buck电路的原理
BUCK电路工作原理分析

BUCK电路工作原理分析首先介绍BUCK电路的基本组成部分。
BUCK电路由一个开关元件(一般为MOSFET)和一个电感组成。
开关元件用来开关输入电源和电感之间的连接,以控制输出电压的平均值。
电感是储能元件,在开关元件导通期间,通过电流源向电感储存能量;在开关元件截断期间,储存在电感中的能量通过二极管和负载传输到输出端。
BUCK电路的工作周期分为两个阶段:导通阶段和截断阶段。
在导通阶段,开关元件导通,输入电压通过电感和开关元件传递到负载,同时电感储存能量。
在截断阶段,开关元件截断,输入电压被限制在电感和负载之间,储存在电感中的能量则通过二极管和负载传输到输出端。
接下来详细分析BUCK电路的工作过程。
在导通阶段,开关元件导通,电感上的电流线性增大。
根据基尔霍夫电压定律,电感的电压降等于输入电压与输出电压之差,即Vi-Vo。
此时,电感积累的能量与电流和时间的乘积成正比,即E=(1/2)*L*i^2,其中L为电感的电感值,i为通过电感的电流。
由于电流增大连续的速率相同,可以得到E与i成正比。
在截断阶段,开关元件截断,电感储存的能量被传输到输出端。
此时,电感上的电流开始减小。
根据基尔霍夫电压定律,电感的电压降等于输出电压与负载间的电压降,即Vo。
上述能量传输的过程实际上可以看作是电感的电能转换为输出电压的能量转移。
BUCK电路的输出电压与输入电压之比由两个决定因素来控制:占空比和电感的值。
占空比是指开关元件导通时间与一个工作周期的比值。
占空比越小,输出电压越小。
而电感的值越大,输出电压也就越大。
通过合理选择这两个参数的组合,可以实现不同的输出电压。
此外,由于BUCK电路的开关频率相对较高,通常在几十kHz至数百kHz范围内,也就意味着它不会引入明显的视觉闪烁或噪音。
同时,由于BUCK电路的输入端接近恒流源,输出端接近恒压源,因此具有较好的抗扰动能力。
综上所述,BUCK电路基于开关原理和电感储能原理,通过控制开关元件的导通和截断,实现输入电压的降压功能。
buck电路原理

buck电路原理Buck电路是一种电子电路,用于将输入电压降低到较低的输出电压。
它是直流-直流(DC-DC)转换器的一种常见类型,常用于电源管理和电气控制系统中。
Buck电路主要由以下几个部分组成:1. 输入电源:提供输入电压给电路。
输入电压可以是不稳定的直流电源或交流电源经过整流和滤波后的直流电压。
2. 输入滤波器:该组件对输入电压进行滤波,以去除可能存在的高频扰动和噪声。
它通常由电感和电容组成。
3. 开关管:开关管是Buck电路的关键组件,用于控制电路的输出电压。
开关管可以是MOSFET或BJT。
通过调整开关管的导通和截止时间来控制输出电压。
4. 开关管驱动电路:开关管驱动电路是用于控制开关管导通和截止的关键组件。
它通过接收输入信号,产生适当的脉冲信号来驱动开关管。
5. 输出滤波器:输出滤波器用于对输出电压进行滤波,以去除可能存在的高频噪声和纹波。
它通常由电感和电容组成。
6. 负载:负载是连接到Buck电路的设备或电路,它消耗输出电压。
Buck电路的工作原理如下:1. 输入电压通过输入滤波器进入电路。
2. 开关管驱动电路接收输入信号,产生适当的脉冲信号以驱动开关管。
3. 开关管根据脉冲信号的控制,周期性地打开和关闭。
当开关管导通时,输入电流流经电感和负载,产生储能;当开关管截止时,这些储能被释放,使输出电压降低。
4. 输出电压经过输出滤波器,去除可能的高频噪声和纹波,然后送往负载。
Buck电路通过适当的控制开关管的导通时间和截止时间,可以实现输出电压的稳定调节。
此外,Buck电路还可以通过增加电感和电容的数量来提高输出电压的稳定性和纹波抑制能力。
总之,Buck电路通过开关管的周期性开关来实现将输入电压降低为较低的输出电压的功能。
它在许多应用中广泛使用,如电子设备、通信系统和电源管理系统中。
buck电路原理

buck电路原理Buck电路原理。
Buck电路是一种常见的降压电路,通过控制开关管的导通和截止来实现输入电压到输出电压的降压转换。
在实际电子设备中,Buck电路被广泛应用于各种场合,如电源适配器、直流-直流转换器等。
本文将介绍Buck电路的原理、工作方式和相关特性。
Buck电路的原理是基于电感器的工作原理,通过改变电感器的导通时间来控制输出电压的大小。
在Buck电路中,当开关管导通时,电感器储存能量,当开关管截止时,电感器释放能量,从而实现电压的降压转换。
这种工作原理使得Buck 电路能够高效地将输入电压转换为所需的输出电压。
Buck电路的工作方式是通过PWM控制来实现的。
PWM控制是一种通过改变开关管的导通时间来控制输出电压的方法。
当需要降低输出电压时,PWM控制会减小开关管的导通时间,从而降低输出电压;当需要提高输出电压时,PWM控制会增加开关管的导通时间,从而提高输出电压。
通过这种方式,Buck电路能够实现对输出电压的精确控制。
除了原理和工作方式,Buck电路还具有一些特性。
首先,Buck电路的效率较高,通常能够达到90%以上。
其次,Buck电路的输出电压稳定性较好,能够适应不同负载条件下的工作要求。
此外,Buck电路的设计较为简单,成本较低,适用于大批量生产。
因此,Buck电路在电子设备中得到了广泛的应用。
总的来说,Buck电路是一种高效、稳定、成本低廉的降压电路,具有广泛的应用前景。
通过理解其原理、工作方式和特性,我们可以更好地应用Buck电路于实际电子设备中,为人们的生活和工作带来便利和效益。
希望本文能够对读者有所帮助,谢谢阅读!。
同步整流buck电路原理

同步整流buck电路原理
同步整流Buck电路是一种常见的DC-DC变换器拓扑,通常用于将一个电压转换为另一个较低的电压。
它的工作原理如下:
1. 输入电压首先被施加到开关管上。
当开关管导通时,电感储存能量,电容器也开始充电。
当开关管截至时,电感释放能量,将能量传输到负载上。
2. 在同步整流Buck变换器中,输出电压的整流由同步整流MOSFET管完成。
这种结构可以提高转换器的效率。
3. 当流过电感的电流在每个周期不会降为0时,定义变换器工作于连续导通模式。
4. 在一个开关周期内,电感电流的增量和减量必须相等。
由此可得输出电压与输入电压的关系式。
5. 在整个开关周期内,电感都传递能量给滤波电容和负载,而滤波电容每个周期的平均电流为0,其能量的变化量为0。
故输出负载电流等于电感电流平均值。
如需更多关于同步整流buck电路的相关信息,建议查阅电子工程相关书籍或文献。
buck电路基本原理

buck电路基本原理
Buck电路是一种常见的降压电路,它通过控制开关器件的导
通时间来将输入电压降低到所需的输出电压级别。
该电路基本原理如下:
1. 输人电压由电源提供,经过一个电感和一个二极管连接到电容和负载上。
开关器件一般是一个MOSFET,它通过控制其
导通与截止的时间来调整输出电压。
2. 当开关器件导通时,电感中储存的能量开始流向负载并充电电容。
此时,电流通过电感和二极管形成闭环。
在这个过程中,电流增加,同时电感中的能量也增加。
3. 当开关器件关断时,电感中的能量需要释放到负载和电容上。
此时,电感产生自感电压,同时二极管充当绕过开关器件的通道,使能量正常流向负载。
电感中的自感电压试图保持电流不变,然后电流开始减小。
4. 电流减小时,电感中储存的能量会进一步降低。
重复这个过程,直到电感中的能量耗尽,或者直到达到所需的输出电压级别。
总之,Buck电路通过控制开关器件的导通与截止来调节电压,同时通过电感和二极管的协同作用实现能量传递和转换,从而实现输入电压的降压。
BUCK降压斩波电路

BUCK降压斩波电路简介BUCK降压斩波电路是一种常见的电源管理电路,主要用于将高电压的直流电源转换成稳定的低电压输出。
该电路采用降压斩波方式工作,通过控制开关管的导通和断开来实现电压的降压和稳定输出。
本文将详细介绍BUCK降压斩波电路的原理、构成和工作原理。
原理BUCK降压斩波电路的基本原理是利用开关管的导通和断开操作周期性地截断输入电压,并通过滤波电容和电感来实现电压的平滑输出。
具体原理如下:1.开关管导通:当开关管导通时,输入电压通过电感和滤波电容被存储为电感储能和电容储能。
此时,输出电压为输入电压减去开关管的压降。
2.开关管断开:当开关管断开时,电感储存的能量被传递到输出电路,从而维持输出电压的稳定。
此时,电容电压继续供电并保持输出电压的平滑。
通过周期性地切换开关管的导通和断开,BUCK降压斩波电路能够实现高效、稳定的电压降低和输出。
构成BUCK降压斩波电路主要由以下几个组成部分构成:1.输入滤波电容:用于平滑输入电压和过滤高频噪声。
2.输入电感:用于储存输入电流和提供电源电流。
3.开关管:用于控制电路的导通和断开操作。
4.输出电感:用于储存能量并平滑输出电压。
5.输出滤波电容:用于继续平滑输出电压。
6.负载:用于连接电路的输出端。
工作原理BUCK降压斩波电路的工作原理可以通过以下几个步骤来解释:1.正常工作状态下,开关管导通,输入电压通过输入滤波电容并存储在电感和输出滤波电容中。
2.当电压达到设定的输出电压时,控制电路检测到此信号,并命令开关管断开。
3.开关管断开后,电感释放存储的能量,通过输出电感和输出滤波电容提供稳定的输出电压。
4.当输出电压降低到设定值以下时,控制电路再次命令开关管导通,回到步骤1,循环进行。
BUCK降压斩波电路通过不断调整开关管的导通和断开时间来控制输出电压的稳定性和精度。
同时,还能通过反馈电路实时感知输出电压,并通过控制信号精确调整开关管的工作状态,以达到理想的输出效果。
入门级Buck电路原理—简洁而不简单

Buck、Boost、Buck-Boost作为直流开关电源中应用广泛的拓扑结构,属于非隔离的直流变换器。
本期内容小编将对其中的Buck电路展开详细介绍。
*Buck基础拓扑电路降压式(Buck)变换器是一种输出电压≤输入电压的非隔离直流变换器。
Buck变换器的主电路由开关管Q,二极管D,输出滤波电感L和输出滤波电容C构成。
接下来将从:1. 开关整流器基本原理2. 传说中的“伏-秒平衡” 3. 同步整流死区时间等三部分详细介绍Buck电路的工作原理。
让我们打起精神,擦亮眼睛,深刻体会简洁而不简单的Buck电路吧!Part 1 开关整流器基本原理导通时间关断时间在[0,Ton]期间,开关导通;在[Ton,Ts]期间,Q截止。
设开关管开关周期为Ts,则开关频率fs=1/Ts。
导通时间为Ton,关断时间为Toff,则Ts=Ton+Toff。
设占空比为D,则D=Ton/Ts。
改变占空比D,即改变了导通时间Ton的长短,这种控制方式成为脉冲宽度调制控制方式(Pulse Width Modulation, PWM)。
Buck电路特征•输出电压≤输入电压•输入电流断续•输出电流连续•需要输出滤波电感L和输出滤波电容CPart 2 传说中的“伏-秒平衡”伏秒原则,又称伏秒平衡,是指开关电源稳定工作状态下,加在电感两端的电压乘以导通时间等于关断时刻电感两端电压乘以关断时间,或指在稳态工作的开关电源中电感两端的正伏秒值等于负伏秒值。
在一个周期T 内,电感电压对时间的积分为0,称为伏秒平衡原理。
正如本文开头视频中指出,任何稳定拓扑中的电感都是传递能量而不消耗能量,都会满足伏秒平衡原理。
Part 3 同步整流死区时间同步整流是采用极低导通电阻的的MOSFET来取代二极管以降低损耗的技术,大大提高了DCDC的效率。
物理特性的极限使二极管的正向电压难以低于0.3V。
对MOSFET来说,可以通过选取导通电阻更小的MOSFET来降低导通损耗。
buck电路工作原理

buck电路工作原理
Buck电路是一种常用的降压转换器,它能将输入电压降低到
输出电压。
它的工作原理如下:
1. 开关:Buck电路中有一个开关,通常为MOSFET或BJT。
开关周期性地打开和关闭,控制电路进入和退出导通状态。
2. 电感:开关打开时,电压施加在电感上,使其储存电能。
当开关关闭时,储存的电能被释放,并通过电感的电流流向负载。
3. 电容:电容连接在开关和负载之间,用于平滑输出电压。
当开关打开时,电容通过负载来提供电流,以保持输出稳定。
4. 控制电路:Buck电路还包括一个控制电路,用于监测输出
电压并调整开关的工作周期,以保持稳定的输出电压。
控制电路通常使用反馈机制来实现。
具体的工作步骤如下:
1. 当开关闭合时,电感充电,并储存电能。
2. 当开关打开时,电感释放储存的电能,并通过电流流向负载。
3. 由于电感的电流变化,电压也会随之变化。
4. 当开关再次闭合时,循环过程重复,以保持输出稳定。
总结来说,Buck电路通过周期性开关,控制电感储存和释放
电能,从而将输入电压降低到输出电压。
控制电路通过反馈机制来维持稳定的输出电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
buck电路的原理
降压式变换电路(Buck电路)详解
一、BUCK电路基本结构
开关导通时等效电路开关关断时等效电路
二、等效的电路模型及基本规律
(1)从电路可以看出,电感L和电容C组成低通滤波器,此滤波器设计的原则是使us(t)的直流分量可以通过,而抑制us(t) 的谐波分量通过;电容上输出电压uo(t)就是us(t) 的直流分量再附加微小纹波uripple(t) 。
(2)电路工作频率很高,一个开关周期内电容充
放电引起的纹波uripple(t) 很小,相对于电容上
输出的直流电压Uo有:电容
上电压宏观上可以看作恒
定。
电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。
(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。
这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。
(4)开关S置于1位时,电感电流增加,电感储能;而当开关S
置于2位时,电感电流减小,电感释能。
假定电流增加量大于
电流减小量,则一个开关周期内电感上磁链增量为:
此增量将产生一个平均感应电势:
此电势将减小电感电流的上升速度并同时降低电感电流的
下降速度,最终将导致一个周期内电感电流平均增量为零;一
个开关周期内电感上磁链增量小于零的状况也一样。
这种在稳态状况下一个周期内电感电流平均增量(磁链平
均增量)为零的现象称为:电感伏秒平衡。
这也是电力电子电路稳态运行时的又一个普遍规律。
三、电感电流连续工作模式(CCM)下稳态工作过程分析。