多边形知识讲解

合集下载

多边形知识点

多边形知识点

多边形知识点多边形是我们在数学学习中经常会遇到的重要概念。

从三角形、四边形到更多边的图形,多边形有着丰富的特点和规律。

首先,我们来聊聊什么是多边形。

简单来说,多边形是由三条或三条以上的线段首尾顺次连接所组成的封闭图形。

这些线段就是多边形的边,相邻两条边的公共端点叫做多边形的顶点。

三角形是最简单也是最基础的多边形。

它有三条边和三个顶点。

三角形的内角和是 180 度,这是一个非常重要的性质。

根据边的长度和角的大小,三角形可以分为不同的类型。

比如,三条边都相等的三角形叫等边三角形,它的三个角也都相等,都是 60 度;两条边相等的三角形叫等腰三角形,相等的两条边叫做腰,另外一条边叫做底边;如果一个三角形的一个角大于 90 度,那它就是钝角三角形;如果一个角等于 90 度,那就是直角三角形;三个角都小于 90 度的三角形则是锐角三角形。

四边形是我们常见的多边形之一。

比如长方形,它的对边相等,四个角都是直角;正方形则是特殊的长方形,不仅对边相等,四条边都相等,四个角也都是直角;平行四边形的对边平行且相等;梯形则只有一组对边平行。

多边形的内角和有一个通用的公式:(n 2)×180 度,其中 n 表示多边形的边数。

比如五边形的内角和就是(5 2)×180 = 540 度。

多边形的外角和则是一个固定的值 360 度,不管是三角形、四边形还是更多边形,外角和始终不变。

在实际生活中,多边形也有很多应用。

比如建筑设计中的多边形结构,能够增加建筑物的稳定性和美观性;多边形的地砖拼接可以创造出各种不同的图案和风格;在机械制造中,多边形的零件也有着特定的用途。

多边形的周长就是它所有边的长度之和。

计算周长相对比较简单,只要把每条边的长度加起来就可以了。

而多边形的面积计算就稍微复杂一些。

比如三角形的面积公式是底乘以高除以 2;长方形的面积是长乘以宽;平行四边形的面积是底乘以高;梯形的面积是(上底+下底)×高 ÷ 2 。

多边形重要知识点总结

多边形重要知识点总结

多边形重要知识点总结多边形重要知识点总结 1一、多边形1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。

2、多边形的边:组成多边形的各条线段叫做多边形的边。

3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。

4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。

5、多边形的周长:多边形各边的长度和叫做多边形的周长。

6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。

说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。

今后所说的多边形,如果不特别声明,都是指凸多边形。

7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。

8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。

注意:多边形的外角也就是与它有公共顶点的内角的邻补角。

二、平行四边形1、平行四边形:两组对边分别平行的四边形叫做平行四边形。

2、平行四边形性质定理1:平行四边形的对角相等。

3、平行四边形性质定理2:平行四边形的对边相等。

4、平行四边形性质定理2推论:夹在平行线间的平行线段相等。

5、平行四边形性质定理3:平行四边形的对角线互相平分。

6、平行四边形判定定理1:一组对边平行且相等的四边形是平行四边形。

7、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。

8、平行四边形判定定理3:对角线互相平分的四边形是平行四边形。

9、平行四边形判定定理4:两组对角分别相等的四边形是平行四边形。

说明:(1)平行四边形的定义、性质和判定是研究特殊平行四边形的基础。

同时又是证明线段相等,角相等或两条直线互相平行的重要方法。

(2)平行四边形的定义即是平行四边形的一个性质,又是平行四边形的一个判定方法。

三、矩形矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90°时,其它的边、角位置也都随之变化。

多边形的知识点梳理

多边形的知识点梳理

多边形的知识点梳理
1.多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2.多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形
都属于多边形,其中三角形是边数最少的多边形。

3.各个角都相等、各个边都相等的多边形叫做正多边形。

如正三角形、正方形、
正五边形等。

4.多边形的外角和公式:多边形的外角和等于360°。

5.多边形的每个内角和与它相邻的外角都是邻补角,所以n边形的内角和加外
角和为n.180°,外角和等于.注意:n边形的外角和恒等于360°,它与边数的多少无关。

(完整版)多边形及其内角和知识点

(完整版)多边形及其内角和知识点

(完整版)多边形及其内角和知识点多边形是几何学中常见的一个概念,是由若干个线段组成的一个闭合图形。

根据边的数量,我们可以把多边形分为三类:三角形、四边形和多边形。

三角形是由三条线段组成的闭合图形,是最简单的多边形。

三角形有三个内角和,三个内角和等于180度。

这个定理叫做“三角形内角和定理”。

我们不难想象,如果将三角形沿任意一边割开,得到的两个部分必定可以重新组合成一个平行四边形。

接下来我们来谈谈四边形。

四边形是由四条线段组成的闭合图形,它的内角和是360度。

其中,平行四边形的对边相等,且对角线相交,交点把平行四边形分为两个全等的三角形。

这个定理叫做“平行四边形对角线定理”。

接下来是多边形。

多边形是由三条以上的线段构成的闭合图形,多边形的边和角数可能非常多,我们不方便用公式直接表达其内角和。

不过,由于任何多边形都可以分割成若干个三角形,我们可以通过三角形的内角和定理来计算多边形的内角和。

例如,对于一个五边形,我们可以通过将其分割成三角形,计算出五边形的内角和是540度。

五边形有多种类型,例如正五边形的五个内角都是108度,而五边形中的最大内角则可以达到刚刚好不到180度的夹角。

如果我们将五边形表示为ABCDE,其中C是它的最大内角(得到这个五边形非常简单,只需要将任意二十面体四面体化即可),那么我们容易得到公式:∠ACE= ∠ABC + ∠ACB同时,也有一些其他的多边形内角和求解公式,例如正六边形的内角和公式是720度,不过由于时间和空间的关系,我们不在此一一列举。

在实际问题中,多边形的内角和定理可以用于许多计算问题。

例如,在地理问题中,我们需要计算地球表面的一个多边形的面积时,首先需要计算其内角和,并应用面积公式求解。

在数学竞赛中,也常常会出现一些需要计算多边形的内角和的问题,因此,在学习数学的过程中,理解多边形的内角和定理对很多学生来说是非常重要的。

此外,多边形还有一些其他的重要性质和定理,例如多边形的对称性、多边形划分的方法、多边形面积的计算公式等等,这些知识点也非常重要,有助于我们更好地理解和应用多边形的相关知识。

初二数学经典讲义 多边形(提高)知识讲解

初二数学经典讲义 多边形(提高)知识讲解

多边形(提高)知识讲解【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形。

如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为(3)2n n;(3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.知识点二、多边形内角和定理n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;凸多边形凹多边形(2)正多边形的每个内角都相等,都等于(2)180nng°;知识点三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.同学们在平时的数学活动中会遇到这样一个问题:把正方形纸片截去一个角后,还剩多少角,余下的图形是几边形,亲爱的同学们,你知道吗?【答案与解析】解:这个问题,我们可以用图来说明.按图(1)所示方式去截,不经过点B和D,还剩五个角,即得到一个五边形.按图(2)所示方式去截,经过点D(或点B).不经过点B(或点D),还剩4个角,即得到一个四边形.按图(3)所示方式去截,经过点D、点B,则剩下3个角,即得到三角形.答:余下的图形是五边形或四边形或三角形.【总结升华】一个n边形剪去一个角后,可能是(n+1)边形,也可能是n边形,也可能是(n-1)边形,利用它我们可以解决一些具体问题.举一反三:【变式1】如图,四边形ABCD中,∠B=40°,沿直线MN剪去∠B,则所得五边形AEFCD中,∠1+∠2=。

多边形及内角和知识点汇总

多边形及内角和知识点汇总

知识要点梳理180°(n-2)。

360°.n边形得对角线条数等于1/2·n(n-3)3、4、6/。

拼成360度得角):3、4。

、多边形得定义:在平面内,由一些线段首尾顺次相接组成得图形叫做多边边:组成多边形得各条线段叫做多边形得边。

顶点:每相邻两条边得公共端点叫做多边形得顶点。

内角:多边形相邻两边组成得角叫多边形得内角,一个n边形有n个内角。

ﻫ外角:多边形得边与它得邻边得延长线组成得角叫做多边形得外角。

(2)在定义中应注意:ﻫ①一些线段(多边形得边数就是大于等于3得正整数);②首尾顺次相连,二者缺一不可;ﻫ③理解时要特别注意“在同一平面内”这个条件,其目得就是为了排除几个点不共面得情况,即空间ﻫ多边形、ﻫ2、多边形得分类:ﻫ(1)多边形可分为凸多边形与凹多边形,画出多边形得任何一条边所在得直线,如果整个多边形都在这ﻫ条直线得同一侧,则此多边形为凸多边形,反之为凹多边形(见图1)、本章所讲得多边形都就是指凸多边形、ﻫ凸多边形凹多边形ﻫ图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形。

三角形、四边形都属于多边形,其中三角形就是边数最少得多边形.ﻫ知识点二:正多边形ﻫ各个角都相等、各个边都相等得多边形叫做正多边形.如正三角形、正方形、正五边形等.ﻫ正三角形正方形正五边形正六边形正十二边形要点诠释:ﻫ各角相等、各边也相等就是正多边形得必备条件,二者缺一不可、如四条边都相等得四边形不一定就是正方形,四个角都相等得四边形也不一定就是正方形,只有满足四边都相等且四个角也都相等得四边形才就是正方形知识点三:多边形得对角线多边形得对角线:连接多边形不相邻得两个顶点得线段,叫做多边形得对角线、如图2,BD为四边形ABCD得一条对角线。

ﻫ要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

ﻫ(2)n边形共有条对角线。

ﻫ证明:过一个顶点有n—3条对角线(n≥3得正整数),又∵共有n个顶点,∴共有n(n—3)条对角线,但过两个不相邻顶点得对角线重复了一次,∴凸n边形,共有条对角线。

多边形及内角和知识点汇总

知识要点梳理定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。

凸多边形凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。

非正多边形:1、n 边形的内角和等于 180°( n-2 )。

多边形的定理2 、任意凸形多边形的外角和等于 360°。

3 、n 边形的对角线条数等于 1/2 ·n ( n-3)只用一种正多边形: 3、 4、 6/ 。

只用一种非正多边形(全等) :3、 4。

知识点一:多边形及有关概念1、 多边形的定义: 在平面内,由一些线段首尾顺次相接组成的图形叫做多边形 .( 1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个 n 边形有 n 个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

( 2)在定义中应注意: ①一些线段(多边形的边数是大于等于 3 的正整数); ②首尾顺次相连,二者缺一不可 ;③理解时要特别注意“在同一平面内”这个条件 , 其目的是为了排除几个点不共面的情况 , 即空间 多边形 .2、多边形的分类 : (1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这 条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图 1). 本章所讲的多边形都是指凸多边形 .凸多边形(2) 多边形通常还以边数命名,多边形有形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。

如正三角形、正方形、正五边形等。

拼成 360 度的角图1n 条边就叫做 n 边形.三角形、四边形都属于多边形,其中镶嵌要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可 . 如四条边都相等的四边形不一定是正方形,四个 角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形 知识点三:多边形的对角线多边形的对角线 :连接多边形不相邻的两个顶点的线段,叫做多边形的对角线 . 如图 2,BD 为四边形 ABCD 的一 条对角线。

人教版数学八年级上册05多边形(基础) 知识讲解

多边形(基础)知识讲解【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为(3)2n n;(3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;凸多边形凹多边形(2)正多边形的每个内角都相等,都等于(2)180nng°;知识点三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF 分成哪几个三角形?【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。

(完整版)多边形及其内角和知识点

知识要点梳理边形的内角和等于180°(n-2)。

360°。

边形的对角线条数等于1/2·n (n-3)3、4、6/。

拼成360度的角3、4。

知识点一:多边形及有关概念 1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. (1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

(2)在定义中应注意: ①一些线段(多边形的边数是大于等于3的正整数); ②首尾顺次相连,二者缺一不可; ③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间 多边形. 2、多边形的分类: (1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这 条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸 多边形. 凸多边形 凹多边形 图1 (2)多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角 形是边数最少的多边形.知识点二:正多边形 各个角都相等、各个边都相等的多边形叫做正多边形。

如正三角形、正方形、正五边形等。

正三角形 正方形 正五边形 正六边形 正十二边形要点诠释: 各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD 为四边形ABCD 的一条对角线。

要点诠释: (1)从n 边形一个顶点可以引(n -3)条对角线,将多边形分成(n -2)个三角形。

人教版初二数学上册:多边形(基础) 知识讲解

多边形(基础)知识讲解【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n ; (3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形. 知识点二、多边形内角和n 边形的内角和为(n-2)·180°(n ≥3). 要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;凸多边形凹多边形(2)正多边形的每个内角都相等,都等于(2)180nn°;知识点三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF 分成哪几个三角形?【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形(基础)知识讲解
【学习目标】
1.理解多边形的概念;
2.掌握多边形内角和与外角和公式;
3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.
【要点梳理】
知识点一、多边形的概念
1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.
2.相关概念:
边:组成多边形的各条线段叫做多边形的边.
顶点:每相邻两条边的公共端点叫做多边形的顶点.
内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.
对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.
3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:
要点诠释: (1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;
(2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2
n n ; (3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.
知识点二、多边形内角和
n 边形的内角和为(n-2)·180°(n ≥3).
要点诠释:
(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;凸多边形 凹多边形
(2)正多边形的每个内角都相等,都等于(2)180
n
n


知识点三、多边形的外角和
多边形的外角和为360°.
要点诠释:
(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;
(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360
n
°

(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.
【典型例题】
类型一、多边形的概念
1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线它们将六边形ABCDEF 分成哪几个三角形
【答案与解析】
解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.
【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.
举一反三:
【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。

类型二、多边形内角和定理
2.证明: n边形的内角和为(n-2)·180°(n≥3).
【思路点拨】先写出已知、求证,再画图,然后证明.
【答案与解析】
已知:n边形A1A2……A n,
求证:∠A 1+∠A 2+……+∠A n =(n-2)·180°,
证法一:如图(1)所示,在n 边形内任取一点O ,连O 与各顶点的线段把n 边形分成了n 个三角形,n 个三角形内角和为n ·180°,减去以O 为公共顶点的n 个角的和2×180°(即一个周角)得n 边形内角和为n ·180°-2×180°-(n-2)·180°.
证法二:如图(2)所示,过顶点A 1作对角线,把n 边形分成了(n-2)个三角形,这(n-2)个三角形的内角和恰是多边形的内角和,即(n-2)·180°.
方法三:如图(3)所示,在多边形边上任取一点P ,连这点与各顶点的线段把n 边形分成了(n-1)个三角形,n 边形内角和为这(n-1)个三角形内角和减去在点P 处的一个平角,即(n-1)·180°-180°=(n-2)·180°.
【总结升华】证明多边形内角和定理,关键是构造三角形,利用三角形的内角和定理进行证明.
举一反三:
【高清课堂:多边形及其内角和 2、多边形的内角和---练习】
【变式】练习:求下列图中的x 的值.
【答案】
()11409036065+++=∴=o o o o o
x x x ()2215012090318060++++=⨯∴=o o o o o o x x x
3.(2014秋?旬阳县期中)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.
【思路点拨】根据多边形的内角和定理即可列方程求的新多边形的边数,减去1即可得到原多边形的边数.
【答案与解析】
解:设新多边形是n边形,
则180(n﹣2)=2520
解得:n=16.
则原多边形的边数是:16﹣1=15.
答:原多边形的边数是15.
【总结升华】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
【高清课堂:多边形及其内角和例1(1)、】
举一反三:
【变式】一个多边形的内角和是540o ,那么这个多边形的对角线的条数是 .
【答案】5
类型三、多边形的外角和
4.如图所示,五边形公园中,∠1=90°,张老师沿公园边由A点经B→
C→D→E→F
散步,则张老师共转了 ( )
A.440° B.360° C.260° D.270°
【思路点拨】解答该问题中应注意张老师没转过与∠1相邻的这个外角,所以用五边形的外角和减去它即得答案,
【答案】D
【解析】
解:360°-(180°-90°)=270°,所以张老师共转了270°,故应选D.
【总结升华】解决此题的关键同样是把生活实际问题转化为数学问题,在散步之中感悟数学知识.其中蕴含了多边形的外角和为360°的有关知识.
举一反三:
【变式1】如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角
【答案】:如图,
当小汽车从P 出发行驶到B 市,由B 市向C 市行驶时转的角是α,由C 市向A 市行驶时转的角是β,由A 市向P 市行驶时转的角是γ.
因此,小汽车从P 市出发,经B 市、C 市、A 市,又回到P 市,共转ο360=++γβα.
【高清课堂:多边形及其内角和 例1(2)、】
【变式2】已知一个多边形的内角和与外角和共2160o ,则这个多边形的边数是 .
【答案】12
【变式3】(2015?漳州)一个多边形的每个内角都等于120°,则这个多边形的边数为(
) B. 5
【答案】C.
解:∵多边形的每一个内角都等于120°,
∴多边形的每一个外角都等于180°﹣120°=60°,
∴边数n=360°÷60°=6.
故选:C .。

相关文档
最新文档