BUCK电路工作原理分析

BUCK电路工作原理分析
BUCK电路工作原理分析

BUCK电路工作原理分析

测试电路如下图4.5所示,改变驱动信号占空比,观察输入与输出关系。

通道2,输出波形

通道1,驱动波形

(a)BUCK测试电路(b)输出波形(c)输出波形

图4.5 BUCK升压电路(multisim)

BUCK电路是一种降压斩波器,降压变换器输出电压平均值U o总是小于输入电压U d。

一、BUCK电路工作原理

Q1导通期间(t on ):电力开关器件导通,电感蓄能,二极管D反偏。等效电路如图5.7(b)所示;

Q1关断期间(t off):电力开关器件断开,电感释能,二极管D导通续流。等效电路如5.7 (c)所示;

由波形图5.7 (b)可以计算出输出电压的平均值为:

)

(

1

)

(

1

0?

?

??

+

?

=

=S

on

on

S

T

t

t

d

S

T

S

dt

dt

u

T

dt

t

u

T

U

则:

d

d

S

on DU

U

T

t

U=

=

,D为占空比。

忽略器件功率损耗,即输入输出电流关系为:

d

d

O

d

O

I

D

I

U

U

I

1

=

=。

图4.6 BUCK电路工作过程

二、电感工作模式分析

下图4.7为BUCK电路中电感流过电流情况。

图4.7电感电流波形图

电感中的电流i L是否连续,取决于开关频率、滤波电感L和电容C的数值。

1.电感电流i L连续模式:

⑴在t on 期间:电感上的电压为

dt

di L

u L

L = 由于电感L 和电容C 无损耗,因此i L 从I 1线性增长至I 2,上式可以写成

on

L

on O d t I L t I I L

U U ?=-=-12

O

d L on U U L

I t -?=

)(

式中△I L =I 2-I 1为电感上电流的变化量,U O 为输出电压的平均值。 ⑵在t off 期间:假设电感中的电流i L 从I 2线性下降到I 1,则有

off

L

O t I L

U ?=

则,O

L

off U I L

t ?=

可求出开关周期TS 为

(1

O d O d

L off on S U U U LU I t t f

T -?=

+==

fL

D D U fLU U U U I d d O d O L )

1()(-=

-=

?

上式中△I L 为流过电感电流的峰-峰值,最大为I 2,最小为I 1。电感电流一周期内的平均值与负载电流I O 相等,即

2

1

20I I I +=

则)1(201D D L

T U I I S

d --

= 2.电感电流i L 临界连续状态

变换电路工作在临界连续状态时,即有I 1=0,由)1(201D D L

T U I I S

d --=,可得维持电流临界连续的电感值L 0为:

)1(20D D I T U L K

S

d o -=

即电感电流临界连续时的负载电流平均值为 :

)1(2D D L T U I O

S

d OK -=

式中I ok 为电感电流临界连续时的负载电流平均值。

总结:临界负载电流I ok 与输入电压U d 、电感L 、开关频率f 以及开关管T 的占空比D 都有关。当实际负载电流I o >I ok 时,电感电流连续;当实际负载电流I o =I ok 时,电感电流处于连续(有断流临界点); 当实际负载电流I o <I ok 时,电感电流断流。

三、输出纹波电压:

在Buck 电路中,如果滤波电容C 的容量足够大,则输出电压U 0为常数。然而在电容C 为有限值的情况下,直流输出电压将会有纹波成份。

电流连续时的输出电压纹波为:

2

22

))(1(28)1(f f D LCf

D U U c -=-=?π 其中f 为buck 电路的开关频率, f c 为电路的截止频率。

它表明通过选择合适的L 、C 值,当满足f c <<f 时,可以限制输出纹波电压的大小,而且纹波电压的大小与负载无关。

BuckBoost电路建模及分析

题目:BuckdBoost电路建模及分析 摘要:作为研究开关电源的基础,DCTC开关变换器的建模分析对优化开关电源的性能和提高设计效率具有重要意义。而BucMoost电路作为DCTC开关变换器的其中一种电路拓扑形式,因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 为了达到全面而深入的研究效果,本文对Buck^oost电路进行了稳态分析和小信号分析。稳态分析中,首先介绍了电路工作原理,得出了两种工作模式下的电压转换关系式,并同时可知基于占空比怎样计算其输出电压以及最小最大电感电流和输出纹波电压计算公式;接着推导了状态空间模型,以在M ATLAB中进行仿真;而最后仿真得到的电感电流、输出电压的变化规律符合理论分析。小信号分析中,首先推导了输出与输入间的传递函数表达式,以了解低频交流小信号分量在电路中的传递过程;接着分析其零极点,且仿真绘制波特图进行了验证。 经过推导与研究,稳态分析和小信号分析下仿真得到的变化规律均与理论上的推导一致。 关键词:BuckHBoost;稳态分析;小信号分析;MATLAB仿真

1 ?概论 现代开关电源有两种:直流开关电源、交流开关电源。本课题主要介绍直流开关电源,其功能是将电能质量较差的原生态电源,如市电电源或蓄电池电源,转换为满足设备要求的质量较高的直流电源,即将“粗电”转换为“精电”。直流开关电源的核心是DC4)C变换器。 作为研究开关电源的基础,DCTC开关变换器的建模分析对开关电源的分析和设计具有重要意义。DCTC开关变换器最常见的三种电路拓扑形式为:降压(Buck)、升压(Boost)和降压THE (BuckdBoos 泌],如图1-1所示。其中BucMoost变换器因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 (a) B uck型电路结构 (b) Boost型电路结构 (c) B uckHB oost型电路结构 图1-1 DCTC变换器的三种电路结构

buck电路的原理

buck电路的原理 降压式变换电路(Buck电路)详解 一、BUCK电路基本结构 开关导通时等效电路开关关断时等效电路 二、等效的电路模型及基本规律 (1)从电路可以看出,电感L和电容C组成低通滤波器,此滤波器设计的原则是使us(t)的直流分量可以通过,而抑制us(t) 的谐波分量通过;电容上输出电压uo(t)就是us(t) 的直流分量再附加微小纹波uripple(t) 。 (2)电路工作频率很高,一个开关周期内电容充 放电引起的纹波uripple(t) 很小,相对于电容上 输出的直流电压Uo有:电容 上电压宏观上可以看作恒 定。 电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。

这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。(4)开关S置于1位时,电感电流增加,电感储能;而当开关S 置于2位时,电感电流减小,电感释能。假定电流增加量大于 电流减小量,则一个开关周期内电感上磁链增量为: 此增量将产生一个平均感应电势: 此电势将减小电感电流的上升速度并同时降低电感电流的 下降速度,最终将导致一个周期内电感电流平均增量为零;一 个开关周期内电感上磁链增量小于零的状况也一样。 这种在稳态状况下一个周期内电感电流平均增量(磁链平 均增量)为零的现象称为:电感伏秒平衡。 这也是电力电子电路稳态运行时的又一个普遍规律。 三、电感电流连续工作模式(CCM)下稳态工作过程分析

BUCK电路工作原理分析

BUCK电路工作原理分析 测试电路如下图4.5所示,改变驱动信号占空比,观察输入与输出关系。 通道2,输出波形 通道1,驱动波形 (a)BUCK测试电路(b)输出波形(c)输出波形 图4.5 BUCK升压电路(multisim) BUCK电路是一种降压斩波器,降压变换器输出电压平均值U o总是小于输入电压U d。 一、BUCK电路工作原理 Q1导通期间(t on ):电力开关器件导通,电感蓄能,二极管D反偏。等效电路如图5.7(b)所示; Q1关断期间(t off):电力开关器件断开,电感释能,二极管D导通续流。等效电路如5.7 (c)所示; 由波形图5.7 (b)可以计算出输出电压的平均值为: ) ( 1 ) ( 1 0? ? ?? + ? = =S on on S T t t d S T S dt dt u T dt t u T U 则: d d S on DU U T t U= = ,D为占空比。 忽略器件功率损耗,即输入输出电流关系为: d d O d O I D I U U I 1 = =。

图4.6 BUCK电路工作过程 二、电感工作模式分析 下图4.7为BUCK电路中电感流过电流情况。 图4.7电感电流波形图 电感中的电流i L是否连续,取决于开关频率、滤波电感L和电容C的数值。 1.电感电流i L连续模式:

⑴在t on 期间:电感上的电压为 dt di L u L L = 由于电感L 和电容C 无损耗,因此i L 从I 1线性增长至I 2,上式可以写成 on L on O d t I L t I I L U U ?=-=-12 O d L on U U L I t -?= )( 式中△I L =I 2-I 1为电感上电流的变化量,U O 为输出电压的平均值。 ⑵在t off 期间:假设电感中的电流i L 从I 2线性下降到I 1,则有 off L O t I L U ?= 则,O L off U I L t ?= 可求出开关周期TS 为 ) (1 O d O d L off on S U U U LU I t t f T -?= +== fL D D U fLU U U U I d d O d O L ) 1()(-= -= ? 上式中△I L 为流过电感电流的峰-峰值,最大为I 2,最小为I 1。电感电流一周期内的平均值与负载电流I O 相等,即 2 1 20I I I += 则)1(201D D L T U I I S d -- = 2.电感电流i L 临界连续状态 变换电路工作在临界连续状态时,即有I 1=0,由)1(201D D L T U I I S d --=,可得维持电流临界连续的电感值L 0为:

电压双象限Buck-Boost电路拓扑及分析

电压双象限Buck-Boost电路拓扑及分析 2007年06月09日星期六 18:43 在直流变换中不产生电能形式变化,只产生直流电参数的变化。DC/DC变换器具有成本低、重量轻、可靠性高、结构简单等特点,因此,在工业领域和实验室得到了广泛应用。单象限直流电压变换器电路的特点是输出电压平均值Uo跟随占空比D值而变,但不管D为何值,Uo的极性则始终不变,这对于直流开关稳压电源一类的应用场所是能够满足要求的。但对于直流调速电源,负载为直流电动机时,上述性能便不能满足要求,因而发展了多象限直流电压变换电路。 双象限电路分为输出电流平均值Io极性可变的电路与输出电压平均值Uo极性可变的电路两类,通常前一种电路称为电流双象限电路,后一种电路称为电压双象限电路。电流双象限电路是指输出电流平均值Io的幅值和极性均随控制信号us而变化,但输出电压平均值Uo的极性却始终为正,即电路可运行于第一和第二象限。电压双象限电路是指输出电压平均值Uo的幅值和极性均随控制信号us而变化,但输出电流平均值Io却始终为正,即电路可运行于第一和第四象限。本文将对电压双象限Buck Boost电路进行分析。 1 Buck电路 1.1 电路结构 主电路如图1所示。用电感、内阻和等效电压串联电路表示有源负载,桥的直流输入端并联滤波电容。这是一个全桥电路结构,桥的每臂用全控型器件(S1,S2)和不控型器件(D1,D2)组成。S1及S2的控制采用PWM控制,这样可以调节D值,并且及时检测负载的运行状况,由此控制开关的关断和开通。此电路的元器件、电源、负载均假设为理想的。输出滤波电感足够大,可保证负载电流连

续,且线性升降。 1.2 工作原理 1.2.1 运行于第一象限

BUCK电路分析

BUCK 电路分析 李立清 2012/7/3 首先BUCK 电路基本电路如下 假设对BUCK 降压电路的基本要求 1. 输入直流电压;Ud=100v 2. 开管频率:f=40kHZ 3. 输出电压范围:Uo=50~80v 4. 输出电压纹波:<1% 5. 最大输出电流:5A(在额定负载下) 6. 效率不低于70% 7. 具有过流保护功能,动作电路:6A 8. 具有稳压功能 一.总体框图: 在电源系统中,一般由核心主电路,控制电路,驱动电路,保护电路,

输出的电压U0总小于Ud,一种降压式变换器,V是全控制器件,为MOSET管,为给负载电感电流提供通路,设置续流二极管VD (1)在t=0是,V管导通,VD管要承受反压,在V管导通时间为t1时间内,开关管V流过的电流就是电感电流,电感L 上电流直线上升,储存在电感中,电源E向负载供电,负 载电压U0=E,负载电流按指数曲线上升, (2)在t=t1时刻V管关断,由于电感储能作用,电感电流必须要按某一回路能量释放。二极管VD导通,,VD续流,负 载电流近似为0,负载电流指数曲线下降, (3)为了是负载电流连续且脉动小,故应接上较大的电感L (4)一个周期T结束再次重复,在工作在稳态时,一个周期的终值与初值相等,负载电压的平均U0=KE,通过调节占空比 K使输出的电压平均值U0为所需的值 二.对于MOSET管和续流二极管VD的选择 1. V截止时,回路通过二极管V续流,MOSET管正向承受电压100V;当K=1时,MOSET管有最大电流,其值为5A,故需要选择集电极最大连续电流Ic>5A,反向击穿电压>100V,如果考虑2倍安全裕量Ic>10A, 反向击穿电压>200V 2.二极管当K=1时,其承受最大反压100V,而当K趋近1时,其承受最大电流趋近5A,故需要选择Vc>100v,I>5A的二极管,如果考虑2倍安全裕量I>10A, 反向击穿电压>200V 3.电感的选择:选择大电感能够续流,此时的临界电感L:

BUCK电路学习笔记

Buck电路学习笔记 Buck电路基本框图: 图1.1 Buck电路的控制方式: (1):脉冲调制型:保持开关周期T不变,调节开关导通时刻t on ,(PWM: Pulse Width Modulation)最常用,最容易实现 (2):频率调制(调频型):保持开关导通时间t on 不变,改变开关周期T. (3):混合调制:同时改变t on 和T,使得占空比t on /T发生改变。 Buck电路基本工作方式 MOS管Q和直流输入电压Vdc串联,通过Q的硬开通和硬关断,在VD处形成方波电压。采用恒频控制方式,占空比可调,Q导通时间为T ON 。 A:Q导通时,VD点电压也应为直流输入电压Vdc(设Q导通,压降为0),电流流经串接电感L,流出输出端。此时电感储能,并向电容C充电。等效模型如下图: 图1.2 B:Q关断时,电感L产生反电动势,使得VD点电压,迅速下降到0,便变为负值直至二极管D(因其续流作用而被称为“续流二极管”)被导通,并钳位于-0.8V。通过二极管续流,释放能量,电容C向负载供电。等效模型如下图:

图1.3 Buck电路波形分析: 图1.4 Buck电路工作波形图

图1.4(a)为MOSFET 的PWM 驱动波形PWM ,占空比可调。 当Q 导通时,VD 点电压也应为直流输入电压Vdc (设Q 导通,压降为0),当Q 关断时,电感L 产生反电动势,使得VD 点电压,迅速下降到0,便变为负值直至二极管D 被导通,并钳位于-0.8V 。此时假设二极管的导通压降为0V ,则VD 的波形如图(b )所示。 当Q 导通时,VD 点电压直流输入电压Vdc ,由于VO 电压低于Vdc ,电感L 承受的电压为(Vdc-VO ),因为Vdc,VO 电压均为恒定值,所以电感两端的电压保持恒定,因此流经电感的电流线性上升其斜率为=??t /I L Vo /)(Vdc -,L 为电感量,此时电感内部的电流变化如图1.4(e )所示的上升斜坡,而MOSFET 内部的电流如图1.4(c )所示。 当Q 关断时,VD 点电压,迅速下降到0V (假设二极管的导通压降为0V ),而电感的电流不能突变,电感产生反电动势以维持原来建立的电流,若未接续流二极管D ,则VD 点电压会变得很负以保持电感上的电流方向不变,但是此时续流二极管导通,使得电感前端的电压比地电位低于一个二极管的导通压降。 此时电感上的极性反相,使得流经续流二极管D 和电感L 的电流线性下降,直到MOSFET 关断结束时,回到电流初始值Ia 。因为VD 点电压被钳位于1V (二极管的导通压降近似为1V ),VO 电压均为恒定值不变,所以电感L 承受的电压为(VO+1)V ,续流二极管D 和电感L 的电流下降斜率为 L t /1Vo /I )(+=??L Vo /)1(+ , 续流二极管的电流变化如图1.4(d ),电感的电流如图1.4(e ) 。 根据基尔霍夫电流电流定律KCL 可知:电感的电流等于MOSFET 的电流,续流二极管D 的电流之和,即IL=IQ+ID 。根据图1.4(c )、(d )、(e )便可以看出。 Buck 电路的三种工作模式: (1) 连续工作模式 (2) 临界工作模式 (3) 不连续工作模式 判别条件为: 电流连续的条件为: 1m 1 e e αρρ->- 其中/M m E E =, /T ρτ=, 11/()()t T t T αρττ == BUCK 电路PSIM 开环仿真: (1) PWM 波形的产生方式:

buck电路参数

标签:BUCK 电源设计之BUCK电路-2 偶是电源方面的菜鸟,继续考虑与分析,希望能够把这部分知识给牢固掌握,并涉及最主要的点,难免有不好错误和遗漏的地方,请各位电源高手不惜指教。首先把设计需要的信息输入到我们定义参数中,如下图所示: 初步确认占空比和电感电流范围:

这里需要交代的是,我们在设计BUCK电路过程中,在需要确保负载电流范围需要保证负载不进入断续模式,按照示意图所示中,当进入断续模式时,会产生Ring的情况。 继续扩展,连续与断续的分界线为: 采用电路的特征参量去分析,确实简洁,但是并没有体现出输入电压与输出电流之间的关系 特征产量的三个参量为 1.PWM周期 2.电路的主电感量 3.电路输出负载

以上反应的关系实质上是指输出电流与占空比的关系,而输出电压一般是确定的,因此等同于输入电压与输出电流之间的关系,以上的式子并没有清晰的反应 出来,以下的推导可直观的表示出来:

可发现,如果电感选择过小,则会导致在设计电流范围内,电路进入了断续模式,而且在正常的电流变化过程中,电路在两种模式中不断变化,存在临界点,这是 不能接受的,通过选择电感后,可得到以下图形: 因此我们在选择电感和电容的初步选择,需要满足以下的关系:

电容的计算式子: 电容与电感量是有关系的,因此先选择电感量是关键。 电感和电容都是按照标准值选取的,偶找到TDK和适当的电容后贴上: 电感和电容值都要参考标准值来选取,通过以上的选取后,需要对目前的电路参 数进行验证。

电感的确定 负载电流3A,峰值电流为Ipeak为有效电流Irms的2-3倍, 电感可以这样估算,L=(Vin-Vdsat-V out)*Ton/Ipeak; Vdsat为PMOSFET的导通压降,Ton为导通时间,可见电感 愈小,峰值电流愈大,同时还要考虑电感磁芯饱(Core Saturation) 电容的取值和你要求的纹波有关Vripple.

BUCK电路降纹波的详解

详细解析Buck电路开关电源纹波的有效抑制方法 2013-10-11 09:51?来源:电源网?作者:云际 具有效率高、输出电压可调范围大、损耗小、体积小、重量轻等特点,得到了广泛的应用。由于开关电源体积小,输出直流电压的纹波含量比同功率线性电源大,如何降低纹波含量成为开关电源应用及制造技术中的一个关键技术难点。本文通过对Buck电路的分析,找出对纹波的产生有影响的因素及改善的措施。 纹波的定义 Buck类型开关电源的拓扑结构如图1所示。 通常情况下,开关电源首先把电网电压全波整流变为直流电,经高频开关变换由变压器降压,经高频二极管整流滤波后,得到稳定的直流电压输出。其自身含有大量的谐波干扰,同时由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰都形成了电磁干扰源,这些尖峰就是输出纹波。输出纹波主要来源于4个方面:低频纹波、高频纹波、共模纹波、功率器件开关过程中产生的超高频谐振等。 Buck电路产生纹波的机理及计算 1、纹波电流计算 电感的定义:

λ为线圈磁链、N为线圈匝数、i为流经线圈的电流、Φ为线圈磁通。如果式(1)两端以时间t为变量进行微分计算,可得: 这便是大家所熟知的电感电压降回路方程。 现在假设对于每个单独的开关周期,在开关管导通状态和关断状态,输入输出电压都基本没有变化,可以写出导通状态和关断状态时的L两端的电压。 导通状态L两端的电压: 关断状态L两端的电压: Vsat为开关管的导通压降;VF为二极管的导通压降。 由于Vsat和VF相对于Vi和Vo很小,这里忽略不计,可以得到: 可以看出Von和Voff都是常数,即对于 不论在导通状态还是在关断状态都有:

基于BUCK电路的电源设计

现代电源技术 基于BUCK电路的电源设计

学院:专业:姓名:班级:学号:指导教师:日期:

目录 摘要 (4) 一、设计意义及目的 (5) 二、Buck电路基本原理和设计指标 (5) 2.1 Buck电路基本原理 (5) 2.2 Buck电路设计指标 (7) 三、参数计算及交流小信号等效模型建立 (7) 3.1 电路参数计算 (7) 3.2 交流小信号等效模型建立 (11) 四、控制器设计 (12) 五、Matlab电路仿真 (18) 5.1 开环系统仿真 (18) 5.2 闭环系统仿真 (19) 六、设计总结 (22)

摘要 Buck电路是DC-DC电路中一种重要的基本电路,具有体积小、效率高的优点。本次设计采用Buck电路作为主电路进行开关电源设计,根据伏秒平衡、安秒平衡、小扰动近似等原理,通过交流小信号模型的建立和控制器的设计,成功地设计了Buck电路开关电源,通过MATLAB/Simulink进行仿真达到了预设的参数要求,并有效地缩短了调节时间和纹波。通过此次设计,对所学课程的有效复习与巩固,并初步掌握了开关电源的设计方法,为以后的学习奠定基础。 关键词:开关电源设计 Buck电路

一、设计意义及目的 通常所用电力分为直流和交流两种,从这些电源得到的电力往往不能直接满足要求,因此需要进行电力变换。常用的电力变换分为四大类,即:交流变直流(AC-DC),直流变交流(DC-AC),直流变直流(DC-DC),交流变交流(AC-AC)。其中DC-DC电路的功能是将直流电变为另一固定电压或可调电压的直流电,包过直接直流变流电路和间接直流变流电路。直接直流变流电路又称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,主要包括六种基本斩波电路:Buck电路,Boost电路,Buck-Boost电路,Cuk电路,Sepic电路,Zeta 电路。其中最基本的一种电路就是Buck电路。 因此,本文选用Buck电路作为主电路进行电源设计,以达到熟悉开关电源基本原理,熟悉伏秒平衡、安秒平衡、小扰动近似等原理,熟练的运用开关电源直流变压器等效模型,熟悉开关电源的交流小信号模型及控制器设计原理的目的。这些知识均是《线代电源设计》课程中所学核心知识点,通过本次设计,将有效巩固课堂所学知识,并加深理解。 二、Buck电路基本原理和设计指标 2.1 Buck电路基本原理 Buck变换器也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器,主要用于电力电路的供电电源,也可拖动直流电动机或带蓄电池负载等。其基本结构如图1所示:

lm5117 buck电路分析

lm5117 buck电路分析 LM5117是一款同步降压控制器,适用于高电压或各种输入电源的降压型稳压器应用。其控制方法基于采用仿真电流斜坡的电流模式控制。电流模式控制具有固有的输入电压前馈、逐周期电流限制和简化环路补偿的功能。使用仿真控制斜坡可降低脉宽调制电路对噪声的敏感度,有助于实现高输入电压应用所必需的极小占空比的可靠控制。LM5117的工作频率可以在50kHz至750kHz范围内设定。LM5117可利用自适应死区时间控制来驱动外部高边和低边NMOS功率开关管。用户可选的二极管仿真模式可实现非连续模式操作,提高轻负载条件下的效率。高电压偏置稳压器可利用外部偏置电源进一步提高效率。LM5117独特的模拟遥测功能可提供平均输出电流信息。其他功能还包括热关断、频率同步、断续(hiccup)模式电流限制和可调输入欠压锁定。今天讲讲LM5117的buck 电路。 BUCK电路是基本的DC-DC电路之一,其驱动电压一般为PWM(PulsewidthmodulaTIon 脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy=Ton/Ts。 UVLO:从VIN至AGND可使用一个外部UVLO设定点分压器RUV2来设置稳压器的最小输入工作电压。分压器的设计必须是当输入电压处在所需工作范围时。UVLO引脚可以用一个齐纳二极管来钳位,UVLO迟滞是通过一个内部20A 或关闭进入UVLO设定点分压器的阻抗。当UVLO引脚的电压超过1.25V阈值时,灌电流被启用,迅速提高UVLO引脚的电压。当UVLO引脚电压降至低于1.25V阈值时,灌电流被禁用,导致UVLO引脚的电压迅速下降。将CFT电容器与RUV1并联,有助于最大限度地降低注入到UVLO引脚的开关噪声。 DEMB引脚:在二极管仿真模式下,在检测到反向电流流过(电流从输出到地流经低边NMOS)后,低边NMOS在PWM周期的其余部分被锁断。该引脚浮置,LM5117内部的

30W buck电路的设计

电力电子应用课程设计课题:30W buck电路的设计 班级学号 姓名 专业电气工程及其自动化 系别电子与电气工程学院 指导教师陈万 淮阴工学院电气工程系 2015年5月

30W buck 电路的设计 L D C R V L i i u o u + - +- O t g u O t L i max L i min L i T on t 图1 buck 主电路及电感电流波形 一、设计目的: 图1示出了buck 主电路和电路中关键波形,通过本课题的分析设计,可以加深学生对buck 变换电路的理解,让学生学会分析buck 电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试;能够加强学生对脉宽调制(PWM )非隔离电力电子变流电路的理解以及该电路中MOSFET 的驱动电路的设计和调试。 输入:36~75Vdc ,输出:15Vdc/2A

二、设计任务: 1、分析buck电路工作原理,深入分析功率电路中各点的电压波形和各支路的电流波形; 2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级,并给出所选器件的型号,设计变换器输出滤波电感及滤波电容。 3、给出控制电路的设计方案,能够输出一频率和占空比可调的源。 4、应用protel软件作出线路图,建立硬件电路并调试。 三、研究和设计buck电路的意义 通过本课题的分析设计,可以加深学生对buck变换电路的理解,让学生学会分析buck电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试;能够加强学生对脉宽调制(PWM)非隔离电力电子变流电路的理解以及该电路中MOSFET的驱动电路的设计和调试。 四、工作原理 Buck变换器是一种输出电压等于或小于输入电压的单管非隔离直流变换器。开关管、二极管、输出滤波电容和输出滤波电感构

BUCK电路降纹波的详解

B U C K电路降纹波的详解 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

详细解析Buck电路开关电源纹波的有效抑制方法2013-10-1109:51来源:电源网作者:云际 具有效率高、输出电压可调范围大、损耗小、体积小、重量轻等特点,得到了广泛的应用。由于开关电源体积小,输出直流电压的纹波含量比同功率线性电源大,如何降低纹波含量成为开关电源应用及制造技术中的一个关键技术难点。本文通过对Buck电路的分析,找出对纹波的产生有影响的因素及改善的措施。 纹波的定义 Buck类型开关电源的拓扑结构如图1所示。 通常情况下,开关电源首先把电网电压全波整流变为直流电,经高频开关变换由变压器降压,经高频二极管整流滤波后,得到稳定的直流电压输出。其自身含有大量的谐波干扰,同时由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰都形成了电磁干扰源,这些尖峰就是输出纹波。输出纹波主要来源于4个方面:低频纹波、高频纹波、共模纹波、功率器件开关过程中产生的超高频谐振等。 Buck电路产生纹波的机理及计算 1、纹波电流计算 电感的定义: λ为线圈磁链、N为线圈匝数、i为流经线圈的电流、Φ为线圈磁通。如果式(1)两端以时间t为变量进行微分计算,可得: 这便是大家所熟知的电感电压降回路方程。 现在假设对于每个单独的开关周期,在开关管导通状态和关断状态,输入输出电压都基本没有变化,可以写出导通状态和关断状态时的L两端的电压。 导通状态L两端的电压:

关断状态L两端的电压: Vsat为开关管的导通压降;VF为二极管的导通压降。 由于Vsat和VF相对于Vi和Vo很小,这里忽略不计,可以得到: 可以看出Von和Voff都是常数,即对于 不论在导通状态还是在关断状态都有: 为常数,所以可以用替换,代入式(4)并整理得: 可以认为Δi就是电感线圈中的纹波电流,将导通和关断状态时的时间和电压式(2)和式(3)代入上式,分别写出导通状态和关断状态时的纹波电流表达式: Δion为导通状态纹波电流;ton为导通时间;Δioff为关断状态纹波电流;toff为关断时间。 在电源稳定工作时, ΔiL为线圈上纹波电流的绝对值。将式(5)和式(6)代入式(7),整理得: 进而得出: fs为开关频率。 将式(8)代入式(5),得: 式(9)即为纹波电流的表达式。 2、纹波电压计算 注意到在输出部分,电感电流在电容C和负载之间分割,有: 设在稳态下,输出到负载的电流不变。所以有:

BUCK电路介绍材料记录材料

1.1BUCK 电路的简介 串接晶体管的高功耗耗和笨重的工频变压器使得线性调整器在现代电于应用中失去了重要地位。而且高功耗的串接元件需要的大散热片和大体积储能电容增大了线性调整器的体积。 随着电子技术的发展,电路的集成化使得电路系统的体积更小。一般的线性调整器输出负载的功率密度仅为0.2~0.3W/in 3,不能满足电路系统小型化的要求。而且线性电源不能提供数字存储系统所需要的足够长的保持时间。 取代线性调整器的开关型调整器早在20世纪60年代就开始应用。一般的,这些新的开关电源使用开关晶体管将输入直流电压斩波成方波。方波由占空比调节,并通过输出滤波,得到直流稳压电源。 滤波器一般由电感和输出滤波电容组成。通过调节占空比,可以控制经过电容滤波输出电压的平均值。而输出电压的平均值等于方波的有效值。其基本拓扑如图1.1.采用的是恒频的工作方式,这种模式下的工作方式,功率开关管的通断频率f 不变,即周期T 不变,通过调节占空比(T T ON /)来调节输出电压。 注:T ON /T 一般称为占空比,即一个周期内的导通时间ON T 占周期T 的百分比。在某些书中也可以采用)/(OFF ON ON T T T +来表示。 OFF T 为功率开关管的关断时间,OFF ON T T T +=。 1.2 BUCK 电路的基本工作方式

1.2.1 BUCK电路的基本框图,如图1.1 图1.1 1.2.2 BUCK电路的基本工作方式 如图1.1,MOS管Q和直流输入电压Vdc串联,通过Q的硬开通和硬关断,在V D处形成方波电压。采用恒频控制方式,占空比可调,Q导通时间为T ON。 Q导通时,V D点电压也应为直流输入电压Vdc设Q导通,压降为0),电流流经串接电感L,流出输出端。等效模型如图1.2。 图1.2

开关电源(Buck电路)的小信号模型及环路设计全解

开关电源(Buck电路)的小信号模型及环路设计 万山明,吴芳 (华中科技大学电气与电子工程学院,湖北武汉430074) 摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 0 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。R e为滤波电容C的等效串联电阻,R o为负载电阻。各状态变量的正方向定义如图1中所示。 图1 典型Buck电路

S 导通时,对电感列状态方程有 O U Uin dt dil L -= ⑴ S 断开,D 1续流导通时,状态方程变为 O U dt dil L -= (2) 占空比为D 时,一个开关周期过程中,式(1)及式(2)分别持续了DT s 和(1-D )T s 的时间(T s 为开关周期),因此,一个周期内电感的平均状态方程为 ())()(O in O O in U DU U D U U D dt dil L -=--+-=1 稳态时,dt dil =0,则DU in =U o 。这说明稳态时输出电压是一个常数,其大小与占空比D 和输入电压U in 成 正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L =(D +d )(U in +)-(U o +) (4) 式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d 为D 的波动量。式(4)减式(3)并略去了两个波动量的乘积项得 L =D +dU in - (5) 由图1,又有 i L =C + (6) U o =U c +R e C (7)

(完整word版)BUCK电路

题目:BUCK电路闭环PID控制系统的MATLAB仿真 目录 一、课题简介 (2) 二、BUCK变换器主电路参数设计 (2) 2.1设计及内容及要求 (2) 2.2主电路设计 (2) 1、滤波电容的设计 (3) 2、滤波电感设计 (3) 3、占空比计算 (3) 三、BUCK变换器PID控制的参数设计 (3) 3.1主电路传递函数分析 (4) 四、BUCK变换器系统的仿真 (7) 4.1仿真参数及过程描述 (7) 4.2仿真模型图及仿真结果 (8) 五、总结 (10) 六、参考文献 (10) 七、附录 (10)

一、课题简介 BUCK 电路是一种降压斩波器,降压变换器输出电压平均值Uo 总是小于输出电压U D 通常电感中的电流是否连续,取决于开关频率、滤波电感L 和电容C 的数值。 简单的BUCK 电路输出的电压不稳定,会受到负载和外部的干扰,当加入PID 控制器,实现闭环控制。可通过采样环节得到PWM 调制波,再与基准电压进行比较,通过PID 控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK 电路闭环PID 控制系统。 二、BUCK 变换器主电路参数设计 2.1设计及内容及要求 1、 输入直流电压(VIN):15V 2、 输出电压(VO):5V 3、 输出电流(IN):10A 4、 输出电压纹波峰-峰值 Vpp ≤50mV 5、 锯齿波幅值Um=1.5V 6、开关频率(fs):100kHz 7、采样网络传函H(s)=0.3 8、BUCK 主电路二极管的通态压降VD=0.5V ,电感中的电阻压降VL=0.1V ,开关管导通压降 VON=0.5V,滤波电容C 与电解电容 RC 的乘积为 2.2主电路设计 根据以上的对课题的分析设计主电路如下: 图2-1 主电路图 F *Ωμ75

BUCK_BOOST电路原理分析

BUCK BOOST电路原理分析 电源网讯 Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期 Ts=Ton+Toff,占空比Dy= Ton/Ts。 Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式

Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。 Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q 也为PWM控制方式。 LDO的特点: ① 非常低的输入输出电压差 ② 非常小的内部损耗

③ 很小的温度漂移 ④ 很高的输出电压稳定度 ⑤ 很好的负载和线性调整率 ⑥ 很宽的工作温度范围 ⑦ 较宽的输入电压范围 ⑧ 外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1)Buck电路——降压斩波器,其输出平均电压 U0小于输入电压Ui,极性相同。 (2)Boost电路——升压斩波器,其输出平均电压 U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。

Buck电路简单理解

Buck 电路参数选择原理和计算 参数选择原理 在Buck 电路中的电感L 和电容C 组成低通滤波器,此滤波器的设计原则是,使输出电压的直流分量可以通过,抑制输出电压的开关频率及其谐波分量通过。但是,构建一个能够让直流分量通过而且完全滤除开关频率及其谐波分量的完美的滤波器是不可能的,所以,在输出中至少有一小部分是由于开关产生的高频谐波。因此,输出电压波形事实上如图所示,可以表达为 )()(00t u U t u ripple += () U ) (t ripple (0t u 图 输出电压波形 所以实际的输出电压由所需要的直流分量0U 加少量的交流分量ripple u 所组成,交流分量由低通滤波器未能完全衰减的开关谐波所产生。 由于直流变换器的作用使产生所需的直流的输出,因此希望输出电压开关纹 波应很小。所以,通常可以假设开关纹波的幅值远远小于直流分量,即 0max U u ripple << () 因此,输出电压近似为直流分量0U ,而忽略其小纹波成分ripple u ,即 00)(U t u ≈ () 上述近似称为小纹波近似,或称线性纹波近似,可大大简化变换器波形的分析。 下面分析电感电流波形,进而得出电感的计算公式。通过电感电压波形的积分可以得到电感电流。开关在位置1时,电感在左侧与输入电压d U 相连,电路简化为下图(a )。电感电压为 )()(0t u U t u d L -= ()

d U ) (0t u (a ) ) (0t u (b ) 图 如上所述,输出电压)(0t u 为其直流分量0U 加小的交流纹波成分)(t u ripple 。采用小纹波近似,式()中的)(0t u 用其直流分量0U 代替,得到 0)(U U t u d L -= () 开关在位置1时,电感电压等于0U U d -,如图(b )所示。电感电压方程为 dt t di L t u L L )()(= () 在第一个子区间,由上式可以解得电感电流波形的斜率为 L U U L t u dt t di d L L 0)()(-== () 由于开关在位置1时,电感电压近似为常量,因此电感电流的变化率也近似为常数,电感电流线性上升。 当在第二个子区间,开关处于位置2时,电感的左端与参考地相连,简化电 路如图(b )所示。所以,在第二个子区间,电感电压为 )()(0t u t u L -= () 采用小纹波近似式()得到 0)(U t u L -= () 所以,当开关处于位置2时的电感电压为常量,如图(b )所示。将式()代入式()中,得到电感电流的斜率为 L U dt t di L 0)(-= () 因此,在第二个子区间,电感电流的变化率为一负的常量。 现在,电感电流的波形如下图所示,电感电流从初始值)0(L i 开始。在第一个

BUCK电路案例分析图文说明

BUCK 电路案例分析图文说明 BUCK 电路是一种降压斩波器,降压变换器输出电压平均值U o 总是小于输入电压U d 。 一、BUCK 电路工作原理 Q1导通期间(t on ):电力开关器件导通,电感蓄能,二极管D 反偏。等效电路如图5.7(b)所示 ; Q1关断期间(t off ):电力开关器件断开,电感释能,二极管D 导通续流。等效电路如5.7 (c)所示; 由波形图5.7 (b)可以计算出输出电压的平均值为: )0(1 )(1 00??? ?+ ?= = S on on S T t t d S T S dt dt u T dt t u T U 则:d d S on DU U T t U == 0,D 为占空比。 忽略器件功率损耗,即输入输出电流关系为:d d O d O I D I U U I 1 == 。

图4.6 BUCK电路工作过程 二、电感工作模式分析 下图4.7为BUCK电路中电感流过电流情况。 图4.7电感电流波形图 电感中的电流i L是否连续,取决于开关频率、滤波电感L和电容C的数值。 1.电感电流i L连续模式:

⑴在t on 期间:电感上的电压为 dt di L u L L = 由于电感L 和电容C 无损耗,因此i L 从I 1线性增长至I 2,上式可以写成 on L on O d t I L t I I L U U ?=-=-12 O d L on U U L I t -?= )( 式中△I L =I 2-I 1为电感上电流的变化量,U O 为输出电压的平均值。 ⑵在t off 期间:假设电感中的电流i L 从I 2线性下降到I 1,则有 off L O t I L U ?= 则,O L off U I L t ?= 可求出开关周期TS 为 ) (1 O d O d L off on S U U U LU I t t f T -?= +== fL D D U fLU U U U I d d O d O L ) 1()(-= -= ? 上式中△I L 为流过电感电流的峰-峰值,最大为I 2,最小为I 1。电感电流一周期内的平均值与负载电流I O 相等,即 2 1 20I I I += 则)1(201D D L T U I I S d -- = 2.电感电流i L 临界连续状态 变换电路工作在临界连续状态时,即有I 1=0,由)1(201D D L T U I I S d --=,可得维持电流临界连续的电感值L 0为:

BUCK-BOOST电路(电压反馈)原理图及应用分析

BUCK-BOOST电路(电压反馈)原理图及应用分析 这个电路我调试了三天才调出一点眉目来,起初我以为是在光耦那里出了问题,反复修改那部分电路,只是在空载的情况下可以,一加100欧以内的功率负载,输入直流稳压电源就稳流了,怎么改都不行。加跟随,换成ISO124隔离都不能带负载,最后来了个绝的,把自己绕制的1mH的小功率电感换成500uH/6A 的大功率电感之后,带负载就不稳流了。1~3A负载电流都可以实现。 我总结了一下开关电源调试技巧: 1、输出反馈电压与比较参考电压是否合理? 2、栅源之间PWM是否正常,有无?占空比是否正确(是升压还是降压?)? 开关频率是否设置合理(这关系到开关损耗和输出纹波电压)? 3、UC3525供电电压是否在正常范围?共“地”问题是否处理好? 4、电感(磁芯、通过电感的电流I、电感感值L、开关频率f)。 这些都是在平时调试开关电源电路时所必须注意的地方,当然可能有些地方没有顾及到。 总结: 1.SG3525的PI调节部分确实很关键,这个部分没做好,题目中什么指标都免谈,本次使用204的可调电阻和105串联,最后在与682的瓷片电容并联。 2.开关管的DS之间并联一个电容作为吸收电路,此电容不宜过大(如474的电容),否则会导致开关管发热严重,主干电路的输入电流无谓的增加了几十mA,一般可选择100-470之间的值(一般情况下),也可以与一个小电阻(10-100)串联 3.SG3525的10脚,可以接一个2K的电阻到地,亦可以用来作为一个电流反馈端,用作保护作用。(类似于UC3842的电流反馈的功能)

(如果用直流电源作为输入的,而且容易恒流的话,可用此法)4.纹波测试技巧:示波器探头夹在电容两端,越近越好,这样测试纹波则相当小。 5.电压跟随电路(暂对于直流)的性能分析: OPA277 OP07 NE5532/NE5534效果依次递减。 原因:输入失调电压,输入失调电流,以及输入失调电压温漂,输入失调电流温漂越小,跟随性能越好。(本次大量使用了OPA277) UC3525 控制电路调试技巧: 1.连接整个电路使输出电流足够小,可以带75 的负载,此时用示波器的探 头观察PWM的波形,若发现波形抖动,则可带电调节PI中的那个电位器(我们采用一个电位器和电容串联再和一个电容并联),直到波形不抖动。 2.若发现电压调整率差,则要调节5,7两脚之间的那个电位器(死区调节), 直到输出电压为期望的电压值。 注:此时说的电压调整率差是由于占空比的限制,死区调节可以改变最大占空比,每一路只能达到50%左右,双路接电阻并联可实现最大占空比100%。 以下是我们调试非常成熟的一种方案:

相关主题
相关文档
最新文档