buck电路的原理

合集下载

buck电路拓扑及其工作原理

buck电路拓扑及其工作原理

Buck电路拓扑及其工作原理Buck电路是一种常见的降压转换器,也被称为降压型开关电源。

它可以将一个较高的直流电压转换为一个较低的直流电压,同时保持较高的效率。

Buck电路的拓扑结构是基于一个电感元件和一个开关元件。

下面是Buck电路的基本拓扑图示:```Vin ─────┬───────┐││─┼─┬─────┴─┬──Vo││││││Cin│L││││││─┴─┴───────┼─GND││GND GND```在这个拓扑中,Vin代表输入电压,Vo代表输出电压,Cin代表输入电容,L代表电感,以及GND代表接地。

Buck电路的工作原理如下:1. 开关状态:当开关元件(通常是MOSFET)处于导通状态时,电感L储存能量,并将其传递到输出负载。

2. 关断状态:当开关元件处于关断状态时,电感L通过其自感性产生电压,并将这个能量转移到输出负载。

Buck电路的工作周期可以分为以下几个阶段:1. 导通状态(开关打开):开关元件处于导通状态时,输入电压Vin通过电感L传递到输出负载。

电感L储存能量,并将其传递到输出电容Cout。

2. 关断状态(开关关闭):开关元件关闭时,电感L的自感性会产生反向电压,将能量转移到输出电容Cout和负载上。

这个阶段也被称为“放电”阶段。

通过控制开关元件的导通时间和关断时间,可以调节输出电压的大小。

通常使用PWM(脉宽调制)技术来控制开关元件的导通和关断,以实现精确的输出电压调节。

总结起来,Buck电路通过周期性地切换开关元件的状态,将输入电压转换为较低的输出电压。

这种转换过程利用电感和电容储存和传递能量,实现了高效的降压转换。

buck电路

buck电路

buck电路1. 简介Buck电路是一种直流-直流(DC-DC)转换器,也称为降压转换器。

它可将高电压直流输入转换为较低电压直流输出。

Buck电路由开关器件(通常为MOSFET)和辅助元件(如电感和电容)组成。

Buck电路在许多电子设备中广泛应用,包括电源适配器、电动汽车、太阳能系统等。

Buck电路具有高效率、紧凑的尺寸和较低的成本等优点,因此成为DC-DC转换的常用选择。

2. 工作原理Buck电路基于开关定时的原理工作。

下面是Buck电路的基本工作原理:1.开关器件关闭状态:当开关器件(MOSFET)处于关闭状态时,输入电压(Vin)通过电感(L)和二极管(D)充电,形成一种电流。

2.开关器件导通状态:当开关器件导通时,电感储存的能量被释放,通过二极管和负载电阻(RL)供电。

此时,输出电压(Vout)取决于导通时间和电感电流。

3.控制方式:通过控制开关器件导通时间的长短,可以调节输出电压的大小。

典型的控制方式有PWM(脉宽调制)和PFM(脉冲频率调制)。

3. Buck电路的主要元件Buck电路由以下主要元件组成:•MOSFET开关器件:用于控制输入电压通过电路的通断状态。

•电感(L):用于储存能量,并平滑输出电流。

•二极管(D):与电感形成一个循环,用于导通电感储存的能量到负载电阻。

•输出电容(C):平滑输出电压,减少纹波。

•控制电路:用于控制开关器件的导通时间,以调节输出电压。

4. 优缺点Buck电路具有以下优点:•高效率:Buck电路的能效通常较高,能够将输入电压有效转换为输出电压。

•紧凑尺寸:Buck电路的设计紧凑,适合在空间有限的电子设备中使用。

•低成本:相比于其他DC-DC转换器,Buck电路的成本较低。

然而,Buck电路也存在一些缺点:•输出电压稳定性差:由于输入电压波动或载荷变化,Buck电路的输出电压可能不太稳定。

•EMI干扰:Buck电路的开关动作可能引起电磁干扰(EMI),对其他电子设备造成影响。

buck电源电路工作原理

buck电源电路工作原理

buck电源电路工作原理
Buck电源电路工作原理是通过控制开关管的导通时间来降低输入电源的电压,进而得到输出电压较低的电路。

具体来说,Buck电源电路由输入电源、开关管、电感、二极管和输出负载组成。

开关管通常是MOSFET或BJT,而电感用来储存能量,二极管用于输出电流的反向导通。

工作原理如下:
1. 当开关管导通时,电感中储存有一部分电流和磁能量。

2. 开关管关断时,电感中的电流在通过二极管的作用下继续流动,即电感放电。

3. 当电感放电时,输出电流继续供应电载,并从电容中释放能量。

4. 重复上述过程,可以实现稳定的输出电压。

Buck电源电路通过改变开关管的导通比例来调节输出电压。

开关管导通时间越长,输出电压越高;导通时间越短,输出电压越低。

此外,通过精确控制开关管的导通频率和占空比,可以实现更稳定的输出电压。

需要注意的是,为了实现稳定的输出电压,Buck电源电路通常采用反馈控制机制,即输出电压通过反馈回路将信息传递给控制器,控制器再根据该信息调整开关管的导通比例,以保持输出电压稳定。

总之,Buck电源电路通过控制开关管的导通时间来降低输入电压,实现稳定的输出电压。

同步整流buck电路原理

同步整流buck电路原理

同步整流buck电路原理
同步整流Buck电路是一种常见的DC-DC变换器拓扑,通常用于将一个电压转换为另一个较低的电压。

它的工作原理如下:
1. 输入电压首先被施加到开关管上。

当开关管导通时,电感储存能量,电容器也开始充电。

当开关管截至时,电感释放能量,将能量传输到负载上。

2. 在同步整流Buck变换器中,输出电压的整流由同步整流MOSFET管完成。

这种结构可以提高转换器的效率。

3. 当流过电感的电流在每个周期不会降为0时,定义变换器工作于连续导通模式。

4. 在一个开关周期内,电感电流的增量和减量必须相等。

由此可得输出电压与输入电压的关系式。

5. 在整个开关周期内,电感都传递能量给滤波电容和负载,而滤波电容每个周期的平均电流为0,其能量的变化量为0。

故输出负载电流等于电感电流平均值。

如需更多关于同步整流buck电路的相关信息,建议查阅电子工程相关书籍或文献。

buck电路基本原理

buck电路基本原理

buck电路基本原理
Buck电路是一种常见的降压电路,它通过控制开关器件的导
通时间来将输入电压降低到所需的输出电压级别。

该电路基本原理如下:
1. 输人电压由电源提供,经过一个电感和一个二极管连接到电容和负载上。

开关器件一般是一个MOSFET,它通过控制其
导通与截止的时间来调整输出电压。

2. 当开关器件导通时,电感中储存的能量开始流向负载并充电电容。

此时,电流通过电感和二极管形成闭环。

在这个过程中,电流增加,同时电感中的能量也增加。

3. 当开关器件关断时,电感中的能量需要释放到负载和电容上。

此时,电感产生自感电压,同时二极管充当绕过开关器件的通道,使能量正常流向负载。

电感中的自感电压试图保持电流不变,然后电流开始减小。

4. 电流减小时,电感中储存的能量会进一步降低。

重复这个过程,直到电感中的能量耗尽,或者直到达到所需的输出电压级别。

总之,Buck电路通过控制开关器件的导通与截止来调节电压,同时通过电感和二极管的协同作用实现能量传递和转换,从而实现输入电压的降压。

Buck电路原理分析详解

Buck电路原理分析详解










同样,在一个周期进行分析,


Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
3、DCM Mode:关键点原件波形见图六
图六
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
3、DCM Mode: 由图六可知,电路系统工作在DCM模式下,需要满足两个条件,一、电感充磁开 始以及消磁结束时流经电感的电流为零;二、电感消磁时间小于开关管关断时







, T为工作周期,D为占空比: 为Q管导通时间,所以,




伏秒积平衡 即
开关管Q1关断时,同理根据KVL定律:
忽略二极管 的正向压降,有





①=② ,可以得出:

Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
1、CCM Mode:关键点原件波形见图四
图四
Return To Page 7
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
1、CCM Mode:
开关管Q1导通时,根据KVL定律:



五、BUCK电路仿真验证:
图七
Buck电路原理分析
上述电路中基本参数设置:
驱动波形:V=14V, f=20KHz,D=50%;输入电压:Vin=10Vdc;储能电感:L=80uH 1、BCM模式仿真验证:根据电路系统工作在BCM模式下的条件,进行理论计算,

入门级Buck电路原理—简洁而不简单

入门级Buck电路原理—简洁而不简单

Buck、Boost、Buck-Boost作为直流开关电源中应用广泛的拓扑结构,属于非隔离的直流变换器。

本期内容小编将对其中的Buck电路展开详细介绍。

*Buck基础拓扑电路降压式(Buck)变换器是一种输出电压≤输入电压的非隔离直流变换器。

Buck变换器的主电路由开关管Q,二极管D,输出滤波电感L和输出滤波电容C构成。

接下来将从:1. 开关整流器基本原理2. 传说中的“伏-秒平衡” 3. 同步整流死区时间等三部分详细介绍Buck电路的工作原理。

让我们打起精神,擦亮眼睛,深刻体会简洁而不简单的Buck电路吧!Part 1 开关整流器基本原理导通时间关断时间在[0,Ton]期间,开关导通;在[Ton,Ts]期间,Q截止。

设开关管开关周期为Ts,则开关频率fs=1/Ts。

导通时间为Ton,关断时间为Toff,则Ts=Ton+Toff。

设占空比为D,则D=Ton/Ts。

改变占空比D,即改变了导通时间Ton的长短,这种控制方式成为脉冲宽度调制控制方式(Pulse Width Modulation, PWM)。

Buck电路特征•输出电压≤输入电压•输入电流断续•输出电流连续•需要输出滤波电感L和输出滤波电容CPart 2 传说中的“伏-秒平衡”伏秒原则,又称伏秒平衡,是指开关电源稳定工作状态下,加在电感两端的电压乘以导通时间等于关断时刻电感两端电压乘以关断时间,或指在稳态工作的开关电源中电感两端的正伏秒值等于负伏秒值。

在一个周期T 内,电感电压对时间的积分为0,称为伏秒平衡原理。

正如本文开头视频中指出,任何稳定拓扑中的电感都是传递能量而不消耗能量,都会满足伏秒平衡原理。

Part 3 同步整流死区时间同步整流是采用极低导通电阻的的MOSFET来取代二极管以降低损耗的技术,大大提高了DCDC的效率。

物理特性的极限使二极管的正向电压难以低于0.3V。

对MOSFET来说,可以通过选取导通电阻更小的MOSFET来降低导通损耗。

buck斩波电路原理

buck斩波电路原理

buck斩波电路原理
"buck 斩波电路" 可能是涉及直流-直流(DC-DC)电源的一种电路,其中“buck”通常指的是“降压型”或“步进降压型”电路。

这类电路通常用于将高电压直流(输入端)降低到较低的电压直流(输出端)。

这种类型的电路包含一个开关元件(通常是一个MOSFET)和一个电感,通常还包括一个二极管和一些滤波电容。

整个电路的工作原理如下:
1.导通阶段:MOSFET导通时,电流通过电感,能量储存在电感
中,同时电压在电感上升。

2.切断阶段:MOSFET截断时,电感上的储能电流通过二极管回
路,输出电压维持。

这个周期性的开关动作可以实现电压的降低。

斩波电路通常由一个控制电路来管理,以确保输出电压稳定。

这里简要描述了Buck 斩波电路的基本原理,具体的电路设计可能会涉及更多的元件和控制电路,以确保性能和稳定性。

如果你需要更详细的信息,最好查阅相关的电源电子学教材、设计手册或应用笔记。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

buck电路的原理
降压式变换电路(Buck电路)详解
一、BUCK电路基本结构
开关导通时等效电路开关关断时等效电路
二、等效的电路模型及基本规律
(1)从电路可以看出,电感L和电容C组成低通滤波器,此滤波器设计的原则是使us(t)的直流分量可以通过,而抑制us(t) 的谐波分量通过;电容上输出电压uo(t)就是us(t) 的直流分量再附加微小纹波uripple(t) 。

(2)电路工作频率很高,一个开关周期内电容充
放电引起的纹波uripple(t) 很小,相对于电容上
输出的直流电压Uo有:电容
上电压宏观上可以看作恒
定。

电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。

(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。

这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。

(4)开关S置于1位时,电感电流增加,电感储能;而当开关S
置于2位时,电感电流减小,电感释能。

假定电流增加量大于
电流减小量,则一个开关周期内电感上磁链增量为:
此增量将产生一个平均感应电势:
此电势将减小电感电流的上升速度并同时降低电感电流的
下降速度,最终将导致一个周期内电感电流平均增量为零;一
个开关周期内电感上磁链增量小于零的状况也一样。

这种在稳态状况下一个周期内电感电流平均增量(磁链平
均增量)为零的现象称为:电感伏秒平衡。

这也是电力电子电路稳态运行时的又一个普遍规律。

三、电感电流连续工作模式(CCM)下稳态工作过程分析。

相关文档
最新文档