数的整除性

合集下载

专题02 数的整除性(含答案)

专题02 数的整除性(含答案)
(江苏省竞赛试题)
解题思想:举例验证,或按剩余类深入讨论证明.
【例3】已知整数 能被198整除,求 , 的值.
(江苏省竞赛试题)
解题思想:198=2×9×11,整数 能被9,11整除,运用整除的相关特性建立 , 的等式,求出 , 的值.
【例4】已知 , , 都是整数,当代数式7 +2 +3 的值能被13整除时,那么代数式5 +7 -22 的值是否一定能被13整除,为什么?
⑵若 =13, =2 012,从 经过1 999步到 .不妨设向右跳了 步,向左跳了 步,则 ,解得 可见,它一直向右跳,没有向左跳.
⑶设 同时满足两个条件:① =0;② + + +…+ =0.由于 =0,故从原点出发,经过( -1)步到达 ,假定这( -1)步中,向右跳了 步,向左跳了 步,于是 = - , + = -1,则 + + +…+ =0+( )+( )+…( )=2( + +…+ )-[( )+( )+…+( )]=2( + +…+ )- .由于 + + +…+ =0,所以 ( -1)=4( + +…+ ).即4| ( -1).
且a+b+c>14.设+86=222n考虑到是三位数,依次取n=1,2,3,4.分别得出的可能值为136,358,580,802,又因为a+b+c>14.故=358.
8.设N为所求的三位“拷贝数”,它的各位数字分别为a,b,c(a,b,c不全相等).将其数码重新排列后,设其中最大数为,则最小数为.故N=-=(1a-c).
①若 | , | ,则 | ;
②若 | , | ,则 |( ± );
③若 | , | ,则[ , ]| ;
④若 | , | ,且 与 互质,则 | ;
⑤若 | ,且 与 互质,则 | .特别地,若质数 | ,则必有 | 或 | .

1.数的整除性

1.数的整除性

数的整除性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。

例1在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?234,789,7756,8865,3728,8064。

例2从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。

例3六位数是6的倍数,这样的六位数有多少个?例4要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?1、能被3整除的最小三位数是(),能被5整除的最大三位数是()2,又能被3整除,而且还是5的倍数的最小三位数是()3、在自然数中,()既不是质也不是合。

既是奇数又是质数的最小的数是(),()既是质数又是合数。

4、用三个一位质数组成能同时被3和5整除的三位数,最大的是(),最小的数是()。

4、自然数a除以自然数b,商是15,那么a和b的最大公约数是()。

5、三个质数的最小公倍数是42,这三个质数是()。

6、100以内同时能被3和7整除的最大奇数是(),最大偶数是()。

1.6539724能被4,8,9,24,36,72中的哪几个数整除?2.个位数是5,且能被9整除的三位数共有多少个?3.一些四位数,百位上的数字都是3,十位上的数字都是6,并且它们既能被2整除又能被3整除。

数的整除性质技巧

数的整除性质技巧

数的整除性质技巧1.数的整除性质:1)若a整除b,b整除c,则a整除c。

(传递性)2)若a整除b且a整除c,则a整除b+c。

3)若a和b是正整数,且a整除b,那么a≤b。

4) 若a整除b,且c是任意整数,则a整除bc。

2.奇偶性质:1)若数a的个位数是偶数,则a整除22)若一个数是奇数,那么它的倍数一定是奇数。

3)若一个数是偶数,那么它的倍数一定是偶数。

3.除法性质:1) 若b整除a,且c是任意整数,则b整除ac。

2)若b整除a且b≠0,那么a除以b的商和余数唯一确定。

4.数位和性质:1)若数a的数位和是n,则a整除n。

2)若数a的数位和是9的倍数,那么a也是9的倍数。

3)若数a的数位和是3的倍数,那么a也是3的倍数。

5.数和运算性质:1)若a整除c且b整除c,则a+b整除c。

2)若a整除c且b整除c,则a-b整除c。

3)若a和b都整除c,则a+b也整除c。

4) 若a整除c且b整除c,则ax + by也整除c,其中x和y是任意整数。

6.乘法性质:1)若数a整除c且数b整除c,则a×b整除c。

2) 若数a整除bc且a和b互质,那么a整除c。

3)若数a整除b且数b整除a,则a和b的最大公约数等于其中的较小数。

7.倍数性质:1)若a整除b,并且b是a的倍数,那么a整除b的任意倍数。

2)一个数是另一个数的倍数时,它们的公倍数一定也是这个数的倍数。

8.整除和余数的关系:1)如果数a是数b的整数倍,那么a和b的余数相同。

2)如果数a和b除以数c的余数相同,那么a-b是c的倍数。

以上是一些常用的数的整除性质技巧,通过灵活运用这些技巧可以在解题过程中减少计算量,提高解题效率。

在实际运用中,我们可以根据题目的要求和条件选择相应的技巧,以求解问题。

同时,深入理解这些性质背后的原理,能够更好地理解数的整除关系,为数的整除性质的使用提供更大的帮助。

五年级奥数竞赛之数的整除性

五年级奥数竞赛之数的整除性

五年级奥数竞赛之数的整除性数的整除性整除的基本性质:性质1 如果a、b都能被m整除,那么它们的和a,b与差a,b都能被m整除。

它可记为:若m/a,m/b,则m/(a?b)。

m能同时整除a、b,即m既是a的约数,又是b的约数,则称m是a、b的公约数。

如果两个数只有唯一的公约数1,则称这两个数互质。

例如1与12,4与5,5与9,3与25等。

性质2 如果a/m,b/m,且a和b互质,那么a和b的乘积也能整除m,即(a×b)/m。

例如:3/72,4/72,且3和4互质,那么3与4的乘积12/72。

性质2中,“两数互质”这一条件是必不可少的。

6/72,8/72,但6与8的乘积48不能整除72,这就是因为6与8不互质。

根据性质2,我们常常可有如下解题思路:要使m被a×b整除,而a与b互质,就可以分别考虑m被a整除与m被b整除。

性质3 (传递性)如果c/b,且b/a,那么c/a。

特别是若b/a,m为整数,则有b/(a×m)。

1、形如1993 1993…1993 520,且能被11整除的最小数是。

n个19932、所有数字都是2且能被66…6整除的最小自然数是多少,3、500名士兵排成一列横队,第一次从左到右1,2,3,4,5(1至5)名报数;第二次反过来从右到左1,2,3,4,5,6(1至6)报数,既报1又报6的士兵有多少名,4、一个六位数的各位数字都不相同。

最左边一个数字是3,且此六位数能被11整除。

这样的六位数中的最小的数是。

5、已知一个两位数恰好是它的两个数字之和的六倍,求这个两位数是 ,6、已知a、b、c、d是各不相同的数字,a,b,c,18,b,c,d,23,四位数badc被5除余3,求四位数abcd是。

7、用1,6六个数字组成一个六位数abcdef其中不同字母代表1,6中的数字,要求ab是2的倍数,abc是3的倍数,abcd能被5整除,zbcdef是6的倍数,求这样的六位数有个,各是。

数的整除性质

数的整除性质

数的整除性质数的整除性质是数学中一个非常基础且重要的概念。

整除是指一个数能够被另一个数整除,即能够整除的数叫做除数,能够被整除的数叫做被除数。

在数的整除性质中,有一些基本的定理和规律,我们一起来探讨。

一、整除的定义在数学中,如果存在整数a和b,使得b乘以a得到的结果等于一个整数c,那么我们就说b能够整除c。

这个定义可以用符号表示为:b|c,读作“b整除c”。

例如,4能够整除12,我们可以表示为4|12。

二、整除的性质1. 传递性:如果a能够整除b,b能够整除c,那么a一定能够整除c。

例如,如果2能够整除4,4能够整除8,那么2一定能够整除8。

2. 自身整除:任何一个数都能够整除自身。

例如,5能够整除5。

3. 1整除任何数:1能够整除任何一个数。

例如,1能够整除8。

4. 零的整除性:任何一个数都能够整除0。

例如,任何数都能够整除0。

5. 任何一个数都能够整除1:任何一个数都能够被1整除。

例如,任何数都能够被1整除。

6. 如果a能够整除b,那么a能够整除b的倍数。

例如,如果3能够整除6,那么3一定能够整除6的倍数12。

7. 如果a能够整除b,那么b能够整除a的因数。

例如,如果2能够整除4,那么4一定能够整除2的因数。

三、整除和最大公因数最大公因数是指两个或多个整数中最大的能够整除这些整数的数。

最大公因数可以通过求解数的因数来得到。

例如,求解12和15的最大公因数,我们可以找到12的因数:1、2、3、4、6、12,15的因数:1、3、5、15,他们的公因数有1和3,其中最大的公因数是3。

最大公因数有以下的性质:1. 最大公因数是两个数的公因数中最大的一个。

2. 如果最大公因数为1,那么这两个数互质。

3. 如果最大公因数为a,那么这两个数的倍数中最大的一个为a。

四、整除与质数质数是指大于1的正整数,除了1和本身,没有其他的因数。

质数和整除有着密切的关系。

1. 质数只能被1和自身整除。

2. 任何一个数都可以被质数整除。

数的整除性质与应用

数的整除性质与应用

数的整除性质与应用数的整除性质是数学中的重要概念之一,它描述了一个数能够整除另一个数的性质。

在日常生活和数学应用中,我们经常用到数的整除性质来解决问题。

本文将对数的整除性质进行详细介绍,并探讨它在实际应用中的作用。

一、整数的除法定义与整除性质在数学中,我们将一个整数a除以另一个非零的整数b,如果能够得到一个整数q,使得a = bq,我们就称a能够被b整除,或者说b能够整除a,记作b|a。

整除性质主要包括以下几个方面:1. 传递性: 如果a能够被b整除,b能够被c整除,那么a也能够被c整除。

2. 常数倍数性质: 如果a能够被b整除,那么对于任意非零常数k,ka也能够被kb整除。

3. 相等性: 一个数能够被自身整除,即对于任意非零整数a,a能够被a整除。

4. 整除的基本性质: 如果a能够被b整除,那么a的所有倍数也能够被b整除。

二、整除的应用数的整除性质在实际应用中起着重要的作用,以下是一些常见的应用场景:1. 分数化简在分数的运算中,我们经常需要对分数进行化简。

利用整除性质可以帮助我们快速找到最大公约数,从而将分数化简为最简形式。

例如,对于分数12/18,我们可以通过求12和18的最大公约数来进行化简。

由于18能够整除12,所以12/18可化简为2/3。

2. 整数的因数与倍数在数的因数和倍数问题中,整除性质是一个重要的工具。

我们可以利用整除性质判断一个数是否是另一个数的因数,或者判断两个数是否互为倍数。

例如,判断一个数是否是另一个数的因数时,我们只需要通过整除性质将这两个数相除,如果余数为0,则该数是另一个数的因数。

3. 素数与合数素数是指只有1和自身两个因数的数,而合数是指除了1和自身之外还有其他因数的数。

利用整除性质,我们可以判断一个数是否为素数。

例如,判断一个数n是否为素数时,我们只需要将n与2到√n之间的所有整数相除,如果都无法整除,则n为素数。

因为如果n能够被大于√n的数整除,那么一定能够被小于√n的数整除。

数字的整除性

数字的整除性

数字的整除性数字的整除性是数学中一个非常基础而重要的概念。

整除性是指一个数能够被另一个数整除,即没有余数。

在这篇文章中,我们将探讨数字的整除性及其相关性质。

了解整除性的概念和性质对于数学学习和解决实际问题都具有重要意义。

1. 整除性的定义整除性是数学中的基本概念之一。

对于两个整数a和b,如果存在一个整数c使得a = b * c,我们就称a能够被b整除,也可以表达为b是a的因数,而a是b的倍数。

例如,4能够被2整除,因为4 = 2 * 2。

2. 整除性的性质整除性具有一些重要的性质,这些性质为我们解决实际问题提供了方便。

2.1 传递性:如果a能够被b整除,而b能够被c整除,则a能够被c整除。

例如,如果4能够被2整除,2能够被1整除,那么4也能够被1整除。

2.2 唯一性:如果a能够被b整除,而a也能够被c整除,且b和c互质(最大公约数为1),则b能够被c整除。

例如,如果4能够被2整除,4也能够被3整除,而2和3互质,那么2能够被3整除。

2.3 整除与因数的关系:如果a能够被b整除,则b一定是a的因数。

例如,如果6能够被2整除,那么2是6的因数。

3. 整除的运用整除性在数学中广泛运用,并可以帮助我们解决实际问题。

3.1 判断整除性:通过判断一个数是否能够被另一个数整除,我们可以得出一些结论。

例如,如果一个数字的个位数为0、2、4、6、8中的任意一个,那么这个数一定能够被2整除。

3.2 最大公约数:整除性可以用来求解两个或多个数的最大公约数。

最大公约数是指两个或多个数中同时整除这些数的最大正整数。

例如,求解12和18的最大公约数,可以通过12能够被6整除,18能够被6整除,所以6是它们的最大公约数。

3.3 最小公倍数:整除性也可以用来求解两个或多个数的最小公倍数。

最小公倍数是指能够同时整除这些数的最小正整数。

例如,求解4和6的最小公倍数,可以通过4能够被2整除,6能够被2整除,所以2是它们的最小公倍数。

数的整除性质技巧

数的整除性质技巧

数的整除性质技巧1.末尾数字的整除性质:当一个数能被2整除时,它的末尾数字必定是0、2、4、6、8中的一位。

当一个数能被5整除时,它的末尾数字必须是0或5当一个数能被10整除时,它的末尾数字必须是0。

2.数字的整除性质:一个数能被3整除的条件是,该数的各个位上的数字之和能被3整除。

一个数能被9整除的条件是,该数的各个位上的数字之和能被9整除。

3.数的因数乘积性质:如果一个数能分解成两个整数的乘积,那么这两个整数一定是这个数的因数,并且这个数能同时被这两个因数整除。

例如,120可以分解成2和60的乘积,所以2和60是120的因数,并且120能同时被2和60整除。

4.数的因数关系性质:如果一个数能被另一个数整除,并且这两个数都是另一个数的因数,那么这两个数的倍数也是该数的因数。

例如,12能被3整除,而3是12的因数,那么6、9、15等都是12的因数。

5.因数的奇偶性质:如果一个数能整除另一个数,那么这个数的因数中也有整除关系。

例如,6能被2整除,2是6的因数,而2能被1整除,所以1也是6的因数,即6能整除16.数的整除性质的逆运算:如果一个数能被另一个数整除,那么这个被除数乘上一个整数得到的结果也能被另一个数整除。

例如,如果12能被3整除,那么12×2=24也能被3整除。

7.两个数的公因数性质:如果两个数有公因数,并且其中一个数能整除另一个数,那么这个因数也就同时是这两个数的公因数。

例如,6和9有公因数3,并且9能整除6,所以3是6和9的公因数。

8.最大公因数和最小公倍数的性质:两个数的最大公因数和最小公倍数可以通过两个数的乘积除以最大公因数来计算。

例如,72和90的最大公因数是18,最小公倍数是360,因为72×90/18=360。

通过掌握数的整除性质技巧,可以在解题过程中更加快速和准确地计算数的整除关系,从而提高解题效率。

同时,数的整除性质技巧也有助于理解数的因数与倍数之间的关系,进一步深化对数学概念的理解和运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 数的整除性 更相减损术: 一.更相减损术: 九章算术》 《九章算术》方田 约分术曰:可半者半之,不可半者,副置分母子之数, 约分术曰:可半者半之,不可半者,副置分母子之数,以少 减多,更相减损,求其等也,以等数约之。 减多,更相减损,求其等也,以等数约之。 98 实例: 实例:约分 182 49 (可半者半之 → 91 可半者半之) 可半者半之 (不可半者,副置分母、子之数)→91 49 不可半者,副置分母、子之数 不可半者 (以少减多,更相减损)→ 42 49 → 42 7 → 35 7 →‥‥‥ 14 7 以少减多,更相减损 ‥‥‥→ 以少减多 ‥‥‥ (求其等也 求其等也)→ 7 7 求其等也 (以等数法之比较: 求多个数的最大公约数的方法之比较: 析因子法 1008 = 2·2·2·2·3·3·7 1260 = 2·2·3·3·5·7 882 = 2·3·3·7·7 1134 = 2·3·3·3·3·7 (1008,1260,882,1134)= 2·3·3·7 = 126 , , , ) 欧几里得算法
更相减损法 1008 1260 882 “可半者半之” 504 可半者半之” 630 441 可半者半之 “以少减多” 以少减多” - 441 - 567 - 7×63 以少减多 × “更相减损” 更相减损” 63 63 63 更相减损 “求其等也” 求其等也” 2×63 求其等也 × (1008,1260,882,1134)= 126 , , , ) 1134 567 -504 63
49 ÷ 7 91 ÷ 7

7 13
二.欧几里得算法: 欧几里得算法: 原本》 《原本》第7卷 命题 1 : 卷 设有不等二数,从大数中连续减去小数,直至余数小于小数, 设有不等二数,从大数中连续减去小数,直至余数小于小数,再 从小数中连续减去余数,直至余数小于该余数,如此继续, 从小数中连续减去余数,直至余数小于该余数,如此继续,若余数总 是量不尽其前一个数, 则该二数互素。 是量不尽其前一个数,直至最后的余数为 1 ,则该二数互素。 原本》 《原本》第7卷 命题 2 : 卷 已知两个不互素的数,求它们的最大公约数。 已知两个不互素的数,求它们的最大公约数。
约分术曰:可半者半之,不可半者, • 数的整除性 副置分母子之数,以少减多,更相减损, 求其等也,以等数约之。 一.更相减损术 《原本》第7卷 命题 1 : 设有不等二数,从大数中连续减 二.欧几里得算法 去小数,直至余数小于小数,再从小数中 连续减去余数,直至余数小于该余数,如 三.求多个数的最大公约数 此继续,若余数总是量不尽其前一个数, 直至最后的余数为 1 ,则该二数互素。
相关文档
最新文档