交1元钱且在1 —20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。
(1)你认为该游戏对“摸彩”者有利吗?说明你的理由。
(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?2、调查员希望了解某水库中鱼的养殖情况;⑴怎样了解鱼的平均质量?⑵怎样了解鱼的总尾数?。