整式的加减之整体代入法的应用
整式的加减板书设计教案

整式的加减板书设计教案一、教学目标1.了解整式加减的定义和运算法则。
2.掌握整式加减的常用方法,能够熟练计算。
3.理解整式加减在实际应用中的意义和应用。
二、教学重点1.整式加减定义和运算法则的概念和理解。
2.整式加减的常用方法及其应用。
3.整式加减在实际应用中的重要性和应用。
三、教学难点1.整式加减的概念及其应用。
2.整式加减中的常用方法及其细节。
3.整式加减的应用难点和解决方案。
四、教学内容1.整式加减的定义和运算法则整式加减是指在代数式中,按照运算法则将同类项相加减的过程。
其中,同类项是指变量的幂次相同,且变量内部系数相同的项。
例如:3x² + 2x² = 5x²5y³ - 2y³ = 3y³在整式加减中,可以遵循以下运算法则:① 同类项之间可以互相加减。
② 不同类项之间不能相加减,需进行化简。
③ 加减时需要扩号分布律和结合律。
2.整式加减的常用方法(1) 同项合并法同类项之间直接相加减,得到简化的结果。
例如:2x² - 5x² + 3x² = 0(2) 公因式法将各项的公因式分离出来后,再将公因式提取出来进行运算,得到简化的结果。
例如:3x(x+y) + 2(x+y) = (x+y)(3x+2)(3) 分类讨论法将整式拆分成不同的情况进行分类讨论,得到简化的结果。
例如:4x² - 2xy + 3y² + x² + 4xy - 5y²= (4x² + x²) + (- 2xy + 4xy) + (3y² - 5y²)= 5x² + 2xy - 2y²3.整式加减的应用整式加减在实际应用中非常广泛,常出现在数学、物理、化学、工程等领域中。
例如在工程领域中,可用于计算机械能、动能等能量的变化量。
例如:一车从静止到行驶的过程中其动能的变化量为m(v²-v₀²)/2,其中m为车的质量,v为车的速度,v₀为车的初速度。
初中数学 整式的加减法运算的解题实际应用有哪些

初中数学整式的加减法运算的解题实际应用有哪些初中数学中,整式的加减法运算是一个基础且重要的内容。
除了在课堂上进行练习和应用外,整式的加减法运算还可以应用于各种实际问题中。
以下是关于整式的加减法运算的解题实际应用的一些例子,供参考:一、应用于几何问题:1. 计算图形的面积和周长:在几何问题中,可以运用整式的加减法运算来计算图形的面积和周长。
例如,计算矩形、三角形、圆形等图形的面积和周长时,可以将边长或半径用变量表示,利用整式的加减法运算来进行计算。
2. 求解图形的未知量:在几何问题中,可以利用整式的加减法运算来求解图形的未知量。
例如,已知一个图形的面积或周长,通过整式的加减法运算可以求解出图形的边长或半径等未知量。
二、应用于代数方程的求解:1. 解线性方程组:在代数方程的求解过程中,可以运用整式的加减法运算来解决线性方程组。
通过整式的加减法运算,可以将线性方程组转化为更简单的形式,从而更容易求解。
2. 求解一元二次方程:在一元二次方程的求解过程中,可以运用整式的加减法运算来解决。
通过整式的加减法运算和配方法,可以将一元二次方程化简为更简单的形式,从而求解方程的根。
三、应用于实际问题:1. 速度、距离、时间问题:在解决与速度、距离和时间相关的实际问题时,可以运用整式的加减法运算来计算。
通过建立代数模型,将速度、距离和时间用整式表示,然后进行加减法运算,从而求解出未知量。
2. 商品打折、优惠问题:在解决与商品打折、优惠相关的实际问题时,可以运用整式的加减法运算来计算。
例如,根据商品的原价和折扣率,可以通过整式的加减法运算来计算出折后价。
3. 财务问题:在解决与财务相关的实际问题时,可以运用整式的加减法运算来计算。
例如,计算收入、支出、利润等方面的变化,通过整式的加减法运算来进行计算和分析。
四、应用于方程的建立:1. 建立方程模型:在解决实际问题时,可以运用整式的加减法运算来建立方程模型。
通过将问题转化为代数方程,然后运用整式的加减法运算来求解方程,从而得到问题的解答。
人教版七年级数学上册2.2.2整式加减的应用(教案)

(二)新课讲授(用时10分钟)
本节课将通过以下例题展开教学:
(1)小明和小华做游戏,小明的得分是3x+5,小华的得分是2x-3,问小明比小华多多少分?
(2)某商店举行促销活动,原价为x元的商品,如果购买3件以上,每件可以打9折,计算购买5件该商品的总价。
二、核心素养目标
1.培养学生的逻辑推理能力:通过实际问题引入,让学生学会运用整式加减法则,提高逻辑思维和推理能力;
2.培养学生的数学建模能力:引导学生从问题情境中抽象出数学表达式,建立整式模型,解决实际问题;
3.培养学生的数学运算能力:让学生在整式加减运算过程中,熟练掌握合并同类项、代入数值等运算技巧,提高运算速度和准确性;
4.培养学生的数据分析能力:培养学生对实际问题的分析能力,学会从数据中找出规律,为解决类似问题提供方法;
然而,我也发现了一些需要改进的地方。在理论介绍部分,尽管我尽量用简单的语言解释整式加减的概念,但部分学生仍然显得有些迷茫。这可能是因为我对概念的讲解还不够具体,举例不够贴近他们的生活实际。在未来的教学中,我需要寻找更多与学生生活密切相关的例子,帮助他们更好地理解抽象的数学概念。
在重点难点解析环节,我注意到学生们在合并同类项时还存在一些困难。这让我意识到,我需要更加耐心地指导他们,通过更多的练习和逐步引导,帮助他们掌握这个技巧。此外,我也应该鼓励学生在课堂上提出自己的疑问,以便及时解答,避免知识点的混淆。
2023年中考数学一轮复习之必考点题型全归纳与分层精练-整式的加减(原卷版)

专题03整式的加减【专题目录】技巧1:求代数式值的技巧技巧2:整式加减在几何中的应用技巧3:整体思想在整式加减中的应用【题型】一、代数式求值【题型】二、同类项【题型】三、整式的加减【题型】四、化简求值【题型】五、图形类规律探索【考纲要求】1、能并用代数式表示,会求代数式的值;能根据特定问题找到所需要的公式,并会代入具体的值进行计算.2、掌握同类项及合并同类项的概念,并能熟练进行合并;掌握同类项的有关应用.3、掌握去括号与添括号法则,充分注意变号法则的应用;会用整式的加减运算法则,熟练进行整式的化简及求值.【考点总结】一、整式整式的相关概念单项式由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数。
如:单项式321abπ-系数是π21-,次数是4。
多项式几个单项式的和叫做多项式;多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数。
如:多项式2+4x2y﹣3231yx是五次三项式整式整式是单项式与多项式的统称。
同类项所含字母相同,并且相同字母的指数也分别相同的单项式叫做同类项。
【考点总结】二、整式的加减运算【注意】1、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(1)、去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)、去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)、对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)、去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.2、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+- 添括号去括号,()a b c a b c -+-- 添括号去括号合并同类项把多项式中的同类项合并成一项叫做合并同类项,合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的指数不变。
整式加减的化简求值

− [5x − x
− (2x
− x)]
,其中x =
1 2
.
【注意】化简时,一定要注意去括号和合并同类项的正确.
3
.整体代入求值
在单个字母取值不确定的情况下,某些代数式的求值要借助于“整体代入法”,即把某个代数式看作一个整体. 用“整体代入法”求值的关键是确定“整体”. (1)观察法 通过观察就可确定代换的“整体”,这类题目较简单. 若a + b = 2005 ,c + d = −5 ,则代数式a + c + b + d = . (2)拼凑法 需将要求式进行转化,“凑”出与已知式相同的式子再代入求值,这种构造“整体”的技巧,平时要注意总结. ,代数式(a − 2c) − (2d − b) =
2
+ 32b
2
− c
2
+ 3
的值.
2 2
+ ab + 3b
的值.
③代数式中省去的“× ”号或“⋅ ”号,代人具体数后应恢复原来的“× ”号,遇到字母取值是分数或者负数时,应 根据实际情况添上括号. ④代入时一定要书写规范,如当a = −3 时,a 反映出代数式所隐含的运算顺序.
2 2
爱
改变.
智
康
②代人时,除按已知给定的数值,将相应的字母换成相应的数字外,其他的运算符号,运算顺序,原来的数值都不
爱
例如:通过m
= m
⋅ m
智
3
2
将三次降为有些题目中会出现高次的整式,这样的式子我们一般很难直接进行求值.常用方法为降次.
4
18
/0
6/
12
6
.逐步降次代入求值
整式的加减知识点总结及题型汇总

整式的加减知识点总结及题型汇总整式的加减知识点总结及题型汇总整式是一种代数式,不含有除法运算,或虽含有除法运算但除式中不含字母。
其中,单项式只含有乘法(包括乘方)运算,或虽含有除法运算,但除式中不含字母;多项式是几个单项式的和。
整式可以分为单项式和多项式两类。
在单项式中,不为零的数字因数叫做单项式的数字系数,系数不为零时,单项式中所有字母指数的和叫做单项式的次数。
在多项式中,所含单项式的个数就是多项式的项数,每个单项式叫做多项式的项。
多项式里,次数最高项的次数叫做多项式的次数。
同类项是指所含字母相同,并且相同字母的指数也相同的单项式。
合并同类项的法则是系数相加,字母与字母的指数不变。
去(添)括号的法则是,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
整式的加减实际上是在去括号的基础上,把多项式的同类项合并。
多项式的升幂和降幂排列是把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
多项式计算的最后结果一般应该进行升幂(或降幂)排列。
在列代数式时,首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等。
抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了。
代数式的值是根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值。
在列代数式时,要注意数字与字母、字母与字母相乘要把乘号省略;数字与字母、字母与字母相除要把它写成分数的形式;如果字母前面的数字是带分数,要把它写成假分数。
知识点2:列代数式时应注意的问题1) 在数与字母、字母与字母相乘时,常省略“×”号或用“·”。
例如:-2×a可以写成-2a,3×a×b可以写成3ab,-2×x可以写成-2x。
整式的加减中的数学思想方法

整式的加减中的数学思想方法学习数学不仅要学习数学知识,更重要的还要学习数学思想,因为数学思想是数学的灵魂,它在指导数学学习和研究有着十分重要的作用.下面以《整式的加减》一章中的几个数学思想为例说明之.一、字母代数思想字母表示数是代数的主要特征和重要标志,通过字母表示数有利发现问题的本质和规律,从而迅速找到问题的解答方案.例1小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是.分析:来三堆牌的张数为x,则操作第二步后,中间的牌数为x+2,左边为x -2;操作第三步后,中间的牌数为x+3;操作第四步后,中间的牌数为x+3-(x -2)=x+3-x+2=5.二、整体处理思想整式加减的实质是同类项的合并,而同类项的合并实际上是一种整体的变形.如计算:3ba2.这里我们实际上是把ba2作为一个整体,然a2=5ba2+2b后将这个整体的系数相加.这种解决问题的方法就是数学中的整体思想方法,利用它进行解题可以收到化难为易,化繁为简的效果.例2已知2x-2x-5=0,求6x-32x+1的值.分析:要求所求代数式的值,一般方法是先求x的值,再代入计算.但就目前我们所学的知识还不足以求出x的值,怎么办考虑到已知和所求代数式的关系,运用整体思想,问题便可以迎刃而解.解:把2x-2x作为整体,则已知就是2x-2x=5,求值式就是-3(2x-2x)+1,故原式=-3×5+1=-14.三、逆向思维思想在本章中学习的合并同类项法则:几个同类项相加减,把它们的系数相加减,字母和字母的指数不变.如计算:3b a 2-2b a 2+5b a 2=(3-2+5)b a 2,这里实际上就是逆向运用乘法对加法的分配律,其中所体现的思想就是逆向思维思想.这种思想通常就是我们所说的正难则反策略,运用这种思想可使一些“山穷水尽疑无路”的问题变成“柳暗花明又一村”.例3 甲、乙、丙三个箱子内共有小球384个,先由甲箱取出若干个球放入乙、丙箱内,所放个数分别为乙、丙箱内原有的个数,继而由乙箱取出若干个球放进甲、丙两箱内,最后由丙箱取出若干个球放入甲、乙两相内,放法同前,结果三箱内的小球个数恰好相等.问甲、乙、丙各箱内原有小球各是多少个分析:直接入手需要设元,列方程(组),但列方程(组)时却无从下手.从最后三箱的小球相等如手,易知最后每箱各有小球 384÷3=128(个);由后到先三次调动过程各箱中的球数容易列出下表:显然,由表立知甲、乙、丙三箱原有小球分别为208个、112个、64个.四、化归思想在进行整式加减运算时,实际上进行的是同类项的合并,而同类项的合并实际上是系数的相加减,因此,整式的加减最终要化归为数的加减来解决.如上述所说的计算:3b a 2-2b a 2+5b a 2=(3-2+5)b a 2=6b a 2.这就是化归思想.运用化归思想可以把一些陌生的问题转化为我们所熟悉的、或已经解决过的问题.例4 已知A =-32x -2mx +3x +1,B =22x +mx -1,且2A +3B 的值与x 无关,求m 的值.分析:把A 、B 所表示的多项式代入3A +2B ,问题化归为整式的加减运算,即3A+2B=3(-32x-2mx+3x+1)+2(22x+mx-1)=(6-m)x-1,这是一个我们所熟悉的形如ax+b的代数式,对此我们早已知道,当a=0时,ax+b的值与x无关,故由6-m=0,得m=6.。
第三章整式的加减培优讲义华东师大版七年级数学上册

整式的加减培优讲义考点1.利用整体思想化简求值典例精析(2022秋•旌阳区校级期中)阅读材料:我们知道,4x ﹣2x +x =(4﹣2+1)x =3x ,类似地,我们把(a +b )看成一个整体,则4(a +b )﹣2(a +b )+(a +b )=(4﹣2+1)(a +b )=3(a +b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a ﹣b )2看成一个整体,合并3(a ﹣b )2﹣6(a ﹣b )2+5(a ﹣b )2的结果是 .(2)当x =1时,代数式a 2x 3+bx ﹣5的值为2,则当x =﹣1时,求代数式2a 2x 3+2bx ﹣10的值.拓广探索:(3)求2(3m 2+n )﹣3(2m 2﹣mn )﹣(4mn ﹣2m )的值,其中m +n =3,mn =﹣9. 方法归纳整式化简求值时,若无法直接求出字母的值,且整式的 某部分与已知条件中的某部分相似,可利用整体思想解题,应用此方法, 一般先将求 值式变形为与已知条件相似或者相同,或者成倍数关系的 形式,再利用整体代入的方法求解.针对训练1.如果代数式8y 2﹣4y +6的值是﹣10,那么代数式2y 2﹣y ﹣4的值等于( )A .0B .﹣5C .﹣8D .8 2.对于任意的有理数a ,b ,如果满足a 2+b 3=a+b 2+3,那么我们称这一对数a ,b 为“相随数对”,记为(a ,b ).若(m ,n )是“相随数对”,则2[4m +(2n +1)]+m =( )A .﹣2B .﹣1C .2D .33.(2022秋•黄陂区期中)当x =2时,代数式ax 3﹣bx ﹣1的值为﹣15,则当x =﹣1时,代数式16ax 2+4bx +3的值为 .4.(2022秋•济南期末)已知m ﹣n =2,mn =﹣5,则3(mn ﹣n )﹣(mn ﹣3m )的值为 .5.先化简,再求值.若m 2+3mn =﹣5,则代数式5m 2﹣[5m 2﹣(2m 2﹣mn )﹣7mn +7]的值.6.(2023秋•大连期中)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,如把某个多项式看成一个整体进行合理变形,它在多项式的化简与求值中应用极为广泛.例:化简4(a +b )﹣2(a +b )+(a +b ).解:原式=(4﹣2+1)(a +b )=3(a +b ).参照本题阅读材料的做法解答:(1)把(a ﹣b )6看成一个整体,合并3(a ﹣b )6﹣5(a ﹣b )6+7(a ﹣b )6的结果是 .(2)已知x 2﹣2y =1,求3x 2﹣6y ﹣2023的值.(3)已知a ﹣2b =3,2b ﹣c =﹣4,c ﹣d =10,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值.7.(2022秋•公主岭市期中)[阅读理解]若代数式x 2+x +3的值为7,求代数式2x 2+2x ﹣3的值. 小明采用的方法如下:由题意得x 2+x +3=7,则有x 2+x =4,2x 2+2x ﹣3=2(x 2+x )﹣3=2×4﹣3=5. 所以代数式2x 2+2x ﹣3的值为5.[方法运用](1)若代数式x 2+x +1的值为10,求代数式﹣2x 2﹣2x +3的值.(2)当x =2时,代数式ax 3+bx +4的值为9,当x =﹣2时,求代数式ax 3+bx +3的值.[拓展应用]若a 2﹣ab =26,ab ﹣b 2=﹣16,则代数式a 2﹣2ab +b 2的值为 .8.(2023秋•深圳期中)在代数式求值问题中,整体思想运用十分广泛,如:已知代数式5a +3b =﹣4,求代数式2(a +b )+4(2a +b )+3的值.解法如下:原式=2a +2b +8a +4b +3=10a +6b +3=2(5a +3b )+3=2×(﹣4)+3=﹣5.利用整体思想,完成下面的问题:(1)已知﹣m 2=m ,则m 2+m +1= ;(2)已知m ﹣n =2,求2(n ﹣m )﹣4m +4n ﹣3的值.(3)已知m 2+2mn =﹣2,mn ﹣n 2=﹣4,求3m 2+92mn +32n 2的值. 例.(2022秋•北京期末)我们规定:使得a ﹣b =2ab 成立的一对数a ,b 为“有趣数对”,记为(a ,b ).例如,因为2﹣0.4=2×2×0.4,(﹣1)﹣1=2×(﹣1)×1,所以数对(2,0.4),(﹣1,1)都是“有趣数对”.(1)数对(1,13),(1.5,3),(−12,﹣1)中,是“有趣数对”的是 ;(2)若(k ,﹣3)是“有趣数对”,求k 的值;(3)若(m ,n )是“有趣数对”,求代数式8[3mn −12m ﹣2(mn ﹣1)]﹣4(3m 2﹣n )+12m 2的值.方法归纳三步解决“新定义”问题 (1)审题——提取信息提取关键词,明确“新定义”的概念、原理、方法、步骤和结论;(2)理解——以旧引新利用“例子”及“旧知识”理解 和正确运用“新定义”;(3)转化——迁移应用类比“新定义”中的概念、原 理、方法、步骤和结论,解决题目中需要解决的问题.针对训练1.(2022秋•桥西区校级期末)定义一种新运算:a ⊗b =a ﹣2b .例如2⊗3=2﹣2×3=﹣4,则x ⊗(﹣y )化简后的结果是( )A .x +2yB .2x ﹣yC .x ﹣2yD .2x +y 2.(2022秋•荆门期末)定义一个新运算f (a ,b )={a +b(a <b)a −b(a >b),已知a 2=4,b =1,则f (a ,b )= .3.(2023•北碚区校级开学)对任意一个四位正整数m ,如果m 的百位数字等于个位数字与十位数字之和,m 的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m 为“逊敏数”.例如:m =7523,满足2+3=5,2×2+3=7,所以7523是“逊敏数”;m =9624,满足2+4=6,但2×2+4=8≠9,所以9624不是“逊敏数”.(1)判断7431和6541是不是“逊敏数”,并说明理由;(2)若m 是“逊敏数”,且m 与12的和能被13整除,求满足条件的所有“逊敏数”m .4.(2022秋•港北区期中)定义:若m +n =2,则称m 与n 是关于2的平衡数.(1)3与 是关于2的平衡数;5﹣x 与 (用含x 的整式表示)是关于2的平衡数.(2)若A =2x 2﹣3(x 2+x )+4,B =2x ﹣[3x ﹣(4x +x 2)﹣2],判断A 与B 是否是关于2的平衡数,并说明理由.5.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a >b >c .在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为F (A ),最小的两位数记为G (A ),若F(A)+G(A)16为整数,求出满足条件的所有数A .例.(2022秋•霞浦县期中)用火柴棒按如图的方式搭图形.(1)按图示规律完成下表:图形1 2 3 4 5 … 火柴棒根数 5 9 13 …(2)按照这种方式搭下去,搭第n 个图形需要 根火柴棒.(用含n 的代数式表示)(3)小静同学说她按这种方式搭出来的一个图形用了200根火柴棒,你认为可能吗?如果可能,那么是第几个图形?如果不可能,请说明理由.方法归纳图形变化规律问题解决图形变化规律问题可以从“形”和“数”两个角度 入手,通过逐一观察图,分析和归纳出图形或数字的变化规律,从而得出答案.这体现 了从特殊到一般的数学思想. 针对训练1.(2022秋•新城区校级期中)按一定规律排列的单项式:x 3,2x 5,3x 7,4x 9,5x 11,6x 13……第n (n ≥1,n 为正整数)个单项式是( )A .nx n +1B .nx 2n +1C .nx 2n ﹣1D .x 2n +12.(2022秋•泗水县期末)学校举办图画展览,需要依次把图画作品横着钉成一排(如图所示),图中圆点表示图钉,照这样的规律,当需要的图钉颗数为2022颗时,则所钉图画作品的数量为( )A .1011张B .1010张C .1009张D .1012张3.(2022•大同模拟)如图是一组有规律的图案,它们是由相同的正方形和相同的圆组成的,正方形涂有阴影,依此规律,则第n 个图案中有 个圆.(用含有n 的代数式表示)4.如图,第1个图形需要3个棋子,第2个图形需要8个棋子,第3个图形需要15个棋子,…,按照这样规律第n 个图形需要 个棋子(用含n 的代数式表示).5.(2023•沙县一模)用棋子摆出下列一组图形(如图),按图上所显示的规律继续摆下去,摆到第个图形时,这组图形总共用了 枚棋子.6.观察下面三行数:2,﹣4,8,﹣16,32,…①1,﹣5,7,﹣17,31,…②﹣1,2,﹣4,8,﹣16,…③(1)第①行数按什么规律排列,请直接写出第n 个数为 (n 是正整数).(2)第②行数与第①行数有什么关系,请直接写出第②行第n 个数为 (n 是正整数).第③行数与第①行数有什么关系,请直接写出第③行第n 个数为 (n 是正整数).(3)取每行数的第21个数,分别设为a ,b ,c ,求12a +12b +2c 的值.。