电力系统供电可靠性管理分析
电力系统的稳定性与可靠性分析

电力系统的稳定性与可靠性分析电力系统稳定性与可靠性是电力工程中两个重要的概念。
稳定性是指电力系统在各种外界扰动下,能够维持稳定的运行状态。
可靠性则是指电力系统的设备和组件能够在设计寿命范围内保持正常工作,不发生故障。
了解电力系统的稳定性和可靠性对于保障电力供应的稳定和安全具有关键意义。
一、电力系统的稳定性分析电力系统的稳定性是指系统在发生扰动后,能够恢复到稳态工作状态的能力。
稳定性问题主要分为静态稳定和动态稳定两个方面。
1.静态稳定性静态稳定性指电力系统在平衡态时,对外界扰动的抵抗能力。
主要包括电压稳定性和转子稳定性。
(1)电压稳定性:电压稳定性是指系统运行时各节点电压保持在合理范围内的能力。
当电压波动超过一定范围时,电力系统中的设备可能会受到损坏,甚至引发系统崩溃。
因此,对于电力系统来说,维持合理的电压水平至关重要。
(2)转子稳定性:转子稳定性是指电力系统在发生扰动时,转子角速度能够恢复到稳定的状态。
转子稳定性问题是由于大功率负荷变化或大幅方波的投入引起的。
转子稳定性直接影响系统的可靠性和稳定性。
2. 动态稳定性动态稳定性是指电力系统在外界扰动下,能够恢复到平衡态的时间和稳定性。
主要包括小扰动动态稳定和大扰动动态稳定两个方面。
(1)小扰动动态稳定性:小扰动动态稳定性主要以系统阻尼为基础,衡量系统对小幅度扰动的抑制能力。
一般利用系统的传递函数或者状态空间模型来分析和评估。
(2)大扰动动态稳定性:大扰动动态稳定性主要指系统在大幅度外界扰动(如故障、短路等)下的稳定性。
主要通过计算机仿真和实验研究来评估。
二、电力系统的可靠性分析电力系统的可靠性是指系统在设计寿命范围内保持正常工作的能力。
可靠性问题主要包括设备可靠性和电网可靠性两个方面。
1. 设备可靠性设备可靠性是指电力系统中设备的寿命、故障率和可修复性等方面的评估。
主要包括静态设备可靠性和动态设备可靠性。
(1)静态设备可靠性:静态设备可靠性主要指静止设备(如变压器、发电机等)在工作期间内不发生故障的概率。
电力系统中的供电可靠性分析与优化策略

电力系统中的供电可靠性分析与优化策略随着社会的发展和经济的不断增长,电力供应的可靠性成为了一个重要的问题。
在现代社会中,电力是各个行业正常运转的基础,而供电可靠性的分析和优化策略将直接影响到电力系统的稳定运行和供电能力的提升。
本文将从供电可靠性的定义与指标、分析方法、影响因素以及优化策略等方面进行探讨。
首先,定义与指标的分析是供电可靠性研究的起点。
供电可靠性是指电力系统在一定时间内,能够以可接受的方式、按照要求提供电力服务的能力。
主要的供电可靠性指标包括故障停电次数、故障停电时间、平均服务不可用时间等。
通过这些指标的计算和评估,可以了解电力系统的供电可靠性水平,并为后续的分析和优化提供依据。
其次,供电可靠性的分析方法是真正解决问题并提高供电可靠性的重要手段。
故障分析是供电可靠性分析的核心内容之一。
通过对电力系统中可能发生的各类故障进行分析,了解故障产生的原因和机理,为故障的预防和处理提供支持。
此外,还可以借助概率统计方法,利用历史数据和统计模型来对供电可靠性进行定量分析。
通过这些方法,可以获取电力系统的可靠性指标和故障特性,为后续的优化提供依据。
影响供电可靠性的因素众多,其中包括天气条件、设备老化、设备维护保养、设备运行状态等。
天气条件是电力系统运行中最为重要的外界因素之一,例如风力、温度、湿度等均会对输电线路和变电设备的运行产生影响。
设备老化和维护保养是供电可靠性的内部因素,通过合理的设备管理和定期的维护保养,可以延长设备的使用寿命,降低故障发生的概率。
设备的运行状态是影响供电可靠性的另一个因素,及时监测设备的运行状况,发现并处理潜在的问题,可以提高供电系统的可靠性。
最后,针对供电可靠性问题,采取相应的优化策略是解决问题的关键。
通过对电力系统的优化调度、设备更新、设备配置等方面进行改进,可以提高供电系统的可靠性水平。
其中,优化调度是一种经济且有效的方法,通过对电力系统进行负荷预测和合理的运行调度,可以提高电力系统的供应能力和响应能力。
电力系统中的供电可靠性分析

电力系统中的供电可靠性分析引言:在现代化社会中,电力供应是经济发展和人们生活的基础。
然而,电力系统的供电可靠性问题一直是持续关注的焦点之一。
供电可靠性分析是评估电力系统的可靠性和稳定性的重要手段,它可以帮助我们了解系统的薄弱环节,制定相应的改进策略,确保电力供应的稳定性。
本文将介绍供电可靠性分析的基本原理和方法,探讨其中的关键挑战和应对措施,以期加深对电力系统供电可靠性的理解。
1. 供电可靠性分析的原理供电可靠性分析是通过对电力系统的各个组成部分进行全面评估和分析来确定系统的可靠性水平。
其基本原理可以概括为以下几个方面:1.1 故障分析:故障是导致电力系统供电中断的主要原因之一。
供电可靠性分析需要通过收集并分析历史故障数据,识别出系统中存在的潜在故障点,并进行风险评估,以确定故障对系统可靠性的影响程度。
1.2 可靠性指标:可靠性指标是评估供电系统可靠性的重要依据。
常用的可靠性指标包括故障频率、故障持续时间、中断次数、电源可用性等。
通过对这些指标的计算和分析,可以评估供电系统的整体可靠性水平。
1.3 强度分析:供电系统中的各类设备都具有一定的故障率和平均故障时间,这些数据对于供电可靠性分析至关重要。
通过对设备强度的测算和分析,可以确定设备在供电系统中的可靠性贡献,并为系统运行和维护提供依据。
1.4 可靠性评估模型:供电可靠性分析需要建立合适的评估模型,来描述和模拟电力系统中各种因素之间的关系。
常用的可靠性评估模型包括传统的Markov模型和Monte Carlo模拟模型等。
这些模型可以帮助分析师预测电力系统的供电可靠性水平,并评估不同参数对系统可靠性的影响程度。
2. 供电可靠性分析的关键挑战供电可靠性分析涉及的问题和因素极其复杂,一些关键挑战需要克服,以保证分析结果的准确性和可靠性。
以下是供电可靠性分析过程中的几个关键挑战:2.1 数据质量:供电可靠性分析的结果依赖于准确、完整和可靠的数据。
然而,由于各个电力公司和地区之间的数据收集方式和标准不同,数据的质量和可比性成为了一个严重的问题。
电力系统可靠性与供电安全分析

电力系统可靠性与供电安全分析电力是现代社会不可或缺的基础设施,供电的可靠性与安全性是人们生活、工作的基石。
本文将从电力系统可靠性和供电安全两个方面进行分析,深入探讨如何提高电力系统的可靠性和供电安全。
一、电力系统可靠性分析电力系统可靠性是指在一定时间内,电力系统满足用户的供电需要的能力。
影响电力系统可靠性的因素很多,主要包括设备可靠性、电网结构、运行管理和灾害风险等。
1. 设备可靠性电力系统设备是供电的基础,设备的可靠性直接影响着系统的可靠性。
在现代电力系统中,设备的可靠性主要体现在两个方面:一是设备的质量和性能,包括设计、制造和安装等环节;二是设备的运行和维护管理,包括设备的巡检、维修和更换等。
提高设备的可靠性需要从这两个方面入手,加强质量管理和设备维护。
2. 电网结构电网结构是电力系统组成的框架,对供电可靠性起着决定性的作用。
一个合理的电网结构应该具备高度互联互通的特点,从而实现系统的冗余和备份。
例如,电力系统可以采用分布式发电模式,将发电设备近距离布置在用户附近,可以有效降低输电线路损耗和单点失效带来的影响,提高供电的可靠性。
3. 运行管理电力系统的运行管理直接关系到供电的可靠性。
运行管理包括对电力系统的实时监测、预防性检修和故障处理等方面。
实时监测可以通过智能电网技术实现,对电力系统的状态进行实时检测和诊断,及时发现潜在的故障隐患,做到事前预警。
预防性检修是指定期对电力系统设备进行维护检修,发现和排除潜在的故障源,减少事故的发生。
故障处理是在电力系统发生故障时,及时采取措施进行处理和抢修,保障供电的可持续性。
4. 灾害风险电力系统运行过程中,还面临来自外部环境的灾害风险,如自然灾害(风暴、地震、洪涝等)和人为因素(破坏、事故等)等。
灾害风险对电力系统的可靠性影响巨大。
为了应对灾害风险,电力系统应该建立健全的应急预案,加强与相关部门的合作,提高抗灾能力。
二、供电安全分析供电安全是指供电过程中,能够保障用户用电安全、设备运行安全和人员安全。
电力系统的可靠性评估与分析

电力系统的可靠性评估与分析电力系统是现代社会运行的重要基础设施,其可靠性评估与分析对于保障电力供应的稳定性和安全性至关重要。
本文将从可靠性的定义、评估指标、分析方法以及改进措施等方面进行综合阐述。
首先,我们先了解可靠性的概念。
可靠性是指系统在特定条件下能够按时、按需、按要求提供服务的能力。
在电力系统中,可靠性主要体现在供电的连续性、稳定性和质量上。
电力系统的可靠性评估就是评估系统在正常运行条件下的稳定性和可用性,从而为系统的规划、运营和维护提供科学依据。
其次,我们探讨电力系统的可靠性评估指标。
常用的指标包括可用性、平均故障间隔时间(MTBF)和平均修复时间(MTTR)等。
可用性指标是衡量系统能够连续提供服务的能力,其计算公式为系统的运行时间除以运行时间加上故障时间。
MTBF指的是两次故障之间的平均时间间隔,MTTR则是修复故障所需的平均时间。
在电力系统的可靠性分析中,我们通常采用故障树分析(FTA)、事件树分析(ETA)和失效模式和影响分析(FMEA)等方法。
故障树分析是一种定性和定量的系统分析方法,通过将故障逐步分解为基础事件,从而分析系统故障的原因和概率。
事件树分析则是根据特定的事件来考虑其可能的后果和衍生事件。
失效模式和影响分析则是从失效模式的分类和不同模式的影响程度来评估系统的可靠性。
为了提高电力系统的可靠性,我们可以采取一些改进措施。
首先,合理规划升级电力设备和电源系统,确保其技术性能满足当前和未来的需求。
其次,建立完善的运行和维护管理制度,包括定期巡检、维护保养和设备更替等措施,及时发现和排除潜在故障,防患于未然。
此外,加强对电力系统的监测和预警,及时响应异常信号,以减少故障对系统及用户造成的影响。
除了评估和改进措施外,电力系统的可靠性还需要充分考虑可持续发展和应急响应。
随着可再生能源的不断发展,电力系统应积极引入清洁能源,提高能源利用效率,减少对传统能源的依赖,实现可持续发展。
另外,应建立健全的应急响应机制,通过完善的备用电源和应急救援措施,提高系统对突发事件的响应能力,保障电力供应的持续性和可靠性。
电力系统的可靠性与安全性分析与评估

电力系统的可靠性与安全性分析与评估随着社会的发展和人们对电力需求的增长,电力系统的可靠性与安全性成为了一项重要的任务。
电力系统的可靠性指的是电力系统在正常工作条件下能够持续供应可靠稳定的电力的能力,而安全性则关注电力系统在面对外部干扰和内部故障时能够保持安全运行的能力。
为了确保电力系统的可靠性与安全性,可采取以下步骤进行分析与评估。
首先,对电力系统进行可靠性分析。
可靠性分析是通过对电力系统中各个组件的可靠性参数进行定量评估,从而得出整个系统的可靠性水平。
对电力系统的可靠性分析包括以下几个方面。
1.系统可靠性指标的计算。
计算系统的可用度、中断频率、平均修复时间等可靠性指标,以评估系统的可靠性水平。
2.故障树分析。
通过构建故障树,将系统的故障分解成不同的事件,分析故障发生的概率和影响。
从而找出系统中最薄弱的环节,并采取相应措施提高可靠性。
3.可恢复性分析。
分析电力系统中的可恢复性特征,包括备用电源、不间断电源等措施,以保证系统在发生故障时能够尽快恢复正常供电。
其次,进行电力系统的安全性分析。
电力系统的安全性分析是为了预防电力系统发生事故,降低事故的风险并提高工作安全水平。
安全性分析包括以下几个方面。
1.电力系统的潜在危险评估。
评估电力系统中存在的潜在危险因素,如电压过高或过低、电流过载、短路等。
通过对这些因素进行评估,可以提前采取措施避免事故的发生。
2.安全策略的制定与实施。
根据电力系统的特点和潜在风险,制定相应的安全策略和操作规范。
并通过培训和宣传工作,确保操作人员能够正确地执行这些策略和规范。
3.安全评估与验证。
对电力系统中的安全措施进行定期评估与验证,以确保这些措施的有效性和可行性。
如果发现安全措施存在不足或缺陷,应及时进行调整和改进。
最后,对电力系统的可靠性与安全性进行综合评估。
综合评估是将可靠性分析和安全性分析的结果进行综合,从而得出电力系统的整体可靠性和安全性水平。
综合评估包括以下几个方面。
电力系统中的供电可靠性分析与提升

电力系统中的供电可靠性分析与提升随着社会的发展和人们对电力需求的增加,电力系统的可靠性问题受到越来越多的关注。
供电可靠性直接关系到各个行业的正常运行和人们的生活质量。
因此,对电力系统的供电可靠性进行分析与提升成为一项重要的任务。
本文将介绍电力系统供电可靠性的重要性、分析方法和提升措施。
一、供电可靠性的重要性供电可靠性指的是电力系统连续供应电能的能力。
在现代社会,我们的生产、交通、通信、医疗等方方面面都离不开电,所以供电可靠性对于维持社会的正常运行至关重要。
首先,可靠的供电保障了经济的稳定发展。
电力作为工业生产和商业运营的基石,企业的正常运行需要稳定的电力供应。
供电不可靠会导致生产停滞、交通瘫痪等一系列问题,从而影响整个经济体系的运转。
其次,可靠的供电保障了人民生活的便利。
在家庭中,人们需要电能来照明、供暖、烹饪等。
可靠的供电系统能够给人们带来舒适的居住环境,提高生活品质。
最后,可靠的供电保障了国家的安全。
如今,信息技术不断发展,网络通信已经成为国家安全的重要组成部分。
可靠的供电系统可以确保通讯设备正常运行,保障国家的信息通信安全。
二、供电可靠性分析的方法供电可靠性分析是评估电力系统供电可靠性的过程,主要通过故障分析、负荷流分析和可靠性评价等方法来进行。
故障分析是供电可靠性分析的基础。
通过分析故障的类型、发生概率和影响范围等信息,可以估计系统的故障概率和故障时长,从而评估系统的可靠性。
负荷流分析可以帮助确定系统中潮流分布和电压稳定情况。
通过计算得到节点的电压和负荷的潮流分布,可以评估系统的负荷承受能力和供电系统的稳定性。
可靠性评价是对供电系统可靠性进行综合评估的过程。
通过建立数学模型和运用统计方法,可以评估系统的可用性、平均故障间隔时间、平均修复时间等指标,为提高供电可靠性提供依据。
三、供电可靠性提升的措施为了提高供电系统的可靠性,需要采取一系列的措施,包括规划建设、设备维护和故障处理等方面。
首先,规划建设是提高供电可靠性的基础。
电力系统供电可靠性分析与改进方法研究

电力系统供电可靠性分析与改进方法研究引言电力作为现代社会不可或缺的基础设施之一,供电可靠性的高低直接关系到各项经济活动的正常进行和人们的生活质量。
然而,由于各种原因,供电系统会出现各种故障和失效,严重影响供电可靠性。
因此,对电力系统供电可靠性进行分析与改进已成为一个重要的研究领域。
一、电力系统供电可靠性分析方法1.1 故障树分析(FTA)故障树分析是一种常用的供电可靠性分析方法。
它通过树形结构描述电力系统中的各种故障事件和其发生的逻辑关系,便于分析和预测潜在的故障路径和系统失效的概率。
1.2 事件树分析(ETA)事件树分析是一种逆向的分析方法,通过描述系统的状态和各种故障事件之间的因果关系,评估不同事件发生的概率和对系统可靠性的影响程度。
1.3 可靠性块图分析(RBD)可靠性块图分析常用于对电力系统的系统结构进行可靠性分析。
通过将系统划分为不同的子系统和组件,并计算每个子系统和组件的可靠度,以评估整个系统的可靠性。
二、电力系统供电可靠性改进方法2.1 设备可靠性提升通过改进设备的设计和制造工艺,提高设备的质量和可靠性,可以有效降低设备故障率,并提升整个电力系统的供电可靠性。
2.2 运行管理优化合理的运行管理是提高供电可靠性的关键。
通过建立健全的维护计划和预防性维护策略,及时检修设备,可以减少故障的发生,并提高系统的可用性。
2.3 多源供电策略多源供电可以降低系统单点故障导致的停电概率。
通过引入可再生能源、储能技术和多个供电网络,可以提高系统的冗余度和抗故障能力。
2.4 风险评估与应急响应在电力系统运行中,存在着各种潜在的风险因素,如自然灾害、人为破坏等。
通过对这些风险因素进行评估,建立相应的应急响应机制和预案,可以最大限度地减少故障的影响,并快速恢复供电。
结论供电可靠性是电力系统运行的重要指标,对保障社会经济正常发展和人们生活质量具有重要意义。
通过采用合适的供电可靠性分析方法,可以全面评估电力系统的可靠性水平,为制定可行的改进措施提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统供电可靠性管理分析
【关键词】电力系统;可靠性;管理
0.前言
在二十一世纪的今天,我国的电力系统供电可靠性研究以及可靠性管理,已经建立比较为完善的管理网络。
各电力企业一线的领导和总工程师,及各专业职能部门经过对数据、资料、信息的收集,并对电力系统的可靠性指标的应用进行研究分析,这关系到如何科学地把可靠性的研究成果应用于电力系统规划、建设和生产等领域当中。
他们肩负电力系统供电可靠性的管理工作的重任,是电力工业现代化管理的带头兵。
电力系统可靠性管理,是电力系统规划、设计、建设、运行维护、生产管理及优质服务等方方面面质量以及管理水平综合体现。
1.影响供电可靠性的常见因素
在供电企业中,影响供电可靠性的常见因素,主要有以下三个方面:用户的密度及分布,非故障停电,线路故障率以及故障修复时间。
用户密度表示为每单位长度所接的用户的数量。
由于我国地域发展不平衡,及城乡差别很大,造成各地的用户负荷不同,故此各回线路上所接用的用户数量通常各不相同。
为了平衡接线方式对供电可靠性造成的影响,可以采取平均密度的方式。
对于同一种接线方式,遵照现行供电可靠性指标规定,由于用户分布情况为不同,则需要采取不同的配电质量服务指标来平衡。
根据对所接用户分布模式进行分析,大部分用户一般分布在线路前端,则对线路的中、
后段故障,则可通过分段断路器来隔离,故此前端线路仍可保证恢复运行供电。
造成非故障停电的因素主要包括对35kv及以上的输变电线路或变电站进行检修、改造、预试和配电网改造和检修。
当存在35kv及以上的输变电线路,架设跨越时,要求配电网与其配合停停止供电。
并且当变电所发生主变超载、设备需改造检修时,也都会造成不同时间的配电网停电。
又因绝大多数配电网都长期在露天下运行,极易引发线路的故障。
造成线路故障,通常是因为绝缘损坏、自然劣化、雷害等因素造成。
绝缘损坏通常就是指高空落物、树木等跟线路的安全距离不达标准,而造成的故障,通常与线路所处的沿途地理环境有密切关系,绝缘损坏率通常与线路长度成正比关系。
自然劣化引起的故障通常跟线路材料及设备有密切关系,对于同一种类材料及设备,自然老化率通常和线路长度成为正比关系。
雷害所导致的故障通常跟避雷器的安装及故障有关,雷害故障率通常与避雷器自身故障率成正比关系,而与避雷器的安装情况成反比关系。
电气设备由于长期处在高电压和强电场作用之下,故此电气绝缘成为了一项重大问题,这也成为电气设备故障诊断的重中之重,这是由于一旦绝缘出现问题,出现隐患,不仅要对用户正常的供电用电产生影响,更易引发重大供电安全事故。
(1)绝缘故障通常分为以下几种:变压器绝缘故障;电压、电流互感器绝缘故障以及电力电缆绝缘故障。
发生设备老化,密封出现不严,容易受外界异物侵蚀,使设备丧失绝缘能力,而引发绝缘故障,这是引发绝缘故障的因素。
(2)由于电气设备担负着能量的转换,以及传递程序,由于发热因素。
对电气设备造成极大的破坏,故此,热故障在电气设备故障诊断领域中,起到关键性作用。
(3)设备机械故障通常是电气设备的振动、发生磨损以及产生的疲劳,尤其是电机的故障。
它设备机械故障诊断领域中起关键作用。
2.提高供电可靠性的组织措施
2.1健全可靠性管理网络,提高可靠性管理意识
(1)电力系统供电可靠性直接关乎国民经济和人民生活工作,而供电系统可靠性管理则贯穿着整个供电企业生产、运行、经营管理等全过程。
所以供电可靠性管理,要求供电企业专职人员不仅要爱岗敬业、工作认真,具有较强的专业技能,还必须有一定的文化水平,积极深入生产实践、了解供电生产、运行的各个环节,并且要了解和掌握微机的操作技能,以及具有相应的管理应用软件的使用能力。
故此,挑选可靠性专职人员和整个可靠性管理网络能否正常运行密切相关,对整个管理网络体系的完善与健全起着关键作用。
(2)在电力企业中,不仅需要根据国家有关电力可靠性的相关规程,以及行业标准,来制定严格的规章制度,还需要对专职人员具有较高的组织管理水平、并建立健全企业的可靠性例会制度和相关责任制,使相应人员各司其责,组织好培训从而提高所有相关人员的供电可靠性意识,及专业素质,提高可靠性专职人员的业务水
平。
2.2以供电可靠性为中心,优化停电检修管理
(1)在电力系统中,其电气设备的检修工作直接关系着供电可靠性,因此要高度重视电气设备的检修工作,要合理的安排每一次检修任务,要精心制定,并严格控制检修的施工方案。
在制定施工方案前,应该充分考虑现场作业的实际情况合理安排,以便确定是实行停电作业还是带电作业。
再此还要考虑人员要相互的协调,以及积极配合,能否可以将不同的停电作业项目,安排在一起进行作业,从而有效地减少停电检修的次数。
提高供电企业的供电能力。
(2)在进行优化停电检修中,同时还要对可靠性应用的分析加大力度。
不能仅仅停留在供电生产、运行经营中,统计可靠性的工作上,而对供电过程实施控制,要先将可靠性指标进行核定,然后利用这些指标控制供电生产经营活动。
并且采用科学的方法,逐步提升监控供电系统供电的可靠性的能力,以求达到过程控制的能力,实现目标管理。
3.加强运行维护管理工作,充实故障抢修力量
(1)在供电企业生产运行中,大力降低电气设备故障率,通常是提高电力系统供电可靠性的有力应对举措,因此要积极地控制,影响电气设备正常运行的多种因素,及时的发现并且消除电气设备存在的缺陷。
对于在输电线路维护作业中,需要不断加强其运行维护管理能力,特别要加强对外在因素对其破坏的控制,尽可能的消除电气设备的安全隐患,从而降低因电气设备引发的故障,对供电
可靠性产生的影响。
(2)在供电企业生产运行中,电力系统发生故障通常是在所难免,因此供电企业必须根据自身实际客观情况,以及所在辖区域的不同,在保证应有的日常维护检修工作所需的人力同时,,还应增加应对突发性故障的急修人员队伍。
要经常性的对急修人员开展培训工作,针对设备运行过程中可能出现的故障,制定相应的应急处理预案。
来规范突发性故障的急修工作。
在平时,不仅要加大故障处理工器具配备的投入,还要定期的组织相关人员,按照预案进行演习,并进行有效的评估及总结,以有效地提高抢修工作效率,以及锻炼抢修队伍的快速反应能力。
4.结束语
随着市场经济条件下,供电企业必须在电网投资成本与电网可靠性两个方面之间进行平衡,并要寻找到最佳的平衡点,才能使供电企业获得最大的收益,并更好的保证用户的生产及生活需求。
本文通过对影响供电系统的供电可靠性因素进行分析,提出了有效的应对措施,提升监控供电系统供电的可靠性的能力,为供电企业发展提供了借鉴。
[科]
【参考文献】
[1]陈化钢,张开贤.电力设备异常运行及事故处理.中国电力出版社,2008,9.
[2]王建旺.电力系统配电网供电可靠性分析田.科技信息,2008,6.。