最优控制最大值原理
基于极大值原理的最优控制

1 h(t f ) 2 v(t f )
3
1 和 2 为待定的拉格朗日乘子 式中,
4)将哈密顿函数整理为
H 1v 2 ( u g ) 3 (ku ) (1v 2 g ) ( 2 k3 )u m m
5)由极小值条件,H相对于 u (t ) 取绝对极小值。因此,最优控制为
2 u , max m k3 0 u (t ) 0, 2 k3 0 m
上述结果表明,只有当发动机推力在最大值和零值之间进行开关 控制,才有可能在实现软着陆的同时,保证燃料消耗最少。
4
thank you !
3 (t )
H 2 (t )u (t ) m m 2 (t )
3)由横截条件
1 (t f )
2 (t f )
1 1 1 h(t f ) h(t f )
J m(t )
2 2 2 v(t f ) v(t f ) 3 (t f ) 1 m(t f )
现代控制理论
实例分析: 基于极大值原理的最优控制
例:设宇宙飞船质量为m(t),高度为h(t),垂直速度为v(t),发动机推力为 u(t),月球表面的重力加速度设为常数g,不带燃料的飞船质量为M,初始燃料 的总质量为F,发动机最大推力为 umax ,发动机飞船的状态方程为:
h(t ) v (t ) , h(0) h0 u (t ) v (t ) g , v (0) v0 m(t ) m(t ) ku(t ),
m(0) M F
要求飞船在月球上实现软着陆,即终端约束为
1 h(t f ) 0 , 2 v(t f ) 0
最优控制--极大值原理

X (t0 ) = X0
:
∂φ Htf + =0 ∂t f
t0 , t f 已知, (t0 ) = X0给定,末端受约束 g[ X (t f ), t f ] = 0 X
边界条件为:
∂φ ∂gT λ(t f ) = µt f tf + ∂X ∂X g[ X (t f ), t f ] = 0 ∂φ ∂gT + µ =0 若 t f 自由:外加: H |t f + ∂t f ∂t f
_
H[ X (t), λ(t),U (t)] = m H[ X * (t), λ(t), u(t)] ax
* * u(t )
_
_
∴所以有的文献中也称为“极大值原理”。 3、H对u没有可微要求,因此应用拓宽。 4、 极小值原来是求取最优控制的必要条件,非充分条件。 即:满足极小值原理不一定J取极小值,需进一步判断。 一般:对于实际系统
1、问题提出(时变系统) 问题提出 时变系统)
ɺ 已知受控系统 X = f ( X (t), t) + B( X (t), t)u(t), X (0) = X0 并设 f 和 B对X(t)和t 连续可微。 和 连续可微。
X:n×1 : × u: r×1 : × f :n×1 × B:n×r : × 状态向量 控制向量 函数向量 函数值矩阵
* 解得: x (t) = 0.1e
2t
+ 9.9e−
2t
2t
λ(t) = −0.1( 2 +1)e
b) |u| ≤ 0.3
+ 9.9( 2 −1)e−
2t
由极小值原理: U * = −sgn{λ} 当t=1时
λ =0
在[0,1]区间
第7章 最优控制

第7章 最优控制内容提要最优控制是现代控制理论的重要组成部分。
它所研究的对象是控制系统,中心问题是给定一个控制系统,选择控制规律,使系统在某种意义上是最优的。
这一章介绍了最优控制问题及一些基本的求解方法,如变分法、最大值原理和动态规划等。
为最优控制系统的设计,特别是线性二次型性能指标和快速控制提供方法和理论基础。
关于求解最优控制的变分方法,介绍了泛函与变分法基础,欧拉方程,横截条件,含有多个未知函数泛函的极值,条件极值等;关于最大值原理,介绍了古典变分法的局限性,最大值原理基本叙述,变分法与极大值原理的异同等;关于动态规划,介绍了多级决策过程与最优性原理,离散系统动态规划,连续系统动态规划,动态规划与最大值原理的关系等;还介绍了线性二次型性能指标的最优控制问题,包括状态调节器、输出调节器、跟踪问题,以及快速控制问题和综合问题。
这章研究的内容是最优控制中最基本的,也是必需掌握的。
无论将来从事研究还是从事实际工作都是必不可少的。
习题与解答7.1设有一阶系统x x u =-+,3)0(=x 。
试确定最优控制函数()u t ,在2t =时,将 系统控制到零态,并使泛函220(1)d J u t =+⎰,取极小值。
解 作泛函2200[1()]d J u x x u t λ=+++-⎰写出泛函0J 的欧拉方程0 0u u x x F F uF F t ∂⎧-=⎪⎪∂⎨∂⎪-=⎪∂⎩推出20u λλλ-=⎧⎨-=⎩ 与状态方程x x u =-+联立求得111222ttt tc e c u e c x c e e λ-===+代入边界条件()()03, 20x x ==得122212322c c cc e e -+=+=解之得2212222263, e e c c e e e e----==--故212232t tc e u e e e e---==- □7.2 一质点沿曲线()y f x =从点(0,8)运动到(4,0),设质点的运动速度为x ,问曲线取什么形状,质点运动时间最短?解 因为d , d d sx s x t== 所以t x =⎰由欧拉方程d0d d 0d y y F F tt -=⎛⎫= 得0c =做变量代换,令tg ,y θ'= 代入上式,得1sin ,x c θ== 101c c ⎛⎫= ⎪⎝⎭令 ⑴因为1d tg , d cos d d yy x c xθθθ'=== 得11d tg d tg cos d sin d y x c c θθθθθθ===可推出12cos y c c θ=-+ ⑵从(1)和(2)式中消去变量θ,得()22221x y c c +-=代入边界条件,得()2222221218, 4c c c c -=+=推出125, 3c c =±=所以曲线方程为()22325x y +-= □7.3 给定二阶系统010001x x u ⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦,2(0)1x ⎡⎤=⎢⎥⎣⎦。
最优控制——最大值原理

最优控制——最大值原理最优控制问题是数学中的一个重要问题,研究如何在给定约束条件下使一个系统达到最优状态。
在数学的最优控制理论中,最大值原理是一种重要的工具和方法,被广泛应用于很多最优控制问题的求解中。
本文将详细介绍最优控制中的最大值原理及其应用。
最大值原理也称为哈密顿-雅可比-贝尔曼方程(hamilton-jacobi-bellman equation),它是最优控制问题的一个基本性质。
最大值原理给出了在给定约束条件下系统状态的最优演化方程。
最大值原理的基本形式是哈密顿-雅可比-贝尔曼方程。
对于一个给定的最优控制问题,假设系统的演化满足一个偏微分方程,此方程将由状态变量、控制变量、时间变量以及一个哈密顿函数构成,具体形式如下:∂V/∂t + min(u) {H(x,u,t)+ ∇V⋅f(x,u,t)} = 0其中,V(x,t)是值函数(value function),表示从状态x在时间t开始时,系统必须选择的最佳控制来最大化性能指标的期望值。
f(x,u,t)是状态方程(state equation),描述系统状态的演化。
H(x,u,t)是哈密顿函数(Hamiltonian),是一个将值函数、控制变量和状态方程综合起来的函数,它的作用是描述系统的动力学性质。
最大值原理的关键在于通过逐步迭代的方式求解值函数V(x,t),找到使系统达到最优状态的最佳控制变量。
这一过程通常称为最优控制问题的动态规划(dynamic programming)。
最大值原理的主要应用涉及很多不同领域,例如经济学、工程学、生物学等。
在经济学中,最大值原理被广泛应用于决策理论、资产定价、宏观经济模型等领域。
在工程学中,最大值原理常用于控制系统设计、路径规划、优化问题等。
在生物学中,最大值原理被用于神经科学、生态学、生物系统动力学建模等。
最大值原理的应用还包括优化问题、最短路径问题、最优控制问题、反问题等。
它不仅可以用于求解连续问题,也可以用于离散问题。
第七章 最优控制:最大值原理

(7.39)
H
2
u
2
2 0
u (t )
的解是最大化 H
例1 最大化
满足 y y u 和 y (0 ) 1
V
1 0
u dt
2
y (1) 0
汉密尔顿函数: H u 2 ( y u )
0
H t , y
(T ) y T ( 0 ) y 0
的第一项对 求导,得:
T ( ) 0
(7.28)
H H q ( t ) dt H y q (t ) p (t ) u y
f (t , y , u ) H
以上两个方程右边相同,因此左边相等:
y
推导得到最大值 原理的条件之一
以上推导得到:
H ( t , y , u , ) y ( t ) dt ( T ) y
T 0
T
(0) y0
步骤3 推导新目标泛函 的另一种形式
推导得到最大值原 理的一般横截条件
第二节 其他终结条件
一般横截条件:
H t T T
(T ) y T 0
(7.30)
y
y Z
• 固定终结点的横截条件:
y (T ) y T
(T 和
y T 给定)
水平终结线的横截条件:
[ H ]t T 0
t
0
T
T2
T
最优控制-极大值原理

近似算法
针对极大值原理的求解过程,开 发了一系列近似算法,如梯度法、 牛顿法等,提高了求解效率。
鲁棒性分析
将极大值原理应用于鲁棒性分析, 研究系统在不确定性因素下的最 优控制策略,增强了系统的抗干 扰能力。
极大值原理在工程领域的应用
航空航天控制
在航空航天领域,利用极大值原理进行最优 控制设计,实现无人机、卫星等的高精度姿 态调整和轨道优化。
03
极大值原理还可以应用于经济 学、生物学等领域,为这些领 域的研究提供新的思路和方法 。
02
最优控制理论概述
最优控制问题定义
01
确定一个控制输入,使得某个给定的性能指标达到 最优。
02
性能指标通常由系统状态和控制输入的函数来描述。
03
目标是在满足系统约束的条件下,找到最优的控制 策略。
最优控制问题的分类
1 2
确定型
已知系统的动态模型和控制约束,求最优控制输 入。
随机型
考虑系统的不确定性,如随机干扰、参数不确定 性等。
3
鲁棒型
考虑系统模型的不确定性,设计鲁棒控制策略。
最优控制问题通过求解优化问题得到最优解的解析表达式。
数值法
02
通过迭代或搜索方法找到最优解。
极大值原理
03
基于动态规划的方法,通过求解一系列的子问题来找到最优解。
03
极大值原理
极大值原理的概述
极大值原理是现代控制理论中的基本原理之一,它为解决最 优控制问题提供了一种有效的方法。该原理基于动态系统的 状态和性能之间的关系,通过寻求系统状态的最大或最小变 化,来达到最优的控制效果。
在最优控制问题中,极大值原理关注的是在给定的初始和终 端状态约束下,如何选择控制输入使得某个性能指标达到最 优。它适用于连续和离散时间系统,以及线性或非线性系统 。
最优控制问题的最大原理

最优控制问题的最大原理在控制论中,最优控制问题是一个重要的研究领域。
最优控制是指在给定系统和控制目标的情况下,找到使系统达到最佳性能的控制策略。
最大原理是解决最优控制问题的核心思想之一。
本文将介绍最优控制问题以及最大原理的概念、应用和实现过程。
一、最优控制问题的概述最优控制问题是在数学优化领域中的一个重要问题。
其目标是通过选择合适的控制输入,使系统的性能指标达到最优。
最优控制问题可以分为静态最优控制和动态最优控制两类。
静态最优控制是在给定时间段内,找到一个控制策略使得系统性能指标最优。
动态最优控制则是在一段时间内,找到一个最佳控制策略使得系统在整个过程中的性能指标最优。
二、最大原理的概念最大原理是最优控制问题中的一个基本概念。
它认为在最优控制问题中,系统的状态和控制变量满足一定的最大原理方程。
最大原理方程是通过构建系统状态的Hamilton-Jacobi-Bellman方程得到的。
最大原理方程可以用来确定最佳控制策略,将最优控制问题转化为一个求解偏微分方程的问题。
三、最大原理的应用最大原理在最优控制问题中有着广泛的应用。
例如,在经济学中,最大原理可以用来确定最优的资源分配策略,以最大化经济效益。
在工程控制中,最大原理可以用来设计最优的控制系统,以最大限度地提高系统的性能。
在交通流量控制中,最大原理可以应用于交通信号灯的优化控制,以最大程度地减少交通拥堵。
四、最大原理的实现过程最大原理的实现过程是一个复杂的数学优化问题。
通常需要使用数学工具和算法进行求解。
其中一个常用的方法是动态规划法。
动态规划法将最优控制问题分解为一系列子问题,并通过递归的方式求解每个子问题,最终得到最优的控制策略。
另一个常用的方法是最优化算法,如最速下降法、牛顿法、共轭梯度法等。
这些算法可以通过迭代的方式求解最优控制问题。
总结:最优控制问题是控制论中的一个重要研究领域,最大原理是解决最优控制问题的核心思想之一。
最大原理通过构建系统状态的Hamilton-Jacobi-Bellman方程,可以用来确定最佳控制策略。
高宏第三章 最优控制

第三章 最优控制(上)-变分法第一节 动态优化简介一、静态优化问题如果一个企业要确定一个最优产出水平x *以最大利润()F x :0max ()x F x ≥ (1)这样的问题的解通常将是一数,即确定选择变量的单个最优值。
最优值常可由一阶条件()0F x *'=确定。
动态问题是多期(multiperiod )的,但是并不是有多期的时间就是动态问题.................。
考虑企业的多期决策问题:1max (,)Tt t F t x =∑ (2)(0,1)t x t T = 描述的是每阶段的产出组成的序列,即给出了一个产出的时间路径。
显而易见,总利润不是由单期的产出决定,而是由整个的产出的时间路径确定,所以要使利润最大化,实质上是要找到一条最优的路径(而不是单个期的t x )。
但由于t 期利润只与t 期的产出有关,所以要在整个时间序列内最大化利润,就只要分别在每一期最大化利润即可,即这一个问题的解是一个有T 个数的集合,1{,}T x x ** 。
所以由于任一产量只影响该期利润,问题(2)实际上是一系列的....静态问题,即在每一期选择当前产量使该期利润最大化。
问题(2)有类似的T 个一阶条件,各期的一阶条件之间没有联系。
在Ramsey 模型的竞争性均衡结构中,生产者问题就具有这样的性质。
二、动态问题具有动态性质的问题是,当前的产出不但影响到当前的利润,还影响到未.....来.的利润。
更为一般地来说,当前决策影响未来决策。
11max (,,).. 0,1Tt t t t F t x x s t x t T-=≥=∑0x 给定或0(0)x x = (3)在问题(3)中,每一期的利润不但取决于当前产量,还与过去的产量有关;换句话说,t 期选择的产量t x 不但影响t 期的利润,还会影响到以后的利润。
注意,上述问题中已指定了0x 。
0x 影响到了以后各期的利润(从而也影响到总利润)。
问题(3)与问题(2)不同,它的最优解的T 个一阶条件不能分别确定,而是要同时确定,也就是我们实际上要“一次性”确定一条最优路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2.1.5)
其中,
(2.1.6)
*
7
(2)边界条件为
(2.1.7)
(2.1.8)
(3)哈密顿函数H对控制变量U(t) (t0t tf)取极小值,即
(2.1.9)
定理1.6.1是在控制变量u(t)不受约束的情况下,求最优控 制函数U*(t) ,使哈密顿函数(2.1.6)达到极小值。这也是在 控制函数U(t)不受约束或只受开集性的约束的情况下的最小 值原理。 显然,控制方程(2.1.9)也可以写成如下形式
则为将系统从给定的初态X(t0)=X0 转移到终端时刻tf固定,终端 状态X(tf)自由的某个终态,并使性能泛函
*
6
达到极小值的最优控制应满足的必要条件是 (1)设U*(t)是最优控制, X*(t)是对应与U*(t)的最优轨线,则
必存在一与U*(t)和X*(t)相对应的n维协态变量(t),使得X(t)与 (t)满足规范方程
于闭集性约束的边界时,古典变分法便不再适用了。
(2)在应用古典变分法来求解最优控制问题时,要求函数
[X ( tf ) ,tf ], L[X(t),U(t),t] , f [X(t), U(t) ,t] 对它们的自变量
具有“充分”的可微性,特别要求H/U(t)有定义,于是,类 似
这样的性能泛函数就被排除在外了。但是在燃料最优 控制问题中,这类性能泛函却是无法避免的。
则必存在一与U*(t)和X*(t)相对应的n维协态变量(t),使得 X*(t)和(t)满足规范方程
式中H是哈密顿函数,且为 (2)边界条件为
*
11
(3)哈密顿函数在最优控制U*(t)和最优轨线X*(t)上达到最小 值,即
说明: (1)由于定理2.1.1的中心内容是,使性能泛函(2.1.3)达到 最小值的最优控制的必要条件是哈密顿函数H达到最小值, 所以,该定理称为最小值原理。
给定系统的状态方程
和初态X(t0)=X0, 而终端时刻tf固定,终端状态X(tf)自由以及 控制变量U(t)所受约束条件是
则为将系统从给定的初态X(t0)转移到某个终态X(tf) ,并使性 能泛函
达到极小值的最优控制应满足的必要条件是:
*
10
(1) 设U*(t)是最优控制, X*(t)是对应于U*(t)的最优轨线,
*
5
X(tf)的过程中,性能泛函
(2.1.3) 达到极小值。其中L是连续可微的标量函数。
这个积分型最优控制问题所确定的控制U(t)称为最优控制, 记为U*(t)。
如果不考虑式(2.1.2)的约束条件,那么该最优控制问题 的解的必要条件可由第一章的定理1.6.1给出,现引述如下:
定理1.6.1 设系统的状态方程为
(2)一个函数的最小值点与该函数反号后的最大值是一致 的。所以,若令哈密顿函数为
则下列二式
*
12
和
的结果是一致的,只是二式中的协态变量(t)是互为反号的。
定理2.1.2 (积分型最优控制问题的最大值原理) 给定系统的状态方程
和初态X(t0)=X0, 而终端时刻tf固定,终端状态X(tf)自由以及控 制变量U(t)所受约束条件是
*
3
• 二.最大值原理和动态规划
为了解决古典变分法在求解最优控制问题中所暴露出来 的上述问题,许多学者进行了各种探索。其中以苏联学者庞 特里雅金(Л.C.ПoHTpЯГИH)的最大值原理(或最小值原理) 与美国学者贝尔曼(R.E.Bellman)的动态规划较为成功,应 用也较广泛,现已成为求解最优控制问题的强有力的工具。
•最优控制最大值原理
主要内容
• §2.1 最大值原理的提出 • §2.2 最大值原理的证明 • §2.3 一般型最优控制问题终端时刻tf
可变的情况 • 课外习题
返回目录
*
2
• 一、 古典变分件 利用如下形式的不等式来表示.
即 当控制函数U(t)受到上述不等式约束,并且最优控制取决
(2.1.10)
*
8
说明: (1)当控制函数U(t)不受约束或只受开集性约束条件下, 控制方程(2.1.9)和(2.1.10)是等价的。
(2)在控制函数U(t)受到式(2.1.2)所表示的闭集性约束的 条件下,控制方程(2.1.9)未必是最优控制问题的解的必要 条件之一。
a.因为
b.作为控制变量U(t)的函数的Hamilton函数H [ X(t),(t),
U(t),t]在闭子集内可能不存在极值点,而企图以H/U 来 求极小值点也是难以奏效的。
因此,在控制函数U(t)受到式(2.1.2)那样闭集性约束 的条件下,控制方程(2.1.9)不再是由式(2.1.1)~式( 2.1.3)所给定的最优控制问题解的必要条件了。
*
9
但是,控制方程(2.1.10)总是成立的,它仍然是由式(2.1.1) ~式(2.1.3)所给定的最优控制问题解的必要条件 。 定理2.1.1 (积分型最优控制问题的最小值原理)
则为将系统从给定的初态X(t0)转移到某个终态X(tf) ,并使性能 泛函
*
13
达到极小值的最优控制应满足的必要条件是:
(1)设U*(t)是最优控制, X*(t)是对应于U*(t)的最优轨线,则
必存在一与U*(t)和X*(t)相对应的n维协态变量(t),使得X*(t) 和(t)满足规范方程
在这一章里,首先通过积分型最优控制问题提出最大值 原理,然后再推广到复合型最优控制问题中,然后利用增量 法对最大值原理进行证明。
*
4
§2.1 最大值原理的提出
• 2.1.1 积分型最优控制问题
问题2.1.1(积分型最优控制问题) 给定系统的状态方程:
(2.1.1) 其中,f是n维连续可微的向量函数;X(t)是n维状态变量,其 初态X(t0)=X0, 而终态应满足的条件是:终端时刻tf固定,终 端状态X(tf)自由,U(t)是m维控制变量,其所受约束条件是
(2.1.2) 其中,是以U(t)为元素的m维实函数空间中的一个闭子集。 式(2.1.2)表明,控制变量是这个闭子集中的元素。满足式 (2.1.2)约束条件的控制变量称为容许控制变量,简称容许控 制。要求在满足式(2.1.2)的容许控制中,确定一控制变量 U(t),使系统(2.1.1)从给定的初态X(t0)转移到某个终态