最优控制笔记
《最优控制》第4章线性系统二次型性能指标的最优控制问题

1 T 1 T e ( t ) Q ( t ) e ( t ) X (t )Q(t ) x(t ) 以零状态为平衡状态 2 2 1 T 1 T ②输出调节器 e (t )Q(t )e(t ) y (t )Q(t ) y (t ) 2 2
<输出调节器可转化为状态调节器> y(t ) c(t ) x(t )
第4章——线性系统二次型性能指标的最优控制问题
(t ) (22 F12 )1( F11 21) x(t )
可以证明 (22 F12 )1 存在 因此, (t )与X (t ) 呈线性关系,可表示为 (t ) P(t ) x(t ) 则
u * (t ) R 1(t ) BT (t ) P(t ) x(t )
(微分方程解的存在性和唯一性定理)
* * * * x1 x2 即x1 x2
16
第4章——线性系统二次型性能指标的最优控制问题
5.总结 状态调节器控制规律 u * (t ) R 1 (t ) BT (t ) P(t ) x(t ) 其中P(t)满足下面的矩阵黎卡提微分方程及边界条件
⑤状态方程
x Qx AT
1 T 1 T x x Ax BR B A BR B x T T Qx A Q A
x(t0 ) x(t ) (t ) (t , t0 ) (t ) 0
3 Q(t ), R(t ) 加权矩阵 Q(t )半正定,R(t )正定且均为时变 1 T 4 e (t f ) Fe(t f ) 突出对终端的误差的要求 2 特别要求终端固定,即e(t f ) 0时,F
5
最优控制6-1

(6-6) (6-7)
其工作特点是:最大限度地提高该阶段的收益,不考 虑回收问题。
17
若阶段数N=2,则第二阶段的工作方式与N=1时相同,即 不需考虑回收。 为使两个阶段的总收益最大,对第二阶段来说,不论在 第一阶段资源如何分配,即 y0 如何选取,要求其回收 量 ay0 b(x0 y0 ) 在第二阶段发挥最大效用 也就是说,第二阶段的最大收益应是:
解 由(6-3)式可以看出,这是一个求N元函数极值点的问 题。
1)若整体最大值位于(6-4)式限定的区域内部,即所有 yi 满足不等式 0 yi xi ,且g和h存在导数,则所有可通 过解下列方程组求出:
g( yN1) g( yN1) h(xN1 yN1)
13
希望通过合理选择使N个阶段的总收益最大,即:
max RN (x0 , y0 , y1,, yN1)
( y0 , y1,, yN 1 )
max g( y0 ) h(x0 y0 ) g( y1) ( y0 , y1,, yN 1 ) h(x1 y1) g( yN1) h(xN1 yN1)
6-1 所示。
5
站与站各地间凡有连线者,表示相应两地可铺设管 道,线间数字表示两地距离;凡无连线者,表示相应两 地不能铺设管道。现需选择一条由A0 到A6 的铺管线路, 使其总距离最短。
6
解 这一问题可用两种方法求解。 第一种:穷举法 即列出所有可能的组合方案,计算每 一方案的起迄距离,从中选出其总距离最短者,即得最 短铺管线路。
(6-1)
现设以y0与x0-y0投入生产A与B后,可以部分回收,其回 收率分别是 0 a 1 与 0 b 1 ,则经第一阶段生产 后回收的资源总共是:
最优控制内容要点

④ 性能指标
反映和评价系统性能优劣的指标。
tf t0
J [[ x (t f ), t f ] f [ x (t ), u (t ), t ]dt
性能指标值的大小依赖于控制作用的整体u(· )的选择, 而不是取决于控制u(t)在t时刻的值;因此J[u(· )]是控制函 数u(· )的函数(称为u(· )的泛函)。
5
习题
1.求使 min f ( X ) 4x12 5x2 2 , 且 g ( X ) 2x1 3x2 6 0
2.求原点到曲线 y 2 ( x 1) 3 0 的距离为最小。 3.求函数极值 f ( X ) x1 2 x2 2 x3 2,若 ( x1 x2 )2 x32 1
t* f
2.tf和x(tf)受c(tf)曲线约束 x(t0)=x0
* x(t * ) c ( t f f ) L c(t ) x(t ) L 0, x
3. tf自由,x(tf)固定 x(t0)=x0和x(tf*)=xf
L (t ) Lx 0, x t t* f
( x , x , t ) m
引入矢量拉格郎日乘子λ(t)=[λ1(t) λ2(t) …λm(t)]T将微 分方程约束条件结合到性能泛函中构成一个新泛函,即
15
, t ] λ TΛ[x, x , t ] dt J' L[x, x
t0
tf
于是,在微分方程组约束下求泛函的条件极值问题,只 需用拉格朗日乘子法将有约束条件问题转化为无约束条件问 题来解决。假设函数x1(t),x2(t),…,xn(t) ,λ1(t), λ2(t), …, λm(t)使泛函J'取极值,那么这n+m个函数必须满足下面 n+m个欧拉方程:
最优控制笔记整理

1.性能指标按其数学形式可分为如下三类:1)积分型性能指标L[x(),(),]ft t J t u t t dt =⎰拉格朗日问题。
2)终值型性能指标[x(),]f f J t t ϕ=这种性能指标只是对于系统在动态过程结束时的终端状态提出了要求,而对于整个动态过程中系统的状态和控制的演变未作要求。
这样的最优控制问题为迈耶尔问题。
3)复合型性能指标[x(),]L[x(),(),]ft f f t J t t t u t t dt ϕ=+⎰这样的最优控制问题为波尔扎问题。
通过适当变换,拉格朗日问题和迈耶尔问题可以相互转换。
2.按控制系统的用途不同,所选择的性能指标不同,常见的有:1:最小时间控制01ft f t J t t dt =-=⋅⎰2:最小燃料消耗控制|()|ft t J u t dt =⎰控制量u(t)与燃料消耗量成正比3:最小能量控制2()ft t J u t dt =⎰控制函数u 2(t)与所消耗的功率成正比3. J(x)取极小值的充分条件为正定(>=0) ,反之则极大4. J(x)取极值的必要条件为:欧拉方程0Ld L xdtx∂∂∂∂-=横截条件5. t 0和t f 给定,x(t 0) 或x(t f )未给定时横截条件:(1)给定x(t 0) 或x(t f )222222L L x xx L L x xx ∂∂∂∂∂∂∂∂∂∂⎡⎤⎢⎥⎢⎥⎣⎦横截条件为:x(t 0)=x 0或x(t f )=x f (2)自由x(t 0) 或x(t f )00L t x∂∂= 或0f Lt x∂∂= 那个自由(为给定),那个偏导为0.6. 始端时刻t 0给定, x(t 0)固定或约束;而终端时刻t f 自由,终端状态x(t f )自由或约束,x(t)不受任何方程约束时的横截条件:7.当x(t)受状态方程约束时,设系统状态方程:(,,)x f x u t = 性能指标:0[(),](,,)ft f f t J x t t F x u t dt ϕ=+⎰满足极值所需条件: H=L+T λ f(1)欧拉方程(伴随方程) H xλ∂=-∂ (2)状态方程H xλ∂=∂ (3)控制方程0Hu∂=∂ (4)横截条件:初始时刻t 0及始端状态x(t 0)给定t f 自由终端x(t f )自由或者约束 ; 若x(t f )自由则无N 方程,若x(t f )固定则无()f t λ方程8. 极小值原理设系统的状态方程为()[(),(),]xt f x t u t t = 控制u(t)满足不等式约束: [(),(),]0G x t u t t ≥ 末端约束:[(),]0ff N x t t =f()()[ff t t N H t t ϕμ=∂+=-∂()()[t f f t f N t x ϕμλ∂+=∂()性能指标:0[(),]L [(),(),]ft f f t J x t t x t u t t dt ϕ=+⎰求解过程:(1).沿最优轨线满足正则方程()T H xH G x x λλ∂=∂∂∂=--Γ∂∂(2)横截条件及边界条件:(3)在最优轨线x*(t)上与最优控制u*(t)相对应的H 函数取绝对极小值,即:9.设离散系统的状态方程为:)1,,2,1,0(]),(),([)1(-==+N k k k u k x f k xk 表示时刻t k ,终端时刻t f =t N .设初始状态x(0)=0,终端时刻t N 给定,终端状态x(N)自由.系统性能指标为: ∑-=+=1]),(),([]),([N k k k u k x L N N x J ϕ要求寻找最优控制u*(k),使性能指标J 为极小. 求解过程:(1)列出哈密顿函数)1,,2,1,0(]),(),([)1(]),(),([]),1(),(),([-=++=+N k k k u k x f k k k u k x L k k k u k x H Tλλ(2)正则方程1,,2,1,0,)1(]),1(),(),([)1(1,,2,1,0,)(]),1(),(),([)(-=+∂+∂=+-=∂+∂=N k k k k k u k x H k x N k k x k k k u k x H k λλλλ(3)边界条件与横截条件:)(]),([)(0)0(N x N N x N x ∂∂==ϕλ(4)控制方程:00(()[]([(,,,)]0()[(),]0f f ft t t t f f N t xN H x u t t x t x N x t t ϕμλϕμλ==∂+=∂∂++=∂==))*****(,,,)(,,,)H x u t H x u t λλ≤()TH G u u ∂∂=-Γ∂∂无这个方程1,,2,1,0,0)(]),1(),(),([-==∂+∂N k k u k k k u k x H λ当u(k)有不等式约束时]),1(),(),([min ]),1(),(),([**)(***k k k u k x H k k k u k x H k u +=+Ω∈λλ。
11讲 最优控制-极小值-总结及习题讲解

能源与动力学院系统控制与仿真研究室
16
最优控制——极小值原理 最 控制 值原 3.2 连续定常系统极小值原理
能源与动力学院系统控制与仿真研究室
17
最优控制——极小值原理 最 控制 值原 3.2 连续定常系统极小值原理
极小值原理与变分法求最优控制的比较
能源与动力学院系统控制与仿真研究室
18
最优控制——极小值原理 最 控制 值原 3.2 连续定常系统极小值原理
33
最优控制——极小值原理 3.4 极小值原理的典型应用
月面软着陆问题
h
v g
月球
能源与动力学院系统控制与仿真研究室
34
最优控制——极小值原理 3.4 极小值原理的典型应用
能源与动力学院系统控制与仿真研究室
35
最优控制——极小值原理 3.4 极小值原理的典型应用
时间-燃料最优控制
能源与动力学院系统控制与仿真研究室
能源与动力学院系统控制与仿真研究室
7
最优控制——极小值原理 最 控制 值原 3.2 连续定常系统极小值原理
能源与动力学院系统控制与仿真研究室
8
最优控制——极小值原理 最 控制 值原 3.2 连续定常系统极小值原理
能源与动力学院系统控制与仿真研究室
9
最优控制——极小值原理 最 控制 值原 3.2 连续定常系统极小值原理
能源与动力学院系统控制与仿真研究室
27
最优控制——极小值原理 3.4 极小值原理的典型应用
能源与动力学院系统控制与仿真研究室
28
最优控制——极小值原理 3.4 极小值原理的典型应用
能源与动力学院系统控制与仿真研究室
29
第七章 最优控制:最大值原理

(7.39)
H
2
u
2
2 0
u (t )
的解是最大化 H
例1 最大化
满足 y y u 和 y (0 ) 1
V
1 0
u dt
2
y (1) 0
汉密尔顿函数: H u 2 ( y u )
0
H t , y
(T ) y T ( 0 ) y 0
的第一项对 求导,得:
T ( ) 0
(7.28)
H H q ( t ) dt H y q (t ) p (t ) u y
f (t , y , u ) H
以上两个方程右边相同,因此左边相等:
y
推导得到最大值 原理的条件之一
以上推导得到:
H ( t , y , u , ) y ( t ) dt ( T ) y
T 0
T
(0) y0
步骤3 推导新目标泛函 的另一种形式
推导得到最大值原 理的一般横截条件
第二节 其他终结条件
一般横截条件:
H t T T
(T ) y T 0
(7.30)
y
y Z
• 固定终结点的横截条件:
y (T ) y T
(T 和
y T 给定)
水平终结线的横截条件:
[ H ]t T 0
t
0
T
T2
T
第6章 最优控制

1 (t ) x2 (t ) 0 x 2 (t ) u (t ) 0 x
根据边界条件:
x1(0) 1 ,x2 (0) 1 ,x1(2) 0,x2 (2) 0
可解出各待定系数为:
7 a1 3,a2 ,a 3 1,a4 1 2
解:
u a1t a2
刻 T 不固定,终端状态 x(T ) 也不固定,但又必须满足
x(T ) (T )这一约束条件时,终端条件变为横截条件,
即:
F x ) 0 F ( t T x
6.2.4 多元泛函的极值问题
设泛函为:
1, x 2 ,, x n , x1, x2 ,, xn , t )dt J F (x
T
0
) dt (1 x
2
x(t ) 2 t
x(0) 1
其中:F (1 x 2)
T
t
由欧拉方程有
x (t )
2) F (1 x
d 0 dt 1 x
x
F d F 0 x dt x
x(0) 1
x(t ) 2 t
x 1 x
边界条件为:
x1(0) 1 ,x2 (0) 1 ,x1(2) 0,x2 (2) 0
引进乘子: (t ) 1 (t ) 2 (t )T 构造一个新的函数:
1 2 1 x2 ) 2 ( x 2 u ) F F f u 1 ( x 2
* T
y ( x 3)2
求当 x 取何值时, y 有极小值。这一问题的解答结果是一个数值, y 即当 x 时, 有极小值 0。 3 在最优控制中,目标函数J是 u 的函数,而 u 又是时间t的 函数。所以和上述问题不同,最优控制的解答结果是一个函数而 不是一个数值。例如
最优控制理论考试重点

1.最优控制问题的性能指标(1)积分型性能指标(拉格朗日型):⎰=ft t dt t t u t x L u J 0]),(),([)(反映控制过程偏差在某种意义下的平均或控制过程的快速性,同时能反映燃料或能量的消耗。
(2)末值型性能指标(梅耶型):]),([)(f f t t x u J φ=,接近目标集程度,即末态控制精度的度量。
(3)综合性能指标(鲍尔扎型):⎰+=ft t f f dt t t u t x L t t x u J 0]),(),([]),([)(φ。
2.最优控制问题的数学模型给定系统的状态方程:]),(),([)(t t u t x f t x =•;状态方程的边界条件:⎩⎨⎧∈===St x t t x t x t t f f )(,)(,000;给定性能指标:⎰+=ft t f f dt t t u t x L t t x u J 0]),(),([]),([)(φ;允许控制域u(t):U t u ∈)(。
3.最优控制应用的几种类型:最短时间控制,最小能量控制,线性调节器,最少燃料消耗控制,线性跟踪器。
4.选取性能指标注意:应能反映对系统的主要技术条件要求,便于对最优控制进行求解,所导出最优控制易于实现。
5.边界条件:指状态向量在起点或终点的所有容许值的集合。
6.横截条件:依据性能指标的要求,从容许值的集合中选择哪一点作为始态或终态的问题。
1.泛函:对于某一类函数y(·)中的每一个函数y(x),变量J 都有一个值与之相对应,那么变量J 称作依赖于函数y(x)的泛函。
记为:J=J[y(x)],y(x)称为泛函的宗量。
宗量的变分:)()(0x y x y y -=δ。
2.泛函的连续性:对任意给定的正数ε,总存在另一个正数δ,当,...)()(,...,)()(,)()()()(000δδδ<-<-<-x y x y x y x yx y x y k k 时,ε<-)]([)]([0x y J x y J ,则称泛函J[y(x)]在点y 0(x)处是连续的,而此时y(x)与y 0(x)具有k 阶接近度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优控制又叫动态优化工程技术领域里的过程(物理过程或化学过程),通常都是可以控制的过程控制:使过程的发展变化按人们的需要进行动态优化问题的四个要素:1.建立过程的动态模型(动态系统的状态方程)2.指定所需的初始状态和结束状态(状态方程的边界条件)3.确立在可行控制策略4.性能指标动态系统的变化,可以看成对应状态的变化,其中每一个状态对应着n维状态空间中的一个点,系统的运动将在状态空间中画出一条状态曲线动态系统的状态方程:1.是对研究对象的动态数学建模2.体现了系统运动时应遵循的规律,反映了系统的动态特征3.一般是微分方程组描述状态方程f[x(t),u(t),t]的数学性质:1.f[x(t),u(t),t]是向量函数,维数与状态变量维数相同2.f[x(t),u(t),t]是关于x(t)/u(t)/t的连续函数3.f[x(t),u(t),t]是关于x(t)/t的连续可微函数4.u(t)是关于t的分段连续函数,只有有限个第一类间断点系统的初始时刻t0和初始状态x0一般都是已知的系统的结束时刻tf:固定或者不固定系统的结束状态xf:全部固定/全部不固定/部分固定性能指标:1.要根据实际任务确定,例如过程持续的时间最少/过程消耗的能量最少/成本最小/利益最大等等2.种类:终值型/积分型/复合型,它们都是关于x(t)/t的连续可微函数最优控制一定是容许控制,即最优控制策略(最优控制函数)在控制函数空间中的一个子集中选择当最优控制轨迹确定后,通过系统的状态方程,可以确立对应的最优状态轨迹现代控制理论相对于经典控制理论的优点:1.从时不变系统延伸到时变系统2.从单输入单输出系统延伸到多输入多输出系统3.从频域回到时域,采用能够揭示系统内部各状态变化规律的状态空间描述法最优控制理论属于现代控制理论的分支从数学角度来看,最优控制问题本质上是求泛函极值的变分学问题变分法分为古典变分法和现代变分法(最大值原理/动态规划)古典变分法只能解决容许控制集为开集的最优控制问题实际最优控制问题的容许控制集都是闭集,可以用现代变分法解决函数分为两类:普通函数和泛函普通函数随自变量t变化有确定值对应泛函随普通函数(称为泛函的宗量函数)的形式变化有确定值对应,t已确定或不产生影响复合函数也是普通函数,随自变量t变化有确定值对应具有某些相同特征的所有函数组成一个函数类,或称函数空间在函数空间内,每一个函数(形式不同的)成为函数空间的一个点,例如sin(x)和sin(2x)是正弦函数空间的两个点泛函宗量的变分:1.同一函数空间中的两个函数的差(t已确定或不产生影响)2.宗量的变分仍然是一个普通函数3.这里“变分”的意思是改变量宗量的维数为m时,则宗量的变分在m维函数空间中进行,其中每一维函数空间各自是具有某些相同特征的函数类两个普通函数k阶相近的定义,从几何上来看就是曲线的相似程度两个普通函数间的k阶距离定义,从几何上来看就是曲线的差异程度m维函数空间中,与点[x0(t),x1(t),...xm(t)]距离相同的点构成m维空间中的一个球面泛函k阶连续的定义(利用两个普通函数间的k阶距离来定义)线性泛函的定义:满足齐次性与可加性泛函的变分:1.是泛函增量的关于宗量变分的线性主部2.是关于宗量变分的线性连续泛函3.仍然是一个泛函4.泛函的变分是唯一的5.这里变分的意思相当于普通函数的微分泛函变分的计算公式,是关于宗量变分的泛函,也是关于alpha的普通函数,从普通函数极值条件出发推导得到泛函极值条件求普通函数的极值,必要条件是:极值在稳定点获得,稳定点即普通函数导数为0的点求泛函的极值,必要条件是:极值在泛函变分为0的点取得Lagrange/Mayer/Bolza形式指标的相互转换欧拉--拉格朗日方程的推导过程欧拉--拉格朗日方程是一个二阶微分方程欧拉--拉格朗日方程成立的前提:1.宗量函数对自变量的二阶导数存在2.积分函数二阶连续可微欧拉--拉格朗日方程的能积分出最优解的特殊情况含有多个宗量函数的欧拉--拉格朗日方程组形式等式约束条件下的泛函极值问题采用拉格朗日乘子思想等式约束下的多变量普通函数极值问题,拉格朗日乘子是m维常向量等式约束下的泛函极值问题,拉格朗日乘子是m维普通函数,称为协态变量拉格朗日乘子法的步骤:原问题-->辅助泛函-->解等式约束+欧拉方程-->用边界条件确定未知系数-->判断极大/极小/鞍点等式约束下的泛函极值问题中,拉格朗日乘子(本质上是普通函数)的欧拉方程就是原问题的等式约束条件对于最优控制问题,控制函数u(t)和状态函数x(t)都看成是泛函的宗量,系统的动态方程作为等式约束条件Hamilton函数是泛函,其t的范围由x(t)/u(t)中的t范围确定,可以看成是mayer型泛函Hamilton函数的作用:积分型泛函J对u(t)的等式约束条件极值问题,转换成H对u(t)的无约束条件机制问题Hamilton函数方法解决最优控制问题,是基于必要条件,而不是充分条件Hamilton函数沿着最优空之轨迹和最优状态轨迹,对时间t的全导数等于偏导数当Hamilton函数不显含t时,H是不依赖于t的常数基础数理化:数学是理路,物理和化学是实践;工程中的物理和化学变化过程都是可控的;过程:与时间有关,随着时间推荐的变化,又叫动态过程;动态过程的数学模型又称状态方程,为OEDs或者DAEs形式对一个过程实施控制往往可以选择的策略不唯一,为了使得任务完成得最好,需要选择最优控制策略;最优的意义:根据任务确定的技术或者经济指标,可以是时间上最快、能量上最省、成本最低、利润最大等;状态微分方程f[x(t),u(t),t]是关于u(t),x(t),t的连续函数,是关于x(t),t的连续可微函数,u(t)只有有限个第一类间断点;状态、状态空间、动态系统的变化过程对应于状态空间中的点运动轨迹、点运动轨迹的起始点和结束点就是状态方程的边界条件;系统的初始时间t0和初始状态x0通常是给定的;系统的结束状态根据结束时间tf是否固定和结束状态是否固定可分为6种情况;性能指标的类型:终值型(Mayer型)、积分型(Lagrange型)、复合型(Bolza型;)终值型(Mayer型)是x(t),t的连续可微函数;积分型(Lagrange型)是u(t),x(t),t的连续函数,是x(t),t的连续可微函数,u(t)只有有限个第一类间断点;注意终值型(Mayer型)指标中不含u(t);最优控制轨迹往往在m维控制函数空间的一个子集omiga中选择;经典控制论的特点:针对SISO、线性、时不变(定常)、集中参数系统,以laplace变换作为分析工具,频域内;现代控制论的特点:针对MIMO、非线性、时变、分布参数系统,以状态空间分析方法为分析工具,时域内分析;对系统的状态空间描述,最大好处在于能够反映系统内部各状态变量之间的关系;最优控制理论属于现代控制理论的一部分;最优控制问题在数学上来说属于求泛函极值的变分学领域;古典变分法的局限性:只能处理u(t)无约束或者为开集的泛函极值问题;现代变分学的两个代表:最大值原理(苏联,Pontryagin提出)和动态规划(美国,Bellman 提出);现代计算机的发展推动了控制理论和优化理论的发展与应用,增加了基于计算的科研活动方式;函数分为一般函数和泛函两类;一般函数:自变量形式唯一,当自变量确定为某一值时,函数值也随之确定;泛函:自变量形式和取值(范围)已经确定,当宗量函数形式确定时,泛函值也随之确定;复合函数属于一般函数;终值型泛函中,tf能被确定,所以泛函值取决于终值型泛函的宗量形式;积分型泛函中,被积函数往往是u(t),x(t),dx(t)/dt,t的函数,u(t),x(t)都属于积分型泛函的宗量;积分型泛函中,由于宗量的维数大于1:宗量为u(t),x(t),且各自维数也可能大于1,所以积分型泛函属于多维泛函(宗量为多维,在多维函数空间内取值);Hamiltonian属于多维泛函,自变量取值范围为t0~tf,宗量包括控制函数u(t),状态函数x(t),协态函数y(t);函数空间:具有相同性质的函数类(按函数不同形式区分函数类中的单个函数),构成了一维函数空间(一根轴),每个属于该函数类的具体形式函数都是该一维函数空间(轴)上的一个点;宗量函数的变分deltax(t):是同一函数类中两个一般函数的差,或者说是某一维函数空间中两个点之间的距离,本质上仍然是一个一般函数;一般函数相近的几何意义:曲线形态相似;泛函连续性的定义及与宗量函数相近(宗量函数的变分趋于0)的关系;线性泛函的定义:满足针对宗量函数的齐次性和可加性(将宗量看成一般函数的自变量);泛函变分detalJ[x(t)]:是泛函增量关于“宗量函数变分”的线性主部,是关于“宗量函数变分”的线性连续泛函,本质是泛函;泛函的变分具有唯一形式;求一个泛函的变分不直接使用定义,而用偏导数方法获得,这与一般函数的微积分知识相似;泛函达到极值的必要条件:泛函在宗量函数x*(t)处的变分为0,有三种情况:非极值,极大值,极小值;古典变分法中的欧拉方程由积分型泛函变分为0的必要条件推出,所以欧拉方程也是泛函达到极值的必要条件;欧拉方程本质上是一个二阶偏微分方程;欧拉方程成立的前提是:L[x(t),dx(t)/dt,t]对宗量函数x(t)、宗量函数的导数dx(t)/dt、自变量t存在二阶偏导数;注意L[x(t),dx(t)/dt,t]本身不能称为泛函(自变量的值没有给定),也不能称为宗量函数(宗量函数是x(t));欧拉方程可以求解的条件:L[x(t),dx(t)/dt,t]中不显含x(t)、dx(t)/dt、t三者其一或其二;宗量函数为向量函数时,欧拉方程也成为向量二阶偏微分方程(二阶偏微分方程组);phi(tf)这条终端曲线实际靠测试获得,并作为已知曲线;横街条件反应的是:极值曲线终端斜率与给定曲线斜率之间的关系横街条件成立的前提:L[x(t),dx(t)/dt,t]对宗量函数x(t)、宗量函数的导数dx(t)/dt、自变量t存在二阶偏导数;phi(t)对自变量t存在一阶偏导数;终端点可变情况下,泛函极值的必要条件共有两个:欧拉方程、横街条件;Lagrange型泛函的一阶变分和二阶变分的表达式;泛函极值属性的判断需要借助二阶变分表达式,它是一个对称函数矩阵;涉及到最优控制问题时,最优状态轨迹不仅要使目标函数最优,更重要的是满足系统的状态方程;系统的状态方程(等式)可以看成是求泛函极值问题时的微分等式约束;带等式约束的泛函极值问题,处理思想和一般函数的等式约束极值问题思路一样,采用拉格朗日乘子法思想;带等式约束的泛函极值问题,拉格朗日乘子是一般函数(一般函数的等式约束极值问题中,拉格朗日乘子是常数);带等式约束的泛函极值问题,与一般函数的等式约束极值问题相比,梯度为0的必要条件进化成为变分为0(欧拉方程的满足);带等式约束的泛函极值问题,原等式约束可以视为F[x(t),dx(t)/dt,lamda(t),t]对宗量函数lamda(t)的欧拉方程;利用古典变分法求解最优控制问题,是将控制函数u(t)和拉格朗日乘子函数lamda(t)都作为泛函的宗量函数;Hamiltonian的作用是将dx(t)/dt从F[u(t),x(t),dx(t)/dt,lamda(t),t]中分离出去,它们的关系是:H[u(t),x(t),lamda(t),t]=F[u(t),x(t),dx(t)/dt,lamda(t),t]-lamda(t)dx(t)/dt正则方程组的推导既可以从F[u(t),x(t),dx(t)/dt,t]的欧拉方程推导,也可以直接从变分=0的必要条件推导(欧拉方程从变分=0的必要条件中推导出来);推导tf固定、tf自由时的最优控制问题必要条件时,辅助函数的做法:终态约束等式约束放在积分号外面,状态方程等式约束放在积分号里面;tf固定时的三种情况:x(tf)固定(仅需要欧拉方程无需横截条件)属于x(tf)自由的特殊情况,x(tf)自由又属于x(tf)受约束的情况;tf自由时的三种情况:x(tf)固定(仅需要欧拉方程无需横截条件)属于x(tf)自由的特殊情况,x(tf)自由又属于x(tf)受约束的情况;tf固定又属于tf自由时的特殊情况,仅缺少关于最优时间的方程,所以6种情况最终都可以归类为tf自由、x(tf)受约束的情况处理;Hamiltonian沿着最优控制轨迹和最优状态轨迹(即H[u(t),x(t),lamda(t),t]中的u(t),x(t),lamda(t)都在最优轨迹上取值)时,对时间的偏导数等于对时间的全导数;以上性质说明:沿着最优控制轨迹和最优状态轨迹时,若Hamiltonian不显含t,则Hamiltonian为常数;不等式约束泛函极值问题?古典变分法要求u(t)属于一个全函数空间或者一个函数空间中的开集;现代变分法从实际出发,u(t)可以属于一个函数空间中的闭集;现代变分法中的代表:极小值原理(苏联,Pontryagin)和动态规划(美国,Bellman)极小值原理比古典变分法的进步:u(t)可以属于一个函数空间内的闭集,不要求Hamiltonian对u(t)可微;当u(t)属于一个函数空间内的闭集时,H对u(t)的偏导数可能不为0(在闭函数空间内取不到极点)、deltau(t)可以为0,两方面原因造成古典变分法不再适用;与古典变分法对应的是,极小值原理也有6种情况,最普遍的是tf可变、x(tf)受约束的情况;对于tf可变的情况,需要增加一个确定tf的方程(属于横截条件的一部分);Hamiltonian达到极小值的定义?极小值原理仅是最优控制问题的必要条件;如果x(tf)有终端约束,那么两点边值问题的求解难度会增加很多,常用方法为打靶法(扫描法);协态变量就是等式约束泛函极值问题的拉格朗日乘子函数;状态变量终态的自由与固定,对应协态变量终态的固定与自由;状态变量微分方程求解联合协态变量微分方程求解体现了原问题--对偶问题的共同求解思想?目标泛函对u(t)求偏导,实际是泛函对宗量函数求偏导;从理论分析可以得到,目标泛函对u(t)的梯度(偏导数)在最优控制问题中与Hamiltonian 对u(t)的梯度(偏导数)等价;最优控制(动态优化)问题转换成静态优化问题的理论:通过对u(t)的离散化,将函数空间变为向量空间?从而可以直接使用静态优化算法;处理x(tf)受约束的方法除了惩罚函数法还有其他方法没?[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。