多边形面积知识点归纳总结.
多边形面积知识点归纳总结1

多边形面积知识点归纳总结1多边形面积知识点归纳总结11.三角形的面积计算方法三角形的面积可以使用海伦公式或两个向量的叉积来计算。
海伦公式是根据三角形的边长来计算其面积的公式,公式如下:面积 = sqrt(s(s-a)(s-b)(s-c))其中,s是半周长,a、b、c是三角形的三条边的长度。
如果已知三角形的两个向量,则可以使用叉积的模长来计算其面积,公式如下:面积=1/2*,AxB其中,A、B分别是两个向量。
2.四边形的面积计算方法四边形的面积计算方法取决于其形状和已知信息的不同。
如果已知四边形是矩形或正方形,则可以使用长度和宽度的乘积来计算面积。
如果已知四边形的对角线和夹角,则可以使用正弦定理来计算面积,公式如下:面积= 1/2 * d1 * d2 * sinθ其中,d1、d2是对角线的长度,θ是两条对角线的夹角。
3.多边形的面积计算方法对于任意的多边形,可以将其分解为若干个三角形,然后计算各个三角形的面积,再将其相加就是多边形的总面积。
可以通过连接多边形的一个顶点和其他顶点来将多边形分解为若干个三角形,然后计算每个三角形的面积,最后将其相加。
4.特殊多边形的面积计算公式对于一些特殊形状的多边形,有一些特殊的面积计算公式。
例如,正多边形的面积可以通过边长和中心角的正弦函数来计算,公式如下:面积= (n * s^2) / (4 * tan(π/n))其中,n是多边形的边数,s是边长。
另一个例子是等腰梯形的面积计算公式,公式如下:面积=1/2*(a+b)*h其中,a、b分别是上底和下底的长度,h是高的长度。
此外,还有一些其他类型的特殊多边形,每个类型的多边形都有相应的面积计算公式。
5.高斯公式高斯公式是用于计算任意简单多边形的面积的公式。
它通过将多边形分解为若干个三角形,并计算每个三角形的面积来得到总面积。
公式如下:面积=1/2*Σ(x[i]*y[i+1]-x[i+1]*y[i])其中,(x[i],y[i])是多边形的顶点的坐标。
多边形的面积知识点梳理

多边形的面积知识点梳理在几何学中,多边形是由直线段依次连接而成的一个封闭图形。
多边形的面积是几何学中的一个重要概念,计算多边形的面积需要掌握一些基本的知识点和计算方法。
本文将对多边形的面积知识点进行梳理,帮助读者更好地理解和掌握这一知识。
一、平行四边形的面积计算方法平行四边形是最简单的多边形之一,其面积计算方法也非常直观。
对于一个平行四边形,可以通过以下公式来计算它的面积:面积 = 底边 ×高其中,底边是平行四边形的一条底边的长度,高是从底边到对顶边的垂直距离。
例如,如果一个平行四边形的底边长度为6cm,高为4cm,则它的面积为:面积 = 6cm × 4cm = 24cm²二、三角形的面积计算方法三角形是最常见的多边形之一,其面积计算方法也有多种。
1. 通过底边和高计算面积:面积 = 底边 ×高 ÷ 2其中,底边是三角形的一条底边的长度,高是从底边到对顶顶点连线的距离。
2. 通过三边的长度计算面积:面积= √[s(s-a)(s-b)(s-c)]其中,a、b、c为三角形的三边的长度,s为三边长度的半周长(s = (a+b+c)/2)。
例如,如果一个三角形的底边长度为5cm,高为3cm,则可以通过第一种方法计算出它的面积为:面积 = 5cm × 3cm ÷ 2 = 7.5cm²三、正多边形的面积计算方法正多边形是边长和内角均相等的多边形,常见的正多边形有正三角形、正方形、正五边形等。
计算正多边形的面积需要掌握相应的计算公式。
1. 正三角形的面积计算方法:面积 = 边长² × √3 ÷ 4其中,边长是正三角形的一条边的长度。
2. 正方形的面积计算方法:面积 = 边长²其中,边长是正方形的一条边的长度。
3. 正五边形的面积计算方法:面积 = (边长² × √5 × (5+√5)) ÷ 4其中,边长是正五边形的一条边的长度。
多边形的面积知识点梳理

多边形的面积知识点梳理多边形是几何学中的重要概念,其面积是我们研究多边形性质时必不可少的知识点。
本文将对多边形的面积进行梳理,包括多边形的定义、不同类型多边形的面积计算公式以及相关的实例分析。
通过本文的阐述,读者将能够更深入地理解和应用多边形的面积知识。
一、多边形的定义多边形是由若干条线段按一定顺序连接而成的封闭图形。
多边形的边数不限,可以是三边形、四边形、五边形等等。
其中,三边形又叫做三角形,是最简单的多边形形式。
二、不同类型多边形的面积计算公式不同类型的多边形有不同的计算面积的公式。
以下列举了一些常见多边形的面积计算公式:1. 三角形的面积计算公式三角形的面积可以通过底边长度和高的乘积除以2来计算,即:面积 = 底边长度 ×高 ÷ 22. 矩形的面积计算公式矩形的面积可以通过长和宽的乘积来计算,即:面积 = 长 ×宽3. 正方形的面积计算公式正方形的面积可以通过边长的平方来计算,即:面积 = 边长 ×边长4. 平行四边形的面积计算公式平行四边形的面积可以通过底边长度和高的乘积来计算,即:面积 = 底边长度 ×高5. 梯形的面积计算公式梯形的面积可以通过上底、下底和高的乘积除以2来计算,即:面积 = (上底 + 下底) ×高 ÷ 2三、多边形面积计算的实例分析为了更好地理解和应用多边形的面积计算公式,下面将通过实例对不同类型多边形的面积计算进行分析。
例1:计算三角形的面积已知一个三角形的底边长度为4cm,高为3cm,根据三角形的面积计算公式,可以得到:面积 = 4cm × 3cm ÷ 2 = 6cm²例2:计算矩形的面积已知一个矩形的长为5cm,宽为3cm,根据矩形的面积计算公式,可以得到:面积 = 5cm × 3cm = 15cm²例3:计算正方形的面积已知一个正方形的边长为6cm,根据正方形的面积计算公式,可以得到:面积 = 6cm × 6cm = 36cm²例4:计算平行四边形的面积已知一个平行四边形的底边长度为8cm,高为4cm,根据平行四边形的面积计算公式,可以得到:面积 = 8cm × 4cm = 32cm²例5:计算梯形的面积已知一个梯形的上底长度为5cm,下底长度为8cm,高为6cm,根据梯形的面积计算公式,可以得到:面积 = (5cm + 8cm) × 6cm ÷ 2 = 39cm²通过以上实例分析,我们可以看到不同类型多边形的面积计算公式的应用方法,在实际问题中可以根据已知条件运用相应的公式来计算多边形的面积。
人教版五年级数学上册 多边形的面积 知识点归纳

梯形
梯形周长=上底+下底+两条腰
C =a+b+c+d
5、当一个平行四边形与一个三角形等底等高,那么这个三角形的面积是平行四边形的面积的一半。
6、把长方形框架拉成平行四边形,周长不变,面积变小。
3、环绕一个图形的边缘走一周的长度叫做周长。不规则图形的周长也是按照这个定义来求的。
4、常用多边形周长公式:
周长公式
周长的字母公式
长方形
长方形周长=(长+宽)×2
C=2(a+b)
正方形
正方形周长=边长×4
C =4a
平行四边形
平行四边形周长=相邻两边之和×2
C =2Байду номын сангаасa+b)
三角形
三角形周长=三条边的和
多边形面积知识点归纳
1、在一个面上,物体所占空间的大小叫做面积。
2、常用多边形面积公式:
面积公式
面积的字母公式
长方形
长方形面积=长×宽
S=ab
正方形
正方形面积=边长×边长
S=a2
平行四边形
平行四边形面积=底×高
S=ah
三角形
三角形面积=底×高÷2
S=ah÷2
梯形
梯形面积=(上底+下底)×高÷2
S=(a+b)×h÷2
多边形的面积知识点梳理

多边形的面积知识点梳理多边形是几何学中一个基础的概念,它是一个由若干条线段组成的封闭图形。
在实际生活和学术研究中,计算多边形的面积是一个常见的问题。
本文将从数学定义、计算公式、测量方法等多个方面对多边形的面积知识点进行梳理。
一、数学定义多边形是一个由若干条线段组成的封闭图形,它的特点是边与边之间没有交点,每个定点上的内角均小于180度。
面积指多边形所占据的平面区域,是一个量化面积大小的指标。
二、计算公式计算多边形面积的公式通常有以下几种:1. 面积 = 周长 x 高 ÷ 2在此公式中,周长指多边形的所有边长之和,高指到多边形某一个顶点的垂线长度。
此公式适用于一些规则多边形。
2. 面积 = 1/2 x ab x sinC其中a、b分别为两边长,C为它们夹角的度数。
此公式适用于求解平面上任意三角形的面积,而多边形可以看作由多个三角形组成。
3. 面积= 1/2 x ((x1y2 + x2y3 + … + xn-1yn + xny1)-(y1x2 + y2x3 + … + yn-1xn + ynx1))此公式是利用多边形顶点坐标计算面积的通用公式,也叫做格林公式。
其中x、y分别代表多边形中各定点的坐标。
三、测量方法在实际生活中,我们需要精确测量多边形的面积大小。
以下是几种测量方法:1. 直接测量对于一些规则的多边形,可以直接测量边长和高,并使用第一种公式进行计算。
2. 拆分法将多边形拆分成多个三角形,使用第二种公式进行计算。
在实际应用中,可以通过手绘、计算机CAD等方式拆分。
3. 集成法对于曲线边界的多边形,可以使用集成法求解。
其中,将多边形面积视作一个定积分,通过分割成若干狭长的区域,将求解面积的问题转化为求解曲线的弧长公式。
四、其他应用多边形面积的计算并不仅仅局限于学术领域,它也具有一定的应用场景。
例如:1. 建筑工程领域中,建筑师需要准确测量建筑物的面积大小,以便拟定建筑方案。
2. 农业领域中,农民需要计算农田面积,以便确定种植面积和作物产量。
多边形面积的知识点

多边形面积的知识点1、长方形的面积=长×宽字母公式:s=ab长方形的长=面积÷宽长方形的宽=面积÷长长方形的周长=(长+宽)×2字母公式:c=2(a+b)长方形的长=周长÷2-宽长方形的宽=周长÷2-长2、正方形的面积=边长×边长字母公式:s= a2正方形的周长=边长×4字母公式:c=4a正方形的边长=周长÷43、平行四边形的面积=底×高字母公式:s=ah平行四边形的底=面积÷高平行四边形的高=面积÷底4、三角形的面积=底×高÷2字母公式:s=ah÷2三角形的底=面积×2÷高;三角形的高=面积×2÷底5、梯形的面积=(上底+下底)×高÷2字母公式:s=(a+b)h÷2梯形的面积=上、下底的和×高÷2梯形的下底=面积×2÷高-上底;梯形的上底=面积×2÷高-下底梯形的高=面积×2÷(上底+下底)6、计算摆成梯形的圆木或钢管等的总根数:总根数=(顶层根数+底层根数)×层数÷2(层数=底层根数-顶层根数+1)7、求组合图形的面积:(1)把它分割成已学的简单图形,通过把各个面积相加进行计算。
(2)把它填补成已学的简单图形,通过填补后得到的面积减去填补的面积进行计算。
(3)把它割补成已学的简单图形,计算割补后得到的简单图形的面积。
8、平行四边形面积公式推导:平行四边形通过(割补)可以转化成一个长方形;这个长方形的长相当于平行四边形的(底);长方形的宽相当于平行四边形的(高);长方形的面积等于平行四边形的面积。
因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
9、三角形面积公式推导:两个(完全一样)的三角形通过(旋转、平移)可以拼成一个平行四边形,这个平行四边形的底相当于三角形的(底);平行四边形的高相当于三角形的(高);平行四边形的面积等于(三角形面积的2倍),因为平行四边形面积=底×高,所以,三角形的面积=底×高÷210、梯形面积公式推导:两个完全一样的梯形通过(旋转、平移)可以拼成一个平行四边形,这个平行四边形的底相当于梯形的(上下底之和);这个平行四边形的高相当于梯形的(高);这个平行四边形面积等于梯形面积的(2倍),因为平行四边形的面积=底×高。
多边形面积知识点归纳

多边形面积知识点归纳一、基本概念1.多边形:由若干条边和相应数量的顶点组成的图形。
通常以n边形或多边形表示,其中n为边的数量。
2.顶点:多边形的尖角点。
3.边:多边形两个顶点之间的线段。
4.内角:多边形内部的角度。
5.外角:从多边形的一条边上延伸出的角度。
二、常见多边形面积公式1.三角形面积:三角形的面积可以用底长和对应的高来计算,公式为:S=1/2*b*h,其中S表示面积,b表示底长,h表示对应的高。
2. 正多边形面积:正多边形是所有边和内角相等的多边形,其面积可以用边长来计算,公式为:S = 1/4 * n * a² * cot(π/n),其中S表示面积,n表示边的数量,a表示边长,cot表示余切函数。
3.不规则多边形面积:不规则多边形是指边和内角都不相等的多边形,其面积可以通过将多边形分割为多个三角形,并分别计算每个三角形的面积,然后求和得到整个多边形的面积。
三、推导方法1.面积推导的方法:靠近初中等阶段的学生可以使用切切割割法,即将多边形切割成若干个与坐标轴平行的三角形或梯形,然后分别计算每个三角形或梯形的面积,最后将它们加起来得到整个多边形的面积。
2.面积推导的公式:面积推导的公式有很多不同的表达方式,例如通过高和底长计算三角形的面积公式,通过边长和正弦公式计算梯形的面积公式等。
四、性质和定理1.高度定理:三角形的高是顶点到底边的垂线段,而高等于底边乘以对应顶点到底边距离的正弦值。
2.面积定理:如果两个多边形的面积相等,那么它们的底和高也相等,换句话说,如果两个多边形的底和高相等,那么它们的面积也相等。
五、应用1.地理学:用于计算国家、城市等地理范围的面积。
2.建筑学:用于计算房屋、空地等的面积。
3.农业学:用于计算农田、农作物等的面积。
4.经济学:用于计算土地、产业等的面积。
5.生态学:用于计算湖泊、森林等的面积。
总之,多边形面积是几何学中的一个重要概念,我们需要掌握基本的概念和公式,能够运用推导方法和定理来计算多边形的面积。
多边形的面积知识点整理

多边形的面积知识点整理一、平行四边形的面积。
1. 公式推导。
- 把平行四边形通过割补法转化为长方形。
沿着平行四边形的高剪下一个三角形,平移后可以拼成一个长方形。
这个长方形的长等于平行四边形的底,宽等于平行四边形的高。
- 因为长方形的面积 = 长×宽,所以平行四边形的面积 = 底×高,用字母表示为S = ah(其中S表示面积,a表示底,h表示高)。
2. 计算应用。
- 已知平行四边形的底和高,直接代入公式计算面积。
例如,一个平行四边形的底是5厘米,高是3厘米,它的面积S = 5×3 = 15平方厘米。
- 已知平行四边形的面积和底(或高),求高(或底)。
例如,平行四边形面积是24平方米,底是6米,根据h = S÷a,可得高h = 24÷6 = 4米。
二、三角形的面积。
1. 公式推导。
- 用两个完全一样的三角形可以拼成一个平行四边形。
这个平行四边形的底等于三角形的底,高等于三角形的高。
因为平行四边形的面积 = 底×高,所以三角形的面积是平行四边形面积的一半。
- 三角形的面积 = 底×高÷2,用字母表示为S=(1)/(2)ah(其中S表示面积,a表示底,h表示高)。
2. 计算应用。
- 已知三角形的底和高,求面积。
如三角形的底是8分米,高是5分米,面积S=(1)/(2)×8×5 = 20平方分米。
- 已知三角形的面积和底(或高),求高(或底)。
例如,三角形面积是15平方厘米,底是6厘米,根据h = 2S÷a,可得高h = 2×15÷6 = 5厘米。
三、梯形的面积。
1. 公式推导。
- 用两个完全一样的梯形可以拼成一个平行四边形。
这个平行四边形的底等于梯形的上底与下底之和,高等于梯形的高。
因为平行四边形的面积=(上底 + 下底)×高,所以梯形的面积是平行四边形面积的一半。
- 梯形的面积=(上底 + 下底)×高÷2,用字母表示为S=((a + b)h)/(2)(其中S 表示面积,a表示上底,b表示下底,h表示高)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学上册第二单元多边形面积知识点归纳总结
前面我们学习过长方形和正方形的周长和面积,
本单元主要学习平行四边形,三角形,梯形的面积和它们之间的面积关系
3、平行四边形面积=底×高字母公式:s=ah
★平行四边形面积公式的推导过程:剪拼、平移
沿着平行四边形的任意一条高剪开,将其一部分平移与另一部分正好拼成一个长方形,这个长方形的长就是平行四边形的底,这个长方形的宽就是平行四边形的高。
因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示S=a×h。
★等底等高的平行四边形面积相等。
多边形面积
4、三角形面积=底×高÷2字母公式:s=ah÷2
(底=面积×2÷高;高=面积×2÷底)
★三角形面积公式的推导过程:旋转、平移
将两个完全一样的三角形拼成一个平行四边形,拼成的平行四边形的底就是三角形的底,拼成的平行四边形的高就是三角形的高,拼成的平行四边形的面积是三角形面积的2倍。
一个三角形的面积是这个平行四边形的面积一半。
因为平行四边形的面积等于底×高,所以三角形的面积等于底×高÷2。
用字母表示S=a×h÷2。
★等底等高的三角形面积相等。
★等底等高的三角形和平行四边形面积关系:等底等高的平行四边形面积是三角形面积的
2倍;等底等高的三角形面积是平行四边形面积的一半。
5、梯形面积=(上底+下底)×高÷2字母公式:s=(a+b)×h÷2
(上底=面积×2÷高-下底;下底=面积×2÷高-上底;高=面积×2÷(上底+下底))
梯形面积公式的推导过程:旋转、平移
将两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的上底与
下底的和,平行四边形的高等于梯形的高,拼成的平行四边形的面积是每个梯形面积的2倍,每个梯形的面积是拼成的平行四边形面积的一半。
因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷ 2 用字母表示S=(a+b)×h÷2.
6、计算圆木、钢管等的根数: (顶层根数+底层根数)×层数÷2
7、组合图形:转化成已学的简单图形,通过加、减进行计算。
8、有关规律:
★在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。
★用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积
变小了,因为底不变,高变小了;如果将平行四边形框架拉成一个长方形,则他们的周长
不变,面积变大了。
★1三角形和平行四边形面积相等时,若高相等,则三角形的底是平行四边形的2倍,平行四边形的底是三角形的一半。
★2三角形和平行四边形的面积相等时,若底相等,则三角形的高是平行四边形的2倍,平行四边形的高是三角形的一半。
★3三角形和平行四边形等底等高时,则三角形的面积是平行四边形的一半,平行四边形
的面积是三角形的2倍。
★在直角三角形中,斜边最长。