逻辑函数的代数法化简

合集下载

第三章布尔代数与逻辑函数化简

第三章布尔代数与逻辑函数化简
F = A B C + BC( A + A) + A C ( B + B) = A B C + ABC + A BC + AB C + A B C
_ _ _ _ _ _ _ _ _ _ _ _ _
和 ( A + A)
_
乘第二项和第三项, ( B + B)
_
(2) 真值表法。将原逻辑函数A、B、C 取不同 值组合起来,得其真值表,而该逻辑函数是将F=1 那些输入变量相或而成的,如表3 - 3所示。
_ _ _ _
_
_
_ _
= A B + A B + ( A B + A B )CD
令 A B + A B = G, 则
F = G + G CD = G + CD = A B + A B + CD
_ _ _
_ _
_
_
_
_
3. 应用多余项定律 ( AB + A C + BC = AB + A C )
例 10 解 化简
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
此例就是用 (C + C ) 和 ( A + A) 分别去乘第三项和第四项, 然后再进行化简。
_
_
6. 添项法
在函数中加入零项因子 x . x 或 x . x f ( AB . ..) ,利用 加进的新项,进一步化简函数。 例 14 化简 = AB C + ABC AB 。 F
第三章 布尔代数与逻辑函数化简
3.1 3.2 3.3 基本公式和规则 逻辑函数的代数法化简 卡诺图化简

第02讲 逻辑函数的化简:代数法

第02讲 逻辑函数的化简:代数法

用与门、或门和非门进行逻辑综合
行号 0 1 2 3 x 0 0 1 1 y 0 1 0 1 f(x,y) 0 1 1 1
f xy xy xy
(1 16)
f x y
(1 17)
优化结果
f xy xy xy
(1 16)
f x y
(1 17)
公式法化简逻辑函数
f1 x2 x3
逻辑代数的基本规则(续)

反演规则:德·摩根定律的一般形式称为反 演规则
x n x n1 ... x i ... x 2 x 1 x n x n1 ... x i ... x 2 x 1
x n x n1 ... x i ... x 2 x 1 x n x n1 ... x i ... x 2 x 1
0 0
x2
0
x3
0 1 0 1
f0
1 0 1 1
x3
0 1 0 1 0 1 0 1
f 0
1 0 1 1 0 0 1 0
0 1 1
0
1 1 0 0
f 0 x2 x3 x2 x3 x2 x3
x1 x2
0
x3
0 1 0 1
f1
0 0 1 0
1
1 1
1
0 1 1
f x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x( x( 1 x2 x3 x2 x3 x2 x3 ) 1 x2 x3) x1 f 0 x1 f1
(配项法,式1 - 5b)
( 结合律,式1 7b ) ( 吸收率,式1 10b)
公式法化简逻辑函数(续)

第04讲-逻辑函数代数法化简

第04讲-逻辑函数代数法化简
第四讲 代数法化简
4
逻辑代数的三条规则

规则三:对偶规则 如果将函数F作如下变换得到一个新函数,则 新函数就是原来函数F的对偶函数,记为 F’ 。

+
+

0
1
变量保持不变 第四讲 代数法化简
1
0
5
逻辑代数的三条规则
例: 求函数 F=A ( B+C)的对偶函数 解: F’ =A + B C 注意: (1)保持原运算顺序不变 (2)表达式中“大非号”不变
(3) (F’)’= F
(4)变量 A’=A
(5)若F1=F2, 则F1’=F2’
第四讲 代数法化简
6
逻辑代数的三条规则
例: 已知 F=A B+A B +B C D+A B C D 求F’, F 解: F’ =A+B (A+B) (B+C+D) A+B+C+D F =A+B (A+B) (B+C+D) A+B+C+D
A+B+C,A+B+C,A+B+C 任一最小项都有n个邻项。
第四讲 代数法化简
13
逻辑函数的标准式

分解定理 F(x1,x2,…,xn) =xi · 1,x2,…,0,…,xn)+xi· 1,x2,…,1,…,xn) F(x F(x = xi · 1,x2,…,xn)|xi=0+ xi·F(x1,x2,…,xn)|xi=1 F(x F(x1,x2,…,xn)
10
第四讲 代数法化简
逻辑函数的标准式

1.1 逻辑函数的代数(公式)化简法

1.1 逻辑函数的代数(公式)化简法

逻辑函数的代数(公式)化简法代数化简法的实质就是反复使用逻辑代数的基本公式和常用公式消去多余的乘积项和每个乘积项中多余的因子,以求得函数式的最简与或式。

因此化简时,没有固定的步骤可循。

现将经常使用的方法归纳如下:①吸收法:根据公式A+AB=A 可将AB 项消去,A 和B 同样也可以是任何一个复杂的逻辑式。

()F A A BC A BC D BC =+⋅⋅+++例:化简()()()()()()F A A BC A BC D BCA A BC A BC D BCA BC A BC A BC D A BC=+⋅⋅+++=+++++=+++++=+解:现将经常使用的方法归纳如下:②消因子法:利用公式A+AB=A +B 可将AB 中的因子A 消去。

A 、B 均可是任何复杂的逻辑式。

1F A AB BEA B BE A B E=++=++=++例:2()F AB AB ABCD ABCDAB AB AB AB CDAB AB AB ABCDAB AB CD=+++=+++=+++=++现将经常使用的方法归纳如下:③合并项法(1):运用公式A B +AB=A 可以把两项合并为一项,并消去B 和B 这两个因子。

根据代入规则,A 和B 可以是任何复杂的逻辑式。

例:化简F BCD BCD BCD BCD=+++()()()()F BCD BCD BCD BCDBCD BCD BCD BCD BC D D BC D D BC BC B=+++=+++=+++=+=现将经常使用的方法归纳如下:③合并项法(2):利用公式A+A=1可以把两项合并为一项,并消去一个变量。

例:1()1F ABC ABC BCA A BC BCBC BC =++=++=+=现将经常使用的方法归纳如下:③合并项法(2):利用公式A+A=1可以把两项合并为一项,并消去一个变量。

例:2()()()()F A BC BC A BC BC ABC ABC ABC ABCAB C C AB C C AB AB A=+++=+++=+++=+=现将经常使用的方法归纳如下:例:1()()()()()(1)(1)()F AB AB BC BCAB AB C C BC A A BCAB ABC ABC BC ABC ABCAB ABC BC ABC ABC ABC AB C BC A AC B B AB BC AC=+++=+++++=+++++=+++++=+++++=++④配项法:将式中的某一项乘以A+A 或加A A ,然后拆成两项分别与其它项合并,进行化简。

逻辑函数的化简方法

逻辑函数的化简方法

一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消因子。

常用方法有:①并项法利用公式AB+AB’=A 将两个与项合并为一个,消去其中的一个变量。

②吸收法利用公式A+AB=A 吸收多余的与项。

③消因子法利用公式A+A’B=A+B 消去与项多余的因子④消项法利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多的与项。

⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。

二、卡诺图化简法逻辑函数的卡诺图表示法将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。

逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。

1.表示最小项的卡诺图将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。

具有逻辑相邻性的最小项在位置上也相邻地排列。

用卡诺图表示逻辑函数:方法一:1、把已知逻辑函数式化为最小项之和形式。

2、将函数式中包含的最小项在卡诺图对应的方格中填1,其余方格中填0。

方法二:根据函数式直接填卡诺图。

用卡诺图化简逻辑函数:化简依据:逻辑相邻性的最小项可以合并,并消去因子。

化简规则:能够合并在一起的最小项是2n个。

如何最简:圈数越少越简;圈内的最小项越多越简。

注意:卡诺图中所有的1 都必须圈到,不能合并的1 单独画圈。

说明,一逻辑函数的化简结果可能不唯一。

合并最小项的原则:1)任何两个相邻最小项,可以合并为一项,并消去一个变量。

2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。

3)任何8个相邻最小项,可以合并为一项,并消去3个变量。

卡诺图化简法的步骤:画出函数的卡诺图;画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小项仅被圈过一次,以免出现多余项。

6、逻辑代数的化简(公式法和卡诺图法)

6、逻辑代数的化简(公式法和卡诺图法)

6、逻辑代数的化简(公式法和卡诺图法)⼀、逻辑函数的化简将⼀个逻辑表达式变得最简单、运算量最少的形式就叫做化简。

由于运算量越少,实现逻辑关系所需要的门电路就越少,成本越低,可靠性相对较⾼,因此在设计逻辑电路时,需要求出逻辑函数的最简表达式。

由此可以看到,函数化简是为了简化电路,以便⽤最少的门实现它们,从⽽降低系统的成本,提⾼电路的可靠性。

通常来说,我们化简的结果会有以下五种形式为什么是这五种情况,这个跟我们实现的逻辑电路的元器件是有关系的。

在所有的逻辑电路中,都是通过与、或、⾮三种逻辑电路来实现的,之前说过逻辑“与或”、“或与”、“与或⾮”组合逻辑电路是具有完备性的,也就是说能够通过它们不同数量的组合能够实现任何电路。

通过不同的“与或”电路组成的电路,最后化简的表达式就是“与或”表达式,其他同理。

⼆、将使⽤“与或”表达式的化简表达式中乘积项的个数应该是最少的表达了最后要⽤到的与门是最少的,因为每⼀个乘积项都需要⼀个与门来实现。

同时也对应了或门输⼊端的个数变少,有2个与项或门就有2个输⼊端,有3个与项或门就有3个输⼊端。

所以第⼀个条件是为了我们的与门和或门最少。

每⼀个乘积项中所含的变量个数最少它是解决每⼀个与门的输⼊端最少。

逻辑函授的化简有三种⽅法三、逻辑函数的代数化简法3.1 并项法并项法就是将两个逻辑相邻(互补)的项合并成⼀个项,这⾥就⽤到了“合并律”将公因⼦A提取出来合并成⼀项,b和b⾮相或的结果就等于1,所以最后的结果就是A。

吸收法是利⽤公式“吸收律”来消去多余的项3.3 消项法消项法⼜称为吸收律消项法3.4 消因⼦法(消元法)3.4 配项法左边的例⼦⽤到了⽅法1,右边的例⼦⽤到了⽅法2。

3.5 逻辑函数的代数法化简的优缺点优点:对变量的个数没有限制。

在对定律掌控熟练的情况下,能把⽆穷多变量的函数化成最简。

缺点:需要掌握多个定律,在使⽤时需要能够灵活应⽤,才能把函数化到最简,使⽤门槛较⾼。

代数法化简逻辑函数

代数法化简逻辑函数
另外,也可运用第三项公式 AB AC AB AC BC
2.1 逻辑代数
例1:证明 AB AB A AB B AB
证明: AB AB AB AA AB BB A A B B A B
A AB B AB A AB B AB
A AB B AB
(2)用与非门实现L。
应将表达式转换成与非—与非表达式:
L AB BC AC
L AB BC AC
AB BC AC
AB BC AC
(3)用非门、或非门实现L。
L AB BC AC
ABBC AC
ABBC AC
2.1 逻辑代数
例7化简: L AB BC BC AB
2.1 逻辑代数
例3化简: L AB AC BC CB BD DB ADE(F G) L ABC BC CB BD DB ADE(F G) (利用摩根律 )
A BC CB BD DB ADE(F G)(利用 AAB AB )
A BC CB BD DB (利用A+AB=A)
第二章 逻辑代数
2.1 逻辑代数 2.2 逻辑函数的卡诺图化简法
2.1 逻辑代数
二.基本定律和恒等式
1.பைடு நூலகம்基本公式 (公理)
与运算: 0۰0=0 或运算: 0+0=0
0۰1=0 0+1=1
1۰0=0 1+0=1
非运算: 0 1 1 0
2. 定律
常量与变量 运算律:
互补律:
重叠律: A+A=A
A۰ A=A
双重否定律: A A
1۰1=1 1+1=1
2.1 逻辑代数
结合律 (A+B)+C=A+(B+C) ; (AB)·C=A·(BC)

逻辑函数的公式化简法

逻辑函数的公式化简法

逻辑函数的公式化简法逻辑代数的八个基本定律01律01律交换律结合律分配律(1)A1= A (2)A0= 0 (5)AB= BA (7)A(BC)= (AB) C (3)A+0= A (4)A+1= 1 (6)A+B= B+A (8)A+(B+C)= (A+B)+C(9)A(B+C)= AB+AC (10)A+(BC)= (A+B)(A+C) 0互补律(11) A A = 重叠律(13)AA= A 反演律否定律(17 )Α =(12) A + A =(14)A+A= A1(15) AB = A + BA(16) A + B = A B逻辑代数的常用公式逻辑函数的公式化简法(1)并项法运用公式A + A = 1 ,将两项合并为一项,消去一个变量,如例. Y1 = AB + ACD + A B + A CD= ( A + A ) B + ( A + A )CD = B + CD练习1. 练习1. Y2= BC D + BCD + BC D + BCD= BC ( D + D ) + BC ( D + D )= BC + BC = B= A( BC + BC ) + A( BC + BC )= ABC + ABC + ABC + ABC = AB(C + C ) + AB(C + C )练习2. 练习2. Y3= AB + AB = A( B + B ) = A(2)吸收法吸收法将两项合并为一项,运用公式A+AB=A,将两项合并为一项,消去将两项合并为一项多余的与项。

多余的与项。

例. Y1 = ( A B + C ) ABD + AD= ( A B + C ) B AD + AD = AD[]练习1.Y2 = AB + ABC + ABD + AB (C + D ) 练习1.= AB + AB C + D + (C + D ) = AB[]练习2. 练习2. Y3 = ( A + BC ) + ( A + BC )( A + B C + D)= A + BC(3)消去法消去法运用公式A + A B = A + B,或AB + A C + BC = AB + A C增加必要的乘积项,消去多余的因子例.Y1 = A + A CD + A BC= A + CD + BC练习1. 练习1. Y2 = A + AB + BE= A + B + BE = A+ B + E练习2. 练习2.Y3 = AC + AB + B + C= AC + AB + B C= AC + B C(4)配项法配项法先通过乘以A + A = 1或加上A + A = A ,增加必要的乘积项,再用以上方法化简,如:例. Y1 = AB + A B + BC + B C= AB + A B (C + C ) + BC + B C ( A + A )= AB + A BC + A BC + BC + AB C + A B C= ( AB + AB C ) + ( A BC + BC ) + ( A BC + A B C )= AB + BC + A C练习1. 练习1.Y2 = A BC + A BC + ABC= ( A BC + A BC ) + ( A BC + ABC )= A B (C + C ) + ( A + A) BC= A B + BC练习2. 练习2.Y3 = AB + AC + BCD= AB + AC + BCD ( A + A) = AB + AC + ABCD + ABCD= AB + AC小结逻辑函数的公式化简法A 并项法:将两项合并为一项,并项法:+ A = 1 ,将两项合并为一项,消去多余的项吸收法:吸收法:+ AB = A ,将两项合并为一项,消去将两项合并为一项, A 多余的项A 消去法:消去法:+ AB = A + B , AB + AC + BC = AB + A C 将两项合并为一项,将两项合并为一项,消去多余的项A 配项法:配项法:+ A = 1或加上A + A = A ,再利用以上的方法做题作业P34页2-5,(2)(3)(4)(5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BC 00 01 11 10 A 0 1 0 1 1 1 0 1 1 0
• • • • • • • • • •
逻辑代数基础一章小结 数字信号和数字电路的特点 常用数制及它们之间的互相转换 BCD码及其它码 BCD码及其它码 三种基本的逻辑运算、 三种基本的逻辑运算、常用的复合逻辑运算 逻辑函数的特点、 逻辑函数的特点、逻辑关系的表示方法 逻辑代数的基本定律和规则 逻辑函数的代数法化简及其缺点 逻辑函数的卡诺图法化简及其使用的局限性 冗余项及有冗余项逻辑函数的化简 概念:基数、 有权码、无权码、BCD码 概念:基数、权、有权码、无权码、BCD码, 真值表、逻辑图、表达式、最小项、 真值表、逻辑图、表达式、最小项、最简与或 式、冗余项 举例: 举例:P.54.
C 1 1 1 A 1 D 1 1 1 1 B
CD
BC
BD
8个相邻的最小项可以合并,消去3个取值不同的变量。 个相邻的最小项可以合并,消去 个取值不同的变量 个取值不同的变量。 个相邻的最小项可以合并
C
C
1 1 1 A 1
1 1 1 1 D
1
1
B 1 1
B
2n个相邻的最小项可以合并,消去 个不同的变量。 个相邻的最小项可以合并,消去n个不同的变量 个不同的变量。
卡诺图化简法使用的局限性
ABD
F = ABD
BC D
CD 00 01 11 10 AB 00 1 0 1 1 01 0 11 1 10 1
1 1 1 0 1 1 1 1 1
CD
BC
BD
A
F = A + C D + BC + B D + BC D
具有无关项的逻辑函数的化简
• 逻辑函数中的无关项:与所讨论的问题没 逻辑函数中的无关项: 有关系的变量取值组合所对应的最小项。 有关系的变量取值组合所对应的最小项。 • 无关项的两种形式:①约束项----不允许出 无关项的两种形式: 约束项----不允许出 ---随意项----客观上不存在。 ----客观上不存在 现;②随意项----客观上不存在。 • 无关项=冗余项:取0取1均可。 无关项=冗余项: 均可。 • 逻辑函数式中的表示;卡诺图中的表示。 逻辑函数式中的表示;卡诺图中的表示。
已知真值表如图,用卡诺图化简。 例 已知真值表如图,用卡诺图化简。
A 0 0 0 0 1 1 1 B 0 0 1 1 0 1 1 C 0 1 0 1 0 0 1 F 0 0 0 0 1 1 1
101状态未给出,即是无所谓状态。 状态未给出,即是无所谓状态。 状态未给出
化简时可以将无所谓状态当作1或 , 化简时可以将无所谓状态当作 或0, 目的是得到最简结果。 目的是得到最简结果。 BC 00 01 11 10 A 0 0 0 0 0 F=A A 1 1 φ 1 1 认为是1 认为是 冗余项在8421BCD码及其它场合的应用举例 码及其它场合的应用举例 冗余项在
CD 00 01 11 10 AB 00 0 0 0 0 01 0 11 1 10 1
1 1 0 0 0 0 0 0 0
不能圈 在一起! 在一起!
BC BC 00 A 0 0 1 0 01 0 0 11 1 1 10 0 1 AB
F=AB+BC
CD 00 01 11 10 AB 00 1 1 1Байду номын сангаас1 01 1 11 1 10 1 1 0 1 1 0 1 1 1 1 一般逻辑函数表达式的 填图及化简举例
• • • •
逻辑函数的代数法化简 代数法化简的优缺点 最小项及最小项表达式 卡诺图、 卡诺图、逻辑函数的填图
逻辑函数的卡诺图化简法
• ★★★画卡诺圈的规则★★★ ★★★画卡诺圈的规则 画卡诺圈的规则★★★ • 所有为1的小方块必须圈起来,一个圈为一 所有为1的小方块必须圈起来, 个与项; 个与项; • 2n个相邻的小方块圈在一起,可以消去n个 个相邻的小方块圈在一起,可以消去n 变量; 变量; • 圈要尽可能大; 圈要尽可能大; • 圈的个数要尽可能少。 圈的个数要尽可能少。
本次课内容
• • • • 最小项与卡诺图 逻辑函数的卡诺图法化简 无关项及具有无关项逻辑函数的化简 逻辑代数一章小结
作业: 作业: P.54.
2.11(1)
2.12(1、 2.12(1、3)
2.14(1、 2.14(1、3)
注意:最简表达式不是唯一的! 注意:最简表达式不是唯一的!例:
L = ABC + AB + BC + AC L = AC + AB + AC L = AC + BC + AC
结论:逻辑函数最简与或式不是唯一的( 结论:逻辑函数最简与或式不是唯一的(但最小 项表达式唯一) 项表达式唯一) 最大项:如果一个或项包含了该逻辑函数的所有变量, 最大项:如果一个或项包含了该逻辑函数的所有变量, 且每个变量或以原变量或以反变量的形式出现一次, 且每个变量或以原变量或以反变量的形式出现一次,则 该或项称为最大项。 该或项称为最大项。
相关文档
最新文档