最新人教版八年级数学上册《斜边、直角边》精品教案
人教版八年级数学上册12.2《斜边、直角边判定直角三角形全等》优秀教学案例

4.反思与评价:本节课注重学生的个性化评价,关注他们在学习过程中的进步和成长。教师鼓励学生进行自我评价,培养他们的自我监控和自我调整能力,使他们在学习过程中能够不断地反思和提高。
(二)讲授新知
1.利用多媒体课件或教具,直观地展示斜边、直角边判定直角三角形全等的方法。
2.通过讲解和示例,让学生理解和掌握斜边、直角边判定直角三角形全等的方法,并能够运用这一方法解决实际问题。
3.结合实例,讲解全等三角形的性质,提高学生的空间想象能力和逻辑思维能力。
(三)学生小组讨论
1.设计具有讨论性和合作性的学习任务,让学生在小组内进行讨论交流,共同解决问题。
2.设计具有挑战性和启发性的问题,引导学生思考,激发他们的求知欲和解决问题的能力。
3.创设轻松、愉快的学习氛围,使学生在课堂上能够自由地表达自己的观点,培养他们的创新意识和思维能力。
(二)问题导向
1.引导学生从问题中发现规律,总结判定方法,提高他们的推理能力和证明能力。
2.采用引导式教学法,让学生在解决问题的过程中,自主地探索和发现知识,培养他们的自主学习能力。
(四)反思与评价
1.引导学生对所学知识进行总结和反思,提高他们的归纳总结能力和思维的严谨性。
2.设计具有挑战性和应用能力。
3.注重学生的个性化评价,关注他们在学习过程中的进步和成长,激发他们的学习动力和自信心。
4.鼓励学生自我评价,培养他们的自我监控和自我调整能力,使他们在学习过程中能够不断地反思和提高。
二、教学目标
(一)知识与技能
1.让学生掌握斜边、直角边判定直角三角形全等的方法,并能够运用这一方法解决实际问题。
12.2 第4课时 “斜边、直角边”(教案)-2022-2023学年八年级上册初二数学同步备课(人教

12.2 第4课时“斜边、直角边”(教案)一、教学目标1.掌握斜边、直角边的概念和特点;2.运用勾股定理求解直角三角形的斜边或直角边;3.能够灵活运用所学知识解决实际问题。
二、教学重点1.斜边、直角边的概念和特点;2.勾股定理的运用。
三、教学内容1.斜边、直角边的定义和性质;2.勾股定理的介绍和例题讲解;3.利用勾股定理求解问题的练习。
四、教学过程1. 知识点引入•老师可利用实物或图片引入直角三角形的概念,引导学生观察并讨论直角三角形的特点:有一个直角和两条边;•引导学生思考直角三角形中的斜边和直角边的概念。
2. 斜边、直角边的定义和性质•通过板书或PPT展示斜边和直角边的定义,并与学生进行互动讨论;•引导学生总结斜边和直角边的性质,如斜边是直角三角形的最长边等。
3. 勾股定理的介绍和例题讲解•介绍勾股定理的原理和应用场景,说明其与直角三角形的关系;•利用具体的例题进行讲解,步骤清晰,注重过程的演算。
4. 利用勾股定理求解问题的练习•出示一些应用勾股定理求解斜边或直角边的问题,由学生独立思考并解答;•讲解解题思路,帮助学生理解问题的求解过程。
5. 总结与拓展•对本节课的重点知识进行总结,强调斜边、直角边的概念和特点,勾股定理的应用;•引导学生思考勾股定理的拓展应用,如三棱锥的体积计算等。
五、课堂练习练习一已知一直角三角形的直角边分别为3cm和4cm,求斜边的长。
解析:根据勾股定理,斜边的平方等于直角边的平方和,即斜边的平方 = 3^2 + 4^2 = 25,所以斜边的长为5cm。
练习二一个直角三角形的斜边为10cm,直角边为6cm,求另外一个直角边的长。
解析:根据勾股定理,直角边的平方等于斜边的平方减去另一个直角边的平方,即另一个直角边的平方 = 10^2 - 6^2 = 100 - 36 = 64,所以另一个直角边的长为8cm。
六、作业布置1.完成课堂练习的剩余题目;2.思考并写下3个与勾股定理相关的实际应用场景。
最新初中人教版数学人教八年级上册《三角形全等的判定斜边、直角边》教学设计

《12.2三角形全等的判定——斜边、直角边》教学设计一、内容和内容解析1.内容直角三角形全等的“斜边、直角边”判定方法.2.内容解析直角三角形是特殊的三角形,这种特殊性能使它具有一般三角形所不具有的一些性质;在一般三角形中,两边及其中一边的对角分别相等是不能判定两个三角形全等的,但直角三角形全等却可以用“斜边、直角边”来判定,这是直角三角形特征的体现,以后学习的“直角三角形相似的判定”,“勾股定理”等将进一步体现直角三角形的特殊性.“斜边、直角边”判定是证明两个直角三角形全等的常用方法.综上所述,本节课的教学重点是:探索并理解“斜边、直角边”判定方法.二、目标和目标解析1.目标(1)探索并理解直角三角形全等的“斜边、直角边”判定事实;(2)会用“斜边、直角边”判定方法证明两个直角三角形全等;(3)通过“斜边、直角边”判定的学习,体会直角三角形的独特性.2.目标解析目标(1)的具体要求是:能自主通过探究,发现并理解“斜边、直角边”判定方法.目标(2)的具体要求是:能正确运用“斜边、直角边”判定方法证明两个直角三角形全等.目标(3)的具体要求是:体会“斜边、直角边”是直角三角形独特的判定方法.三、教学问题诊断分析学生已经系统的学习了一般三角形全等的判定,从中积累了一些研究几何问题的经验;同时,通过学习三角形的三条重要线段等内容,初步体会了几何中研究特殊图形的重要性.由于对特殊几何图形的认识不多,导致学生很难理解“斜边、直角边”是直角三角形独特的判定方法.因此,本节的难点是:理解“斜边、直角边”是直角三角形独特的判定方法.四、教学过程设计(一)提出问题在几何中,特殊的图形会具有它的独特性.前面,我们已经完成了三角形全等的条件的探究,那么,直角三角形的全等会有其他的判定方法吗?请思考:问题1对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这样两个直角三角形就全等了?师生活动:教师可先鼓励学生举例说明,并说出依据;学生回答问题,互相补充;最后师生共同得出:对于两个直角三角形,满足一边一锐角分别相等,或两直角边分别相等,这两个直角三角形就全等了.如学生没有提出一斜边一直角边分别相等的问题,教师可如下追问.追问:一斜边一直角边分别相等的两个直角三角形符合“边角边”判定吗?师生活动:学生发现一斜边一直角边分别相等符合“边边角”,不符合“边边角”判定;教师认真倾听.设计意图:使学生明确研究的方向和目的,并通过探讨直角三角形全等的判断,为下面提出探究“HL ”作铺垫.(二)探究发现一斜边一直角边分别相等符合“边边角”,在一般的三角形中,“边边角”是不能判定两个三角形全等的,但直角三角形中,是否会例外呢?我们来探究一下:探究 任意画一个Rt △ABC ,使∠C =90°,再画一个Rt △A ′B ′C ′,使∠C ′=90°,B ′C ′=BC ,A ′B ′=AB ,然后把画好的Rt △A ′B ′C ′剪下来放到Rt △ABC 上,你发现了什么?师生活动:学生动手操作(画△A ′B ′C ′时,先画∠NC ′M ,使∠NC ′M =90°;接着在射线C ′N 上截取B ′C ′=BC ;再以B ′为圆心AB 长为半径画弧,交射线C ′M 于点A ′,连接A ′B ′;最后把△A ′B ′C ′剪下来放到△ABC 上).教师巡视学生完成情况,并及时解答一些学生的困难.追问1:探究的结果反映了什么规律?师生活动:教师引导学生得出一个基本事实:斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).追问2:“HL ”判定的条件是什么?结论是什么?师生活动:教师引导学生得出“HL ”判定的条件也是三个:两个直角三角形、斜边和一条直角边分别相等;结论是两个直角三角形全等.追问3:如图2,若:∠C =∠C ′=90°,AB =A ′B ′,AC =A ′C ′,你能写出“HL ”判定的符号语言吗?C图1师生活动:教师引导学生得出符号语言为:设计意图:让学生经历作图、剪图、比较图的过程,感悟基本事实的正确性.通过几何符号表述,形成基本推理步骤. (三)练习巩固例1 如图3,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,且AC =BD .求证:AD =BC .师生活动:学生独立完成,教师请学生代表展示,作适当点评.若学生遇到困难,教师可作如下引导:要证AD =BC ,可先证△ABC ≌△BAD ,已知有条件AC =BD ,根据AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,可得△ABC 和△BAD 为直角三角形,由图可得AB 是公共边,因此,可根据“HL ”证明Rt △ABC ≌R t △BAD .设计意图:应用“HL ”判定证明两个直角三角形全等,巩固知识.练习1 如图,AB =CD ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,CE =BF .求证:AE =DF .B A CB ′ A ′C ′图2 A BCD 图3 上述关于“全等三角形的判定(HL )的探究”的教学内容也可参照微课《全等三角形的判定(斜边、直角边)》视频(00:03—06:12)中的设问进行课堂教学.图4师生活动:学生独立完成,教师请学生代表展示,作适当点评.若学生遇到困难,教师可引导学生先证Rt △ABE ≌R t △DCF .若学生出现直接将CE =BF 作为证明Rt △ABE ≌R t △DCF 的条件 ,教师可作如下追问:追问:CE 是否是△DCF 的边?能通过CE =BF 推出一个可以用作证明Rt △ABE ≌R t △DCF 的条件吗?师生活动:学生发现可由CE =BF ,等式两边同减EF 得出CF =BE ,CF =BE 可直接作为证明Rt △ABE ≌R t △DCF 的条件,学生订正错误.设计意图:通过综合性稍强的训练,进一步提高运用“HL ”判定的能力,也提高学生综合运用条件推理的能力.(四)回顾小结本节课,我们本着“直角三角形全等是否有独特的判定方法”的想法,通过探究得出“HL ”判定,请回顾思考:(1)“HL ”判定方法应满足什么条件?(2)“HL ”判定与之前所学的四种判定方法有什么不同?(3)你还有有什么感悟或疑问?(五)布置作业教科书习题12.2第6、7、8题.五、板书设计B12.2三角形全等判定(5)判定:斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”)。
人教版八年级数学上册12.2《斜边、直角边判定直角三角形全等》教学设计

3.示范讲解:教师针对HL判定法进行详细讲解,通过动画、板书等形式,让学生直观地理解HL判定法的内涵和运用。
4.实践应用:设计不同类型的练习题,让学生运用HL判定法解决问题,巩固所学知识。同时,注重培养学生的解题思路和技巧。
人教版八年级数学上册12.2《斜边、直角边判定直角三角形全等》教学设计
一、教学目标
(一)知识与技能
1.理解并掌握直角三角形全等的判定方法——斜边、直角边判定法(HL)。
2.能够运用HL判定法判断两个直角三角形是否全等,并能够灵活运用HL判定法解决相关问题。
3.能够运用HL判定法推导出直角三角形全等的其他性质,如对应角相等、对应边成比例等。
a.基础题:直接给出斜边和一个直角边,让学生判断两个直角三角形是否全等。
b.提高题:给出斜边和一个非直角边,让学生运用HL判定法解决问题。
c.拓展题:给出斜边和非直角边的长度,让学生求解直角三角形的其他未知量。
5.小组合作:组织学生进行小组讨论和合作,共同解决实际问题。在此过程中,培养学生团队协作、沟通交流的能力。
4.能够运用全等直角三角形的性质解决实际问题,如计算边长、角度等。
(二)过程与方法
1.引导学生通过观察、思考、讨论的方式,发现斜边、直角边判定直角三角形全等的规律。
2.通过举例、练习、拓展等方式,让学生掌握HL判定法的应用,提高学生的实际操作能力。
3.引导学生运用HL判定法解决实际问题,培养学生的解决问题能力和逻辑思维能力。
b.探索:是否存在其他判定直角三角形全等的方法?请举例说明。
4.小组合作作业:
八年级数学上册《斜边直角边》教案、教学设计

3.强化学生的成功体验,通过不断解决问题的过程,增强学生面对挑战的自信心。
4.引导学生理解数学在历史、文化以及现代社会发展中的地位和作用,培养对数学文化的尊重和认识。
5.培养学生的批判性思维,鼓励他们对定理提出疑问,探索不同证明方法,从而深化对数学知识的理解。
(三)学生小组讨论
1.分组活动:将学生分成若干小组,每组选择一个生活中的直角三角形实例,讨论如何运用勾股定理解决问题。
2.交流分享:每个小组汇报讨论成果,分享他们在解决问题过程中遇到的困难和解决方法。
3.教师点评:对每个小组的讨论成果进行点评,强调解题关键点,纠正错误思路,提出改进意见。
(四)课堂练习
4.运用信息技术手段,如多媒体课件、在线数学工具,增加学生对定理理解和应用的直观感受。
5.通过练习题目的设计,从基础到提高,逐步增加难度,培养学生的逻辑思维和问题解决能力。
(三)情感态度与价值观
本章节的学习还将致力于培养学生的以下情感态度与价值观:
1.激发学生对数学学习的兴趣,特别是几何学的兴趣,通过解决实际问题,体会数学的实用性和美。
1.基础知识巩固题:完成课本第十五章习题1-4,着重练习勾股定理及其逆定理的应用,确保学生掌握基本概念和解题方法。
2.实践应用题:结合生活实际,设计一道与勾股定理相关的实际问题,要求学生运用所学知识解决问题,并在解答过程中注重步骤的完整性。
3.探究拓展题:以小组为单位,探讨勾股定理在相似三角形中的应用,引导学生发现并证明相似三角形中对应边长的比例关系。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了基本的几何图形知识和勾股定理的初步运用。然而,对于斜边直角边关系的深入理解和勾股定理逆定理的灵活运用仍需加强。学生在前期的学习中,可能更多关注计算过程而忽视对几何概念的理解。因此,在本章节的教学中,应注重以下学情分析:
人教版斜边直角边的说课稿

人教版斜边直角边的说课稿教学设计:《斜边与直角边》说课稿一、教学目标本节课的教学目标旨在让学生理解和掌握勾股定理的概念、公式及其应用。
通过本节课的学习,学生应能够:1. 知识与技能:了解勾股定理的历史背景,掌握勾股定理的内容,能够运用勾股定理解决简单的直角三角形问题。
2. 过程与方法:通过观察、比较、归纳等方法,培养学生的逻辑思维能力和空间想象能力。
3. 情感、态度与价值观:激发学生对数学学习的兴趣,培养学生勇于探索和合作交流的精神。
二、教学内容与学情分析本次说课的内容为人教版初中数学教材中的“斜边与直角边”一章,主要介绍勾股定理。
学生在此之前已经学习了平面直角坐标系的概念、三角形的基础知识以及实数的运算,为本节课的学习打下了基础。
然而,勾股定理的证明和应用对学生来说仍然是一个全新的领域,需要教师引导学生通过观察和实践来理解和掌握。
三、教学重点与难点1. 教学重点:勾股定理的概念、证明方法以及在直角三角形边长计算中的应用。
2. 教学难点:勾股定理的证明过程,特别是在没有图形工具辅助的情况下,如何让学生直观理解定理的成立。
四、教学方法与手段1. 启发式教学法:通过提问和引导,激发学生的思考,帮助学生自主构建知识体系。
2. 探究式学习:组织学生进行小组讨论,通过合作探究勾股定理的证明方法。
3. 实例演示法:利用多媒体工具展示勾股定理的证明过程和应用实例,增强学生的直观感受。
五、教学过程设计1. 导入新课- 通过回顾三角形的相关知识,引出直角三角形的特点。
- 提出问题:“在直角三角形中,斜边与直角边之间有什么关系?”引导学生思考。
2. 探索勾股定理- 介绍勾股定理的历史背景,激发学生的兴趣。
- 通过观察和比较不同直角三角形的边长关系,引导学生发现勾股定理的规律。
- 组织学生进行小组讨论,尝试证明勾股定理。
3. 勾股定理的证明- 利用多媒体工具展示勾股定理的证明过程。
- 邀请学生上台,演示并解释证明过程。
人教版数学八年级上册第4课时 斜边、直角边 (2)教案与反思牛老师

12.2三角形全等的判定知己知彼,百战不殆。
《孙子兵法·谋攻》樱落学校曾泽平第4课时斜边、直角边一、新课导入1.导入课题:对于两个直角三角形,除了直角相等的条件,还要满足哪些条件,这两个直角三角形就全等呢?本节课我们探讨直角三角形全等的判定方法.2.学习目标:(1)探究直角三角形全等的判定方法.(2)能运用三角形全等的判定方法判断两个直角三角形全等.3.学习重、难点:重点:直角三角形全等的判定方法.难点:两个直角三角形全等判定的应用.二、分层学习1.自学指导:(1)自学内容:探究斜边和一条直角边对应相等的两个三角形全等.(2)自学时间:10分钟(3)自学方法:结合探究提纲进行探究.(4)探究提纲:①判定两个三角形全等的方法:SSS、SAS、ASA、AAS.②①中几个判定方法对于直角三角形是否适用?适用③如图,AB⊥BE于点B,DE⊥BE于点E,a.若∠A=∠D,AB=DE,则△ABC与△DEF全等吗?依据是ASA(用简写法).b.若AB=DE,BC=EF,则△ABC与△DEF全等吗?依据是SAS(用简写法).结论:两条直角边分别相等的两个直角三角形全等.④已知△ABC中,∠C=90°,试作出一个△A′B′C′,使∠C′=∠C,A′B′=AB,B′C′=BC.a.作图过程中应先作∠C′=∠C,再作B′C′=BC,然后作A′B′=AB.b.剪下△A′B′C′与△ABC重叠一下,看它们是否完全重合.重合c.根据作图、重叠,你有什么发现吗?斜边和一条直角边分别相等的两个直角三角形全等(HL).d.将上述结论用几何语言表示为:在Rt△ABC和Rt△A′B′C′中∵AB=A′B′ BC=B′C′∴Rt△ABC≌Rt△A′B′C′(HL)⑤比较“HL”与“SAS”两个定理的区别.⑥用“SSA”不能判定一般的两个三角形全等,对于直角三角形行吗?一定行.2.自学:学生结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:前面已经学习了几个判定,学生能够利用类比的方法迅速掌握本节内容,但在应用的过程中还存在一定的障碍,特别是应用“HL”定理时容易写成“SSA”.②差异指导:在学习的过程中,先由一般方法到特殊方法,让生整体感知“HL”的优点.(2)生助生:在完成探究的过程中,需要小组合作学习,相互交流帮助作图并说明道理.4.强化:(1)直角三角形是特殊的三角形,它不仅有一般三角形全等判定的方法:SAS、ASA、AAS、SSS,还有直角三角形特殊的判定方法——“HL”.(2)“HL”不能写成“SSA”.(3)如图,若AB=DE,AC=DF,则△ABC与△DEF全等吗?为什么?不一定全等,因为没有第三个条件.1.自学指导:(1)自学内容:教材第42页例5.(2)自学时间:5分钟.(3自学方法:认真阅读例5,分析图中的对应条件.(4)自学参考提纲:①题中要证BC=AD,可以转化为证明哪两个三角形全等?为什么?△ABC≌△BAD②这两个三角形全等有哪些已知条件?用哪个判定定理合适?为什么?已知AB=BA,AC=BD,用HL判定定理,因为AB是Rt△ABC和Rt△BAD的斜边,AC和BD分别是Rt△ABC和Rt△BAD的直角边.2.自学:学生可结合自学指导进自学.3.助学:(1)师助生:①明了学情:由于前面几节课的学习,学生在证明过程中容易形成思维定势,总在寻找三对应条件来判定两个三角形全等,而忽视“直角三角形”的特殊性.②差异指导:先按一般三角形全等的判定方法,寻求条件,若缺条件,再尝试“HL”(2)生助生:学生之间相互交流帮助.4.强化:(1)判定两个直角三角形全等的方法和特殊方法.(2)练习:如图,B、EF、C在同一直线上,F⊥BC于F,DE⊥BC与E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由.解:平行.理由:∵AF⊥BC,DE⊥BC,∴∠AFB和∠DEC都是直角,又BE=CF,∴BE+EF=CF+EF,即BF=CE.在Rt△ABF和Rt△DCE中,AB=CD,BF=CE, ∴Rt△ABF≌Rt△DCE(HL),∴∠B=∠C,AB∥CD.三、评价1.学生的自我评价:通过本节课的学习谈自己有哪些收获和体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果和不足进行点评.(2)纸笔评价(课堂评价检测).3.教师的自我评价(教学反思):本课时教学应突出学生主体性原则,即从规律的探究、例题的学习,指引学生独立思考,自主得出,在探究之后,让学生相互交流,或上台展示自己的发现,或表达个人的体验,从中获取成功的体验后,激发学生探究的激情.一、基础巩固(第1、2题每题10分,第3题40分,共60分)1.判断一组直角三角形全等的方法有:SSS SAS ASA AAS HL.2.在Rt△ABC和Rt△A′B′C′中,∠C′=∠C=90°,∠B′=∠A,AB=B′A′,则下列结论正确的是(C)A.AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A′=∠A3.如图,BA⊥AC,DC⊥AC,要使△ABC≌△CDA,还需添加什么条件,才能保证结论成立?(1)AB=CD(SAS); (2)∠ACB=∠CAD(ASA);(3)∠B=∠D(AAS); (4)BC=AD(HL).二、综合应用(每小题10分,20分)4.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.证明:(1)∵BE⊥CD,∴∠BEC=∠DEA=90°.在Rt△BEC和Rt△DEA中,BC=DA,BE=DE,∴Rt△BEC≌△Rt△DEA.(2)∵Rt△BEC≌Rt△DEA,∴∠C=∠DAE,∴∠C+∠D=∠DAE+∠D=90°,∴∠CFD=90°,∴DF⊥BC.5.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B,试说明AD+AB=BE.解:∵AD⊥AC,BE⊥AC,∴∠A=∠CBE=90°,∴∠D+∠ACD=90°.又∵∠DCE=90°,∴∠ACD+∠BCE=90°,∴∠D=∠BCE.在△ACD和△BEC中,∠A=∠CBE,∠D=∠BCE,CD=EC,∴△ACD≌△BEC(AAS).∴AD=BC,AC=BE,∴AD+AB=BC+AB=AC=BE.三、拓展延伸(20分)6.如图,在△ABC中,∠BAC=90°,EF是过点A的直线,BE⊥EF于E,CF ⊥EF于F,试探求线段BE、CF、EF之间的关系,并加以证明.解:BE+CF=EF,证明如下:∵BE⊥EF,CF⊥EF,∴∠BEA=∠AFC=90°.又∠BAC=90°,∴∠EAB+∠CAF=180°-∠BAC=90°, ∴∠EAB=∠FCA,在△ABE和△CAF中,∠BEA=∠AFC,∠EAB=∠FCA,AB=CA,∴△ABE≌△CAF(AAS).∴BE=AF,AE=CF,∴BE+CF=AF+AE=EF.【素材积累】宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。
最新人教版初中八年级上册数学《斜边、直角边》精品教案

斜边和一条直角边对应相等的两个直角三角形全等
(简写成“斜边、直角边”或“HL”).
几何语言:
B
∵∠C=∠C′=90°,
∴在Rt△ABC和Rt△ A′B′C′ 中, A
C
AB=A′B′,
B′
BC=B′C′,
∴Rt△ABC ≌ Rt△ A′B′C′ (HL). A′
C′
典例精析
例1 如图,AC⊥BC, BD⊥AD, AC﹦BD,求证:BC﹦AD. 应用“HL”的前提条 件是在直角三角形中.
当堂练习
1. 如图,∠B=∠D=90°,要证明△ABC 与△ADC全等,
还需要补充的条件是
(写出一个即可).
A
答案: AB=AD 或 BC=DC 或
B
D ∠BAC=∠DAC 或 ∠ACB=∠ACD.
C 注意 一定要注意直角三角形不是只能用HL证明全等,但 HL只能用于证明直角三角形的全等.
1.老师引导学生归纳本课知识点。 2.师生共同反思学习心得。
SSS
SAS ASA
AAS
3. AAA
60 6°0° 60° 60°
SSA
A
B
D
C
注意 两边和其中一边的对角对应相等的两个三角形不一定 全等
讲授新课
一 直角三角形全等的判定(“斜边、直角边”定理)
任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A ′B ′C ′, 使∠C′=90 °,B′C′=BC,A ′B ′=AB,把画好的Rt△A′B′ C′ 剪下来, 放到Rt△ABC上,它们全等吗?
A
B
C
N
A
A′
B
C
M B′
C′
作法:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4课时“斜边、直角边”
.
,,AD BC BD AC AD BD BC AC ==⊥⊥求证:如图,例 (学生不能作肯定回答,只能作某种猜测)
现在不要求马上给出结论.看看,通过动手探究,你是否能得出结论.直角三角形我们用Rt △表示. 思考:
任意画出一个Rt △ABC ,使/C =90°,再画一个Rt △A'B'C',使B'C'=BC ,A'B'=AB ,把画好的Rt △A'B'C'剪下,放到Rt △ABC 上,看看它们是否全等.(课件出示题目,师生一起看题)
(学生独立探究,动手作图) 提问:
(1)△ABC 就是所求作的三角形吗?
(2)画好后,把Rt △A'B'C'剪下,放到Rt △ABC 上,看它们全等吗?
(3)发现了什么结论?
(全等).
结论:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边,直角边”或“HL ”).
注意两点:一是“HL ”是仅适用于Rt △的特殊方法。
二是应用“HL ”时,虽只有两个条件,但必须先有两个Rt △的条件 4.
结合图形,先分析已知条件和求证.
从这些已知条件中,我们能发现什么?结合所求证的,你
培养学生的分析、作图能力.
画法直接由教师蛤出,而不安排学生画出,是考虑学生反映画图有一定的难度,况且作图不是本节课的重点.
让学生表述,培养归纳、
表达能力,并能进一步理解“HL ”这一条件.
自己读题、审题,先独自证明,培养学生独自面对围难的勇气和信
心.
作者留言:
非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!。