《方阵问题》教学设计
方阵问题-教案

方阵问题教学内容:北京版四年级上册教学目标:1、了解方阵问题的特点,掌握解决方阵问题的基本方法。
2、让学生在画一画、圈一圈的活动中探索方阵问题的不同解决方法,并结合直观图沟通不同方法间的联系。
3、让学生感受数学在日常生活中的广泛应用,体会数学的价值。
教学重点:掌握方阵最外层每边数量与最外层数量之间的关系,解决简单的方阵问题。
教学难点:借助直观图提高学生解决实际问题的能力。
教学准备:课件、方阵图。
教学过程:一、生活情境导入,了解方阵特点课件出示生活中的方阵图片。
(让学生感受数学知识就在自己身边。
)提问:这些队伍有什么共同的特点?(引导学生观察队伍整体形状)小结:在队列问题中,通常横着排叫做行,竖着排叫做列。
如果行数和列数都相等,则正好排成一个正方形,在数学上我们把它称为“方阵”。
二、探究解决问题的方法(一)出示问题1、课件出示例题:“这个花坛的最外层每边各有6盆花。
”谈话:生活中,你见过这样的花坛吗?它就是用花组成的一个方阵。
2、从图中你能找到哪些数学信息?根据数学信息,你能提出什么数学问题?预设:问题1:这个花坛一共有多少盆花?指名列式解决。
问题2、最外层一共有多少盆花?(如学生提不出来,教师直接出示)(二)自主探究,发现规律最外层共有多少盆花?1、先估一估,猜想最外层有多少盆花?2、探究方阵问题的基本方法最外层到底有多少盆花,该怎样算呢?我们要一起来验证一下。
老师为每位同学准备了这样的方阵图,按照学习要求先自己尝试解决,然后和同桌交流你的想法。
出示学习要求:(1)在学具纸上画一画、圈一圈,要求能让人一眼就看出你是怎么想的。
(2)把你的想法用算式表示出来。
(3)把你的想法和同桌交流。
再想想还有没有不同的算法。
学生进行探究活动,教师巡视,搜集学生解决问题的不同方法,并对有困难或有疑问的学生给予指导。
(三)交流展示不同方法最外层共有多少盆花?你们是怎样想的?1、展示不同的方法:方法1:6X4-4 方法2:(6-2)X4+4 方法3:(6-1)X42、比较不同方法,这几种方法有什么相同点和不同点。
方阵问题-北京版四年级数学上册教案

方阵问题-北京版四年级数学上册教案一、教学目标1.了解方阵的概念。
2.掌握方阵中行和列的概念。
3.能够根据题目要求用方阵进行简单的计算。
二、教学内容1. 方阵的定义方阵是一个n×n的矩形,其中n为正整数。
方阵中有n行和n列。
如果一个矩形既有n行又有n列,那么它就是一个方阵。
2. 方阵中的行和列一个n×n的方阵中,第i行指的是该方阵中从上到下的第i行,第j列指的是该方阵中从左到右的第j列,其中i和j均为正整数且i和j的取值范围均为1到n。
3. 利用方阵解决问题方阵在解决一些简单的数学问题时非常有用。
比如在加减法练习中,我们可以使用方阵的形式将问题简化。
例如,有以下一道题目:77 + 48 =我们可以使用方阵的形式来解决这个问题:十位数个位数7 7 74 4 8通过上表的方阵形式,我们可以得到解答:77 + 48 = 125同样,我们可以使用方阵的形式来解决更复杂的问题。
1.多媒体教学法在教学过程中,引入多媒体教学法,辅以多种形式的动态展示来促进学生的兴趣和理解。
2.探究式学习法在教学过程中,引导学生主动探究和发现问题的方法,培养学生的学习兴趣和思考能力。
3.个案阐述法在教学过程中,通过具体的例子来展示方阵的应用场景,帮助学生更好地理解和掌握方阵的概念和应用。
四、教学步骤1.导入引出方阵的概念,通过生活实际例子来预习方阵的概念。
2.示范让学生通过课本上的例子来感受方阵的形式和特点。
3.小组探究学生分小组协作探究一些小问题,从而加深对方阵的理解。
4.分享小组分享探究结果,相互借鉴和补充,进一步理解方阵的应用。
5.巩固通过多种形式,让学生练习方阵的运算技巧,加深对方阵的练习和理解。
6.总结让学生总结方阵的应用场景和运用方法。
通过考察学生在教学过程中的表现,综合评价学生掌握方阵的程度和应用能力。
除此之外,还可以开展小测验等评价方式。
六、教学方法1.以多媒体教学法为主,引导学生探究和发现问题。
方阵问题 教案

方阵问题教案教案标题:方阵问题教案目标:1. 学生能够理解方阵的概念,并能够识别和描述方阵的特征。
2. 学生能够解决方阵问题,包括计算方阵的面积和周长。
教案步骤:引入活动:1. 引导学生回顾正方形的概念,并提问:你们知道什么是方阵吗?方阵和正方形有什么区别?2. 鼓励学生分享自己对方阵的理解和观察。
知识讲解:1. 通过投影或板书,向学生解释方阵的定义:方阵是一种特殊的矩形,它的四条边相等且四个角都是直角。
2. 解释方阵的特征:方阵的边长相等,任意两条边都是平行的,四个角都是直角。
3. 引导学生观察并辨认方阵的例子,以加深他们对方阵特征的理解。
实践活动:1. 分发方阵问题练习纸,让学生在纸上练习计算方阵的面积和周长。
2. 提供一些简单的方阵问题示例,并引导学生使用所学知识解决问题。
例如:给定一个方阵的周长为16cm,求其面积是多少?3. 鼓励学生在小组内合作,相互讨论和解决方阵问题。
巩固练习:1. 分发巩固练习题,让学生独立完成。
练习题可以包括计算方阵面积和周长的问题,也可以包括判断给定图形是否为方阵的问题。
2. 收集学生的练习纸并进行批改,及时给予学生反馈。
拓展活动:1. 引导学生观察周围环境中的方阵,例如教室的地砖、窗户的格子等,让他们发现方阵的实际应用。
2. 鼓励学生设计自己的方阵问题,并与同学分享解决方法。
教案评估:1. 观察学生在课堂上的参与度和对方阵问题的理解程度。
2. 收集学生完成的练习纸,评估他们对方阵面积和周长计算的掌握情况。
3. 通过学生的表现和回答问题的准确性,评估他们对方阵特征的理解。
教案扩展:1. 引导学生思考更复杂的方阵问题,例如计算不规则方阵的面积和周长。
2. 引导学生研究方阵的性质和相关定理,例如方阵的对角线是否相等等。
教案反思:本教案通过引入活动、知识讲解、实践活动、巩固练习和拓展活动等环节,全面培养学生对方阵问题的认识和解决能力。
在教学过程中,教师应根据学生的实际情况进行灵活调整,确保教学内容与学生的认知水平相匹配。
四年级上册数学教案 10.2 方阵问题 北京版

课时教学设计
学校:年(班)级:四年级人数:日期:
学科:数学课题:方阵问题课型:新课教师:
教学目标(三维融通表述):
1、了解方阵的特点,掌握解决方阵问题的基本方法。
2、在自主探究、小组合作学习中探究解决方阵问题的不同方法,提高学生解决实际问题的能力。
3、培养学生利用直观图,正确表达自己的想法的能力。
教学重难点:
1、掌握方阵最外层每边数量与最外层总数之间的关系,能够解决简单的方阵问题。
2、学生利用直观图,正确表达自己的想法。
教学过程
教学环节问题与任务时间教师活动学生活动
一、情景导入
二、研究与讨论从生活中的
方阵引入,引
导学生在观
察中了解方
阵的基本特
点,为后面的
探究做好铺
垫。
让学生在圈
一圈、画一画
活动中经历
探索规律的
过程。
出事图片
提问:从排兵布阵的形式上
看,你们发现了什么?
小结:像这样当每行和人数和
行数相等时,就组成了一个正
方形的队伍,在数学上我们把
它称为“方阵”。
出示主题图:
1、梳理信息和问题
从图中,你发现了什么?
2、自主探究完成任务一
学习提示:
(1)独立思考:先在图中圈
一圈、画一画,然后列式计算
最外层一共有多少盆花。
算完
后,想一想还有其他方法吗?
在另一幅图中试一试。
观察主题
发现数学信息:花坛最外层各边
有6盆花呢?
问题:最外层一共有多少盆花?
完成任务一。
方阵问题-北京版四年级数学上册教案

方阵问题-北京版四年级数学上册教案一、教学目标1.知道如何在方阵中找出某个位置;2.能够了解方阵与坐标点之间的关系;3.能够熟练解决包括加、减、比较等各种类型的方阵问题。
二、教学重点1.让学生能够熟练解决各种类型的方阵问题;2.培养学生的思维能力和计算能力。
三、教学难点1.培养学生的抽象思维能力;2.让学生能够理解坐标点与方阵之间的关系,并准确地读取坐标点在方阵中的位置。
四、教学步骤步骤一:前置知识导入教师可以通过提问等方式帮助学生回忆起如何阅读坐标,以及如何进行简单的加减运算。
例如,可以问:•在地图上,如何查找一个城市的位置?•如果现在你身在A城市,你要去B城市,需要走多少公里?•如果现在你在(3,5)这个坐标点,你要往上走三步,向右走四步,会到达哪个坐标点?步骤二:引入方阵在黑板上画一个方阵,并以一个具体的例子来介绍如何在方阵中找出某个位置。
例如,假设我们有一个3✕4的方阵,现在要找到其中第2行第3列(也就是坐标点(2,3))的位置。
教师可以用白色笔在方阵上圈出该位置,并解释它的含义。
步骤三:方阵与坐标点的关系教师可以在黑板上画一个坐标系,再画出一个方阵,并让学生自己找到其中某几个位置的坐标点。
例如,找出方阵中的第2行第3列、第4行第2列这两个位置的坐标点,并在坐标系中画出来。
接下来,教师可以逐步引入如何通过坐标点来定位方阵中的位置,例如,让学生在黑板上标出某个位置的坐标点,然后让他们在方阵中找到该位置并打上标记。
步骤四:方阵问题1.加减问题:教师可以在黑板上出示一些加减问题,例如:–如果现在你站在坐标点(2,3),你往上走两步,往右走三步,你会到达哪个坐标点?–如果现在你站在坐标点(3,4),你往下走四步,往左走两步,你会到达哪个坐标点?2.大小比较问题:教师可以在黑板上出示一些大小比较的问题,例如:–坐标点(1,3)和坐标点(2,2)哪个位置更靠近坐标轴?–坐标点(5,1)和坐标点(4,3)哪个位置更靠近坐标轴?步骤五:小结教师可以对方阵问题的解决方法进行小结,并对出现的问题进行解答和讲解。
方阵问题教案

方阵问题教案一、教学目标1. 了解方阵的概念和性质;2. 掌握方阵的基本运算法则;3. 熟练运用方阵解决实际问题。
二、教学重点1. 方阵的基本概念和性质;2. 方阵的基本运算法则。
三、教学难点1. 熟练运用方阵解决实际问题。
四、教学内容1. 方阵的概念和性质方阵是指行数和列数相等的矩阵,即 n 行 n 列的矩阵。
方阵的元素可以是实数、复数或其他数域中的元素。
方阵有以下性质:1. 对角线上的元素称为主对角线元素,其余元素称为副对角线元素;2. 方阵的转置是将其行和列互换得到的矩阵;3. 方阵的行列式是一个数值,用于判断方阵是否可逆;4. 方阵的逆矩阵是一个矩阵,满足原矩阵与其逆矩阵相乘等于单位矩阵。
2. 方阵的基本运算法则方阵的基本运算包括加法、减法和乘法。
方阵的加法和减法与普通矩阵的加法和减法相同,即对应元素相加或相减。
方阵的乘法有以下规则:1. 两个 n 行 n 列的方阵 A 和 B 相乘得到的矩阵 C 也是 n 行 n 列的方阵;2. C 的第 i 行第 j 列元素等于 A 的第 i 行元素与 B 的第 j 列元素对应相乘后的和,即 C ij =∑A ik n k=1B kj 。
3. 方阵解决实际问题方阵可以用于解决实际问题,例如:1.线性方程组的求解:将线性方程组的系数矩阵和常数矩阵组成增广矩阵,通过高斯消元法或矩阵求逆法求解;2.矩阵变换:将一个向量或点通过矩阵乘法进行变换,例如旋转、缩放、平移等;3.图像处理:将图像表示为矩阵,通过矩阵运算实现图像的变换、滤波、压缩等。
五、教学方法1.讲授法:通过讲解方阵的概念、性质和运算法则,让学生掌握方阵的基本知识;2.实例法:通过实际问题的解决,让学生了解方阵的应用;3.练习法:通过练习题的训练,让学生熟练掌握方阵的运算和应用。
六、教学过程1. 方阵的概念和性质1.讲解方阵的概念和性质,包括对角线元素、转置、行列式和逆矩阵;2.通过例题讲解方阵的性质和应用。
《方阵问题》教学设计

《方阵问题》教学设计教学目标:(1)使学生理解并掌握一个封闭图形的植树问题的规律。
(2)学会用不同的方法分析具体的数学问题。
过程与方法:经历数学问题的探究过程,体验用不同的思路解决问题的方法。
重点、难点:重点:理解并掌握解决问题的规律。
难点:运用规律解决实际问题。
第一环节开放的导入1、创设情境,提出问题师:同学们,老师今天给你们带来了什么呢?师:这是一个正方形花台,每边摆满了鲜花。
如果每边摆6盆花,请问:一共要摆多少盆花?:20盆生1:4×6=24盆生2:20盆生3师:那大家数数吧!(点数验证)师:刚才谁说的24,你是怎么想的?大胆的说出自己的真实想法。
生:我想4×6=24盆,忘了4个角数重了师:看来在算这一周一共有多少盆时,一定要注意什么?生:4个角上不能重复计算2、探究解题策略的多样化师:怎样才能不重复计算呢?独立思考有想法后在老师给你们准备的图卡纸上圈一圈,画一画,再列式算一算生:独立圈画,列式(4分钟)(学生基础资源生成)师:师谁来汇报自己的方法生1:(1)4×6-4=20盆(师:不错,知道重算了,要减去,思考问题很周密啊)生2:(2)4×(6-1)=20盆(师:看来这样就避免了重复,安排得很巧妙。
)生3:(3)4×(6-2)+4=20盆(师:做得很好,不仅考虑到了4个角上的点,还做到不遗漏。
)生4:(4)2×6+2×4=20盆(师:他把上面2个角安排在上边,下面2个角安排在下边,这样避免了重复)第二环节开放的教学:师:刚才听了同学们的介绍,你喜欢哪一种,就选自己喜欢的1-2种方法讲给同桌小朋友听一听生:同桌交流师:真没想到,同学们能从不同角度思考,想出四种解决问题的方法,了不起。
但无论哪一种,大家都抓住了关键性的问题?角上的点不重复计算。
第三环节开放的延伸:1、运用策略,解决问题形成结构(横向的延伸)师:现在有了这些方法,你们能运用这些方法来解决一些问题吗?师:班上哪些同学会下围棋,说一说你知道围棋哪些方面的知识?有一天问了老师这样一个问题(出示例3)你能帮他解决吗?例3:围棋盘上的最外层每边能放19个棋子。
方阵问题教学设计与反思

方阵问题教学设计与反思第一篇:方阵问题教学设计与反思方阵问题教学设计与反思教学思路:现代数学教学观认为数学教学是学生在教师的指导下,在师生共同组成的“共同体”中,利用自己已有的知识和经验(认知结构),主动建构新知识(自己对数学知识的理解),扩大认知结构,学会思考,发展能力,完善人格的活动。
本堂课着重体现“知识在做数学中自主建构,思维在交流互动中提升拓展”。
通过学生在练习纸上把自己的想法圈一圈,画一画的学习方式,使每一个学生都能经历数学学习的全过程,让他们结合自己独特的学习体验感受数学知识,建构对数学知识的认识,从而将知识内化为自己的能力。
通过小组同桌交流、全班学生互动,学生之间的思维发生碰撞和融合,各汲所长,每位学生既收获自己的方法,又能理解他人的做法。
学生深刻体会到解决问题方法的多样性,并在比较和应用的过程中对众多方法进行优化,感受到具体问题具体分析,依据实际情况灵活地选择方法。
数学知识源于生活,本堂课通过具体生动的生活情境激发学生的学习兴趣,拉近数学知识与学生之间的距离,感受数学知识魅力。
学生既在生活情境中探讨方阵问题的规律和解决方法,又能将这些方法和思想更灵活地应用到更广阔的生活实际问题中去,进一步提高了学生的创新意识和解决问题的能力。
教学目标:1、在问题情境中自主探讨方阵问题;了解求方阵最层总数的方法;会选择比较简便的方法解决问题。
2、初步培养学生从问题解决中探索规律的意识,提高解决问题的能力。
3、让学生感受数学在日常生活中的广泛应用,培养学生对数学学习的兴趣。
4、通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。
教学重点:在自主探究、合作交流中理解方阵问题的解决方法,发现其中的规律。
教学难点:掌握方阵问题的解决方法,并能灵活地解决实际问题。
教具准备:课件,练习纸教学过程设计:一、谈话引入,激发兴趣:2008年里你印象最深刻的一件事是什么? 北京奥运会开幕式上你最难忘的片段是什么?播放视频:北京2008奥运会开幕式《灿烂文明:文字》,出示相关资料:“北京2008奥运会开幕式《灿烂文明:文字》一段,摆出来一个23×44的方阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《方阵问题》教学设计
教学目标:
(1)使学生理解并掌握一个封闭图形的植树问题的规律。
(2)学会用不同的方法分析具体的数学问题。
过程与方法:
经历数学问题的探究过程,体验用不同的思路解决问题的方法。
重点、难点:
重点:理解并掌握解决问题的规律。
难点:运用规律解决实际问题。
第一环节开放的导入
1、创设情境,提出问题
师:同学们,老师今天给你们带来了什么呢?
师:这是一个正方形花台,每边摆满了鲜花。
如果每边摆6盆花,请问:一共要摆多少盆花?
:20盆
生
1
:4×6=24盆
生
2
:20盆
生
3
师:那大家数数吧!(点数验证)
师:刚才谁说的24,你是怎么想的?大胆的说出自己的真实想法。
生:我想4×6=24盆,忘了4个角数重了
师:看来在算这一周一共有多少盆时,一定要注意什么?
生:4个角上不能重复计算
2、探究解题策略的多样化
师:怎样才能不重复计算呢?独立思考有想法后在老师给你们准备的图卡纸上圈一圈,画一画,再列式算一算
生:独立圈画,列式(4分钟)
(学生基础资源生成)
师:师谁来汇报自己的方法
生1:(1)4×6-4=20盆(师:不错,知道重算了,要减去,思考问题很周密啊)
生2:(2)4×(6-1)=20盆(师:看来这样就避免了重复,安排得很巧妙。
)生3:(3)4×(6-2)+4=20盆(师:做得很好,不仅考虑到了4个角上的点,还做到不遗漏。
)
生4:(4)2×6+2×4=20盆(师:他把上面2个角安排在上边,下面2个角安排在下边,这样避免了重复)
第二环节开放的教学:
师:刚才听了同学们的介绍,你喜欢哪一种,就选自己喜欢的1-2种方法讲给同桌小朋友听一听
生:同桌交流
师:真没想到,同学们能从不同角度思考,想出四种解决问题的方法,了不起。
但无论哪一种,大家都抓住了关键性的问题?角上的点
不重复计算。
第三环节开放的延伸:
1、运用策略,解决问题形成结构(横向的延伸)
师:现在有了这些方法,你们能运用这些方法来解决一些问题吗?
师:班上哪些同学会下围棋,说一说你知道围棋哪些方面的知识?有一天问了老师这样一个问题(出示例3)你能帮他解决吗?
例3:围棋盘上的最外层每边能放19个棋子。
最外层一共可以摆放多少棋子?
独立完成,指名汇报。
2、3月9日学校举行了集体舞比赛,看,我们四(5)班的57名同学多神气!
除了马静仪举班牌,如果要将剩下的56名同学围成一个正方形,每边人数相等,四个顶点都有人,每边各有几个学生?
3、五一节快到了,为了改变校园环境,学校想在全校范围内征集校园花坛设
计方案。
有以下三种,(正六边形、正三角形、五角星)请同学选择一种你最喜欢的图形,算一算如果每边放3盆花,至少可以摆放多少盆花?再
第四环节小结
今天你有什么收获?还有什么问题要问?。