第3章 波导传输线理论
合集下载
微波技术基础2013-第三章 传输线与波导

电场的初解为
j z E ( u, v , z ) E ( u, v )e
同理,可得磁场的初解
H ( u, v , z ) H ( u, v )e jz
※电场和磁场初解说明,场分量在横向是随u,v变 j z
化和分布的,同时沿z方向是以 e
形式传播的。
3.1.4用纵向场分量表示横向场分量
第三章 传输线和波导 引言
一.导波系统的提出
1.导线为什么不能传输微波信号?
【例1】半径r=2mm的铜导线,传输50Hz 市电时电阻为1.37×10-3欧姆/m,当传输 10GHz微波信号时,由于趋肤效应电流趋 肤深度0.066微米,电阻为2.07欧姆/m,损 耗急剧增加。
第三章 传输线和波导
引言
TE
k 0 ( 3.22) Ht
Et
3.1.6(3) TM波
TM波的特征 Hz=0,Ez≠0,即电场有纵向分量,磁场无纵 向分量,只有横向分量。
3.1.6(1)TEM波
TEM波横向场与静场一样都满足二维拉普拉斯 方程,可利用势函数来求解.
0 (3.14) 并且 E ( u, v ) t
2 t
E jH
E H j
3.1.6(1)TEM波
波阻抗
TEM
•
Et Ht
E z jH x j E y ... 3.3a y E z jH y j E x ... 3.3b x E y E x jH z ... 3.3c x y
3.1.4直角坐标系导波系统的一般解
•
横向场分量与纵向场分量的关系
H z E z 1 E x 2 ( j j ) kc y x H z Ez 1 E y 2 ( j j ) kc x y E z H z 1 H x 2 ( j j ) kc y x E z H z 1 H y 2 ( j j ) kc x y
j z E ( u, v , z ) E ( u, v )e
同理,可得磁场的初解
H ( u, v , z ) H ( u, v )e jz
※电场和磁场初解说明,场分量在横向是随u,v变 j z
化和分布的,同时沿z方向是以 e
形式传播的。
3.1.4用纵向场分量表示横向场分量
第三章 传输线和波导 引言
一.导波系统的提出
1.导线为什么不能传输微波信号?
【例1】半径r=2mm的铜导线,传输50Hz 市电时电阻为1.37×10-3欧姆/m,当传输 10GHz微波信号时,由于趋肤效应电流趋 肤深度0.066微米,电阻为2.07欧姆/m,损 耗急剧增加。
第三章 传输线和波导
引言
TE
k 0 ( 3.22) Ht
Et
3.1.6(3) TM波
TM波的特征 Hz=0,Ez≠0,即电场有纵向分量,磁场无纵 向分量,只有横向分量。
3.1.6(1)TEM波
TEM波横向场与静场一样都满足二维拉普拉斯 方程,可利用势函数来求解.
0 (3.14) 并且 E ( u, v ) t
2 t
E jH
E H j
3.1.6(1)TEM波
波阻抗
TEM
•
Et Ht
E z jH x j E y ... 3.3a y E z jH y j E x ... 3.3b x E y E x jH z ... 3.3c x y
3.1.4直角坐标系导波系统的一般解
•
横向场分量与纵向场分量的关系
H z E z 1 E x 2 ( j j ) kc y x H z Ez 1 E y 2 ( j j ) kc x y E z H z 1 H x 2 ( j j ) kc y x E z H z 1 H y 2 ( j j ) kc x y
波导传输线理论课件

以及实现多功能化设计。
新型材料与工艺在波导传输线中的应用
要点一
新材料
要点二
新工艺
采用新型材料如碳纳米管、石墨烯等可以改善波导传输线 的性能,提高传输效率、减小损耗等。未来需要研究如何 实现新材料在波导传输线中的稳定制备和性能优化。
采用新型工艺如纳米压印、微纳加工等可以减小波导传输 线的尺寸、降低成本,提高集成度。未来需要研究如何实 现新工艺的稳定性和可重复性,以及在波导传输线制作中 的广泛应用。
矩形波导具有全封闭的结构, 能够提供良好的电磁场隔离, 减少外部干扰和辐射损耗。
在矩形波导中,电磁波的能量 主要集中在波导内部,传输过 程中能量损失较小。此外,矩 形波导的截止频率和传播常数 等参数可以通过调节其尺寸来 控制。
圆波导
总结词
圆波导是一种特殊类型的波导,其横截面呈圆形。
总结词
圆波导的优点在于其封闭性和均匀性,能够提供 较好的电磁场隔离和传输稳定性。
波导传输线理论课件
目录
PART 01
波导传输线概述
定义与特点
定义
波导传输线是一种用于传输电磁 波的结构,通常由两个平行的金 属板或导电壁构成。
特点
具有定向传播电磁波的特性,能 够控制电磁波的传播方向和模式, 常用于微波和毫米波频段的信号 传输和能量传输。
波导传输线的历史与发展
历史
波导传输线最早可以追溯到19世纪 末,随着无线电和雷达技术的发展, 波导传输线逐渐得到广泛应用。
• 总结词:光纤波导的优点在于其传输速度快、带宽大、抗电磁干扰性能好和保密性强。 • 详细描述:光纤波导的尺寸通常用纤芯直径d来表示,其截止频率和传播常数等参数与纤芯直径、折射率和涂覆层厚度有关。在某些应用中,光纤波导还可以通过弯曲来改变传输方向。
新型材料与工艺在波导传输线中的应用
要点一
新材料
要点二
新工艺
采用新型材料如碳纳米管、石墨烯等可以改善波导传输线 的性能,提高传输效率、减小损耗等。未来需要研究如何 实现新材料在波导传输线中的稳定制备和性能优化。
采用新型工艺如纳米压印、微纳加工等可以减小波导传输 线的尺寸、降低成本,提高集成度。未来需要研究如何实 现新工艺的稳定性和可重复性,以及在波导传输线制作中 的广泛应用。
矩形波导具有全封闭的结构, 能够提供良好的电磁场隔离, 减少外部干扰和辐射损耗。
在矩形波导中,电磁波的能量 主要集中在波导内部,传输过 程中能量损失较小。此外,矩 形波导的截止频率和传播常数 等参数可以通过调节其尺寸来 控制。
圆波导
总结词
圆波导是一种特殊类型的波导,其横截面呈圆形。
总结词
圆波导的优点在于其封闭性和均匀性,能够提供 较好的电磁场隔离和传输稳定性。
波导传输线理论课件
目录
PART 01
波导传输线概述
定义与特点
定义
波导传输线是一种用于传输电磁 波的结构,通常由两个平行的金 属板或导电壁构成。
特点
具有定向传播电磁波的特性,能 够控制电磁波的传播方向和模式, 常用于微波和毫米波频段的信号 传输和能量传输。
波导传输线的历史与发展
历史
波导传输线最早可以追溯到19世纪 末,随着无线电和雷达技术的发展, 波导传输线逐渐得到广泛应用。
• 总结词:光纤波导的优点在于其传输速度快、带宽大、抗电磁干扰性能好和保密性强。 • 详细描述:光纤波导的尺寸通常用纤芯直径d来表示,其截止频率和传播常数等参数与纤芯直径、折射率和涂覆层厚度有关。在某些应用中,光纤波导还可以通过弯曲来改变传输方向。
第3章传输线理论

常数A1和A2需根据电路的其他已知条件来确定。例如,已 知传输线的终端电压U0和终端电流I0,要求出线上任意位 置处电压和电流的表示式,由下图可知,设z=0处有
U 0 U 0
I 0 I 0
将它们代入电压与电流的表达式中,可分别得到
U (0) A1 A2 U 0
1 A1 A2 I 0 I (0) Zc
U ( z) U ( z) Zc I ( z) I ( z)
特性阻抗的一般表示式
R0 j L0 Zc G0 jC0
G 对于无耗传输线,由于 R0 =0、 0 =0,其特性阻抗为
Zc L0 C0
在微波波段,构成传输线的导体材料都是良导体,传输线中 填充的介质也是良介质,一般都有 R0 L0 , G0 C0 ,因此 工作在微波波段的传输线的特性阻抗为
U ( z ) U ( z ) U0 e j z
Zin ( z) Zc
3.2.2全反射工作状态
一.传输线终端短路(短路线)
终端被理想导体短路的传输线称为短路线,此时 Z0 0 0 1
得传输线上任意位置z处的电压和电流分别为
U ( z) j 2U0 sin z
第3章 传输线理论
3.1 传输线方程及 其时谐稳态解
3.1.1 电压电流的引入及传输线上的参数分布
一、电压、电流的定义
y
i
1
a
l’
a
u ( z, t )
i( z, t )
-i
b
a
b ET dl Ex dx E y dy
a
lb 2l Nhomakorabea H T dl H x dx H y dy
微波技术-传输线和波导

g
2
1
c
2
TE模和TM模特性总结
——波导参数
➢ 相速
➢ 群速(能速)
vp
v
1
c
2
• 其中,v为波导中介质
vg v
1
c
2
➢且
对应的自由空间光速。 即
vg v
vp v
vpvg v2
TE模和TM模特性总结
——传播特性
1)传播模式
• 每一个m和n的组合,都是波导中一个满足边 界条件的独立解,称为波型或模式。m和n称 为波型指数。
全波分析 ➢ 优点:可以进行高阶模、不连续性和色散的分
析 ➢ 缺点:分析过程复杂 • 分离变量法、谱域法、横向谐振法等
3.1.1 TEM波
——分析过程总结(求解拉普拉斯方程法)
1、在合适的坐标系下分离变量,求解电位 的拉普拉斯方程。
2、由导体的边界条件,求出解的常量。 3、由电场和电位的关系,计算出电场。 4、由电场和磁场的关系,计算出磁场。
Z0
V0 I0
L 1 C Cv
C
C V0 2
E E*ds
R
Rs I0 2
H H *dl
C
v 1 1
LC
规则波导中波的一般传输特性总结 ——TE和TM波
场分析 TE波 • 纵向场:
2 t
k
2 c
Hz
0
• 横向场
规则波导中波的一般传输特性总结 ——TE和TM波
3.3.2 TM模
(条件: Hz=0 Ez≠0)
场解
Ez
Bmn
sin
m
a
x sin n
b
y e jz (3.100)
第三章-传输线和波导

Microwave Technique
kc2 k 2 2
kC 意义: 2 ez ( x, y) 0 的本征值。 特定边界条件下偏微分方程 2ez ( x, y) kC 本征值对应的一系列本征函数 本征值
ez ( x, y) ,是纵向电场的场分布函数。
本征函数 传播模式和场型
导行波:
这种形式的场时变规律是一种“原地振动”的正弦振荡,其振幅 沿+z轴以指数衰减,完全没有波的向前传播的特性。这种状态对应的 模式称为截止模式或消逝模。 二者的分界——截止频率fc
Microwave Technique
k 2fc kc
截止频率fc: 截止波长:
fc
(3.19b) (3.19c) (3.19d)
波阻抗为:
(3.22) (3.26)
与频率有关,可以存在于封闭导体内,也可在两个或更多导体之间形成。
Microwave Technique
3.1.2 TE波
由亥姆霍兹方程:
3.1.3 TM波
由亥姆霍兹方程:
因为:
上式简化为:
(3.21)
因为:
上式简化为:
kC
决定了电磁场在传输系统中的模式或场型。这反映了传输系统的物质、 形状和几何尺寸对电磁能量的束缚作用。
2 2 k kC 意义:(传播状态)
方程中β由
kC 和k决定,这反映了由波源进入的微波信号(ω、λ),
在某一确定传输系统中的传输情况,即反映了导行波的传播特征。如:纵 向场的分布和信号能量纵向推进的快慢。
j E z H z 2 kc y x j E z H z Hy 2 kc x y Hx Ex j E z H z kc2 y x
电信传输原理第3章 波导传输线理论

面积越小,金属中的热损耗就越大。 三.介质损耗大 平行双导线较长时要用绝缘介质或金属绝缘子(即四分之一波
长短路线)作支架以固定导线,当频率很高时,介质损耗或 金属绝缘子的热损耗也很大。 随着频率的升高,辐射损耗急剧增加,介质损耗和热损耗也有 所增加,但没有辐射损耗严重。由于以上现象,平行双导线 只能用于米波及其以上波长范围。
17
3.2 波导传输线的常用分析方法及一般特性
双线传输线理论讨论沿双线传输线传输的TEM波,而 在金属波导中不存在TEM波。
金属波导可传输Ez≠0,Hz=0的TM波及Ez=0,Hz≠0的TE 波。
传输线方程的局限性:单根导线、空心金属管、光纤等 无法用电路方法解决。
电磁场理论的有效性:任何电器问题都可以用麦氏方程 表示。
(3)损耗小。一般波导内填充的是干燥的空气,因此 介质损耗很小。
(4)结构简单,均匀性好。
3.1.2圆波导定向耦合器在高功率微波测 量中的应用
基于多孔耦合技术的圆波导耦合器,在微波取样处具有较 低的电场强度,因此可以显著提高在线测量系统的功率容 量。对X波段在线测量系统的标定、大功率考核、高功率 比对以及高功率微波实验表明,该在线测量系统测量结果 稳定可靠,可以应用于HPM 源功率测量和状态监测。
不变,以及填充于波导管内介质参数(、、)沿纵向
均匀分布。
对规则金属波导,作如下假设(理想波导的定义 ) : ①波导管的内壁电导率为无穷大,即认为波导管壁是理想 导体。 ②波导内为各向同性、线性、无损耗的均匀介质。 ③波导内为无源区域,波导中远离信号波源和接收设备。 ④波导为无限长。 ⑤波导内的场随时间作简谐变化。
2Exk2Ex 0 2Hxk2Hx 0
2Ey k2Ey 0 2Hy k2Hy 0
长短路线)作支架以固定导线,当频率很高时,介质损耗或 金属绝缘子的热损耗也很大。 随着频率的升高,辐射损耗急剧增加,介质损耗和热损耗也有 所增加,但没有辐射损耗严重。由于以上现象,平行双导线 只能用于米波及其以上波长范围。
17
3.2 波导传输线的常用分析方法及一般特性
双线传输线理论讨论沿双线传输线传输的TEM波,而 在金属波导中不存在TEM波。
金属波导可传输Ez≠0,Hz=0的TM波及Ez=0,Hz≠0的TE 波。
传输线方程的局限性:单根导线、空心金属管、光纤等 无法用电路方法解决。
电磁场理论的有效性:任何电器问题都可以用麦氏方程 表示。
(3)损耗小。一般波导内填充的是干燥的空气,因此 介质损耗很小。
(4)结构简单,均匀性好。
3.1.2圆波导定向耦合器在高功率微波测 量中的应用
基于多孔耦合技术的圆波导耦合器,在微波取样处具有较 低的电场强度,因此可以显著提高在线测量系统的功率容 量。对X波段在线测量系统的标定、大功率考核、高功率 比对以及高功率微波实验表明,该在线测量系统测量结果 稳定可靠,可以应用于HPM 源功率测量和状态监测。
不变,以及填充于波导管内介质参数(、、)沿纵向
均匀分布。
对规则金属波导,作如下假设(理想波导的定义 ) : ①波导管的内壁电导率为无穷大,即认为波导管壁是理想 导体。 ②波导内为各向同性、线性、无损耗的均匀介质。 ③波导内为无源区域,波导中远离信号波源和接收设备。 ④波导为无限长。 ⑤波导内的场随时间作简谐变化。
2Exk2Ex 0 2Hxk2Hx 0
2Ey k2Ey 0 2Hy k2Hy 0
电信传输原理第3章 波导传输线理论

3.1.5常用波导的电参数
矩形波导和圆波导的电参数表如表3-1和表3-2所示:
表3-1 国内矩形波导电参数表
3.1.5常用波导的电参数
矩形波导和圆波导的电参数表如表3-1和表3-2所示:
表3-2 国内圆波导电参数表
内容提要
波导传输线及应用
波导传输线的常用分析方法及一般特性
矩形波导及其传输特性 圆波导及其传输特性
波导中为何没有TEM波
原因:若金属波导管中存在TEM波,电力线分 布于波导横截面上,则它必为闭合的磁力线包围; 磁力线正交于电场,必有磁场强度H的纵向分量Hz 如图所示。
3.2.1 波导传输线的常用分析方法
采用“场”分析方法,研究波导中导行电磁波场的分布规
3.1.2圆波导定向耦合器在高功率微波测 量中的应用
基于多孔耦合技术的圆波导耦合器,在微波取样处具有较
低的电场强度,因此可以显著提高在线测量系统的功率容 量。对X波段在线测量系统的标定、大功率考核、高功率 比对以及高功率微波实验表明,该在线测量系统测量结果 稳定可靠,可以应用于HPM 源功率测量和状态监测。 在高功率容量在线测量系统的研制过程中,已经建立了一 套在线测量系统的设计规范,完善了相应的标定系统和考 核方法。在此基础上,建立了不同频段的在线测量装置。 同时,针对可调谐HPM 源的需求,目前已经研制了具有 大带宽的圆波导耦合器,其耦合度在9.2~10.2 GHz 带 宽范围内变化小于± 0.1 dB;针对大尺寸过模波导输出 的HPM源,研制了高功率选模定向耦合器。这些耦合器 构建的在线测量系统在HPM 源的研制中正发挥着重要作
同轴线可用于较高频率,因为电磁场被屏蔽在内外导体之间
,没有辐射损耗。同轴线可用在分米波及厘米波波段。当频 率更高时,同轴线存在以下问题: 1.损耗大。由于内外导体是靠介质支撑的,有介质损耗,频 率很高时,介质损耗会很大,集肤效应使得金属的热效应急 剧增加。 2.为了保证同轴线传输横电磁波(TEM波),必须满足条件
微波技术基础-传输线和波导(1)

北京邮电大学——《微波技术基础》
4
绪论——建立微波技术的观点与分析方法
微波技术的分析方法——“场”与“路”相结合
电磁场(理论)+微波(应用)
精确了解“场 精确了解“场 结构分布” 结构分布” “化场为路” “化场为路”
从场的概念出发,分析 归结为电路问题来处 理,借用成熟的低频电 路理论求解电磁场问题
3
本章学习要点
熟悉波导中导波场的一般求解方法——纵向场法 熟悉金属波导的波型理论(波型的分类、波型的场结 构、波型的特性及其沿波导轴向传输特性) 掌握波导中波的传播条件及各类波导的主模 掌握规则波导的传输特性参数——截止频率/截止波 长、相速/群速、波导波长、波阻抗 了解规则波导设计的一般原则——单模传输(通常为 主模)、传输功率尽量大、损耗小
微微波波技技术术基基础础北京邮电大学无线通信与电磁兼容实验室北京邮电大学无线通信与电磁兼容实验室刘凯明刘凯明明光楼明光楼718718室室62281300buptlkmsohucombuptlkmsohucom副教授副教授622813002011北京邮电大学微波技术基础2第第33章章传输线和波导传输线和波导北京邮电大学微波技术基础3基本概念导波方程及求解矩形金属波导圆波导同轴线带状线和微带线本章主要内容本章主要内容北京邮电大学微波技术基础4熟悉波导中导波场的一般求解方法纵向场法熟悉金属波导的波型理论波型的分类波型的场结构波型的特性及其沿波导轴向传输特性掌握波导中波的传播条件及各类波导的主模掌握规则波导的传输特性参数截止频率截止波长相速群速波导波长波阻抗了解规则波导设计的一般原则单模传输通常为主模传输功率尽量大损耗小本章学习要点本章学习要点北京邮电大学微波技术基础5精确了解场结构分布结构分布精确了解场绪论绪论建立微波技术的观点与分析方法建立微波技术的观点与分析方法微波技术的分析方法场与路相结合化场为路化场为路电磁场理论微波应用微波网络理论从场的概念出发分析归结为电路问题来处理借用成熟的低频电路理论求解电磁场问题微波等效电路方法北京邮电大学微波技术基础6研究对象微波传输线波导传输线波导的设计研究目的建立电磁场理论与微波电路理论之间的桥梁将电磁场理论运用于微波电路设计中场的方法研究方法电磁场理论亥姆霍兹方程引引言言北京邮电大学微波技术基础7什么是波导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3-5 方、圆波导变换器
3.2 波导传输线的常用分析方法及一般特性
• 在双线传输线理论中所讨论的是沿双线传输线
传输的TEM波,而在金属波导中是不存在TEM
波的。这是因为若金属波导管中存在TEM波,
那么磁力线应在横截面上,而磁力线应是闭合
的。根据右手螺旋规则,必有电场的纵向分量
Ez,即位移电流
Ez
t
支持磁场。若沿此闭合
磁力回线对H做线积分,积分后应等于轴向电
流(即 Hd i(z) 移位电流)。但是,在空心
波导管中根本无法形成轴向电流。因此波导管
内不可能存在TEM波。
3.2.1 波导传输线的常用分析方法
• 对波导传输线常用分析方法研究,不仅适用于金属波 导也适用介质波导。波导是引导电磁波沿一定方向传 输的系统,故又称导波系统。研究波导中导行电磁波 场的分布规律和传播规律,实质上就是求解满足波导 内壁边界条件的麦克斯韦方程。其方法之一,就是先 如何求出电磁场中的纵向分量,然后利用纵向分量直 接求出其他的横向分量,从而得到电磁场的全解。
表3-2 国产圆波导电参数表(第1位B为波导,第2位Y为圆形截面)
型号
主模频率 范围/GHz
内截面尺寸/mm 直径 壁厚t
主模衰减/(dB/m)
频率/GHz
理论值/最大值
BY22 2.07~2.83 97.87 3.30
2.154
0.0115/0.015
BY30 2.83~3.88 71.42 3.30
• 凡是用来引导电磁波的单导体结构的传输线都可以称 为波导。波导是由空心金属管构成的传输系统,根据 其截面形状不同,可以分为矩形波导、圆波导、脊形 波导和椭圆波导等,如图3-1所示。这类传输线上传 输的波型是TE波和TM波,传输的频率是微波段的电 磁波,例如厘米波和毫米波,且传输功率也比较大。 由于波导横截面的尺寸与传输信号载波波长有关,因 此,在微波的低频波段不采用波导来传输能量,否则 波导尺寸太大。
2.06
0.00970/0.013
3.12
0.0189/0.025
BJ70 5.38~8.17 34.85 15.799 1.5
6.46
0.0576/0.075
BJ100 8.20~12.5 22.86 10.16 1
9.84
0.110/0.143
BJ180 14.5~22.0 12.945 6.477 1
10.42
0.1220/0.150
BY120 11.6~15.9 17.415 1.27
12.07
0.1524/0.150
BY190 18.2~24.9 11.125 1.015
18.95
0.3003/—
3.1.2 波导在微波天馈线系统的应用
图3-2 微波天馈线系统的结构图
3.1.3 波导在微波器件上的应用
17.4
0.238/--
BB22 1.72~2.61 109.2 13.10 2
2.06
0.03018/0.039
BB58 4.64~7.06 40.40 5.00 1.5
5.57
0.13066/0.170
BB100 8.20~12.5 22.86 5.00
1
9.84
0.1931/0.251
3.1.2 波导在微波天馈线系统的应用
• 金属波导和同轴线(同轴波导)的另一个应用是微波
谐振器和方圆波导(模式)变换器,微波谐振器,如
图3-3所示。谐振器在低频电路中通常用LC回路并联
构成,它的谐振频率为:
f0
2π
1 LC
图3-3 各种谐振器
3.1.3 波导在微波器件上的应用
• 当要求提高谐振频率时,必须减小L和C。减小电容的 措施是增大平行板距离,减小电感的措施是减少电感线 圈的匝数,直到仅有一匝为止,如图3-4(b)所示;再 进一步提高频率的方法是,将多个单匝线圈并联以减小 电感L,如图3-4(c)所示;进一步增加电感数目,以 致相连成片,形成一个封闭的中间凹进去的导体空腔如 图3-4(d)所示,这就成了重入式空腔谐振器;继续把 构成电容的两极拉开,则谐振频率可进一步提高,这样 就形成了一个圆盒子和方盒子,如图3-4(e)所示,这 是微波空腔谐振器的常用形式。
3.1.1 波导传输线的结构及种类
图3-1 金属波导传输线的结构
3.1.2 波导在微波天馈线系统的应用
• 矩形波导和圆波导较为广泛地应用于远距离能量传 输,常用波导的电参数,如表3-1和表3-2所示。
• 矩形波导和圆波导是在微波技术中采用最多的一种 波导管,如微波中继、雷达、卫星通信的天馈线部 分等,其长度小于100米,如图3-2所示。而目前移 动通信基站收/发机到发射天线的馈线部分大多采 用轻便的射频直径为7/8英寸的中同轴电缆。
第3章 波导传输线理论
1
内容提要
• 波导传输线及应用 • 波导传输线的常用分析方法及一般特性 • 矩形波导及其传输特性 • 圆波导及其传输特性 • 同轴线及其传输特性
2
3.1 波导传输线及应用
• 波导传输线的结构及种类 • 波导在微波天馈线系统的应用 • 波导在微波器件上的应用
3.1.1 波导传输线的结构及种类
3.1.2 波导在微波天馈线系统的应用
表3-1 国内矩形波导电参数表(第1位B为波导,第2位J为矩形, B为扁矩形截面)
型号
主模频率 范围/GHz
内截面尺寸/mm
主模衰减/(dB/m)
宽边a 窄边b 壁厚t 频率/GHz 理论值/最大值
BJ22 1.72~2.61 109.22 54.61 2 BJ32 2.6~3.95 72.14 34.04 2
2.952
0.0184/0.024
BY40 3.89~5.33 51.99 2.54
4.056
0.0297/0.039
BY56 5.30~7.27 38.10 2.03
5.534
0.0473/0.062
BY76 7.27~9.970 27.788 1.65
7.588
0.0759/0.099
BY104 9.97~13.7 20.244 1.27
3.1.3 波导在微波器件上的应用 图3-4 微波谐振器的演化过程
3.1.3 波导在微波器件上的应用 • 波导除了可做谐振器外,还可以做模式变换器,如图
3-5所示。圆波导中TE11模的场分布与矩形波导的 TE10模的场分布很相似,因此,在工程上通过将矩 形波导的横截面逐渐过渡变为圆波导,从而构成方圆 波导变换器,起波导耦合器的作用。
3.2 波导传输线的常用分析方法及一般特性
• 在双线传输线理论中所讨论的是沿双线传输线
传输的TEM波,而在金属波导中是不存在TEM
波的。这是因为若金属波导管中存在TEM波,
那么磁力线应在横截面上,而磁力线应是闭合
的。根据右手螺旋规则,必有电场的纵向分量
Ez,即位移电流
Ez
t
支持磁场。若沿此闭合
磁力回线对H做线积分,积分后应等于轴向电
流(即 Hd i(z) 移位电流)。但是,在空心
波导管中根本无法形成轴向电流。因此波导管
内不可能存在TEM波。
3.2.1 波导传输线的常用分析方法
• 对波导传输线常用分析方法研究,不仅适用于金属波 导也适用介质波导。波导是引导电磁波沿一定方向传 输的系统,故又称导波系统。研究波导中导行电磁波 场的分布规律和传播规律,实质上就是求解满足波导 内壁边界条件的麦克斯韦方程。其方法之一,就是先 如何求出电磁场中的纵向分量,然后利用纵向分量直 接求出其他的横向分量,从而得到电磁场的全解。
表3-2 国产圆波导电参数表(第1位B为波导,第2位Y为圆形截面)
型号
主模频率 范围/GHz
内截面尺寸/mm 直径 壁厚t
主模衰减/(dB/m)
频率/GHz
理论值/最大值
BY22 2.07~2.83 97.87 3.30
2.154
0.0115/0.015
BY30 2.83~3.88 71.42 3.30
• 凡是用来引导电磁波的单导体结构的传输线都可以称 为波导。波导是由空心金属管构成的传输系统,根据 其截面形状不同,可以分为矩形波导、圆波导、脊形 波导和椭圆波导等,如图3-1所示。这类传输线上传 输的波型是TE波和TM波,传输的频率是微波段的电 磁波,例如厘米波和毫米波,且传输功率也比较大。 由于波导横截面的尺寸与传输信号载波波长有关,因 此,在微波的低频波段不采用波导来传输能量,否则 波导尺寸太大。
2.06
0.00970/0.013
3.12
0.0189/0.025
BJ70 5.38~8.17 34.85 15.799 1.5
6.46
0.0576/0.075
BJ100 8.20~12.5 22.86 10.16 1
9.84
0.110/0.143
BJ180 14.5~22.0 12.945 6.477 1
10.42
0.1220/0.150
BY120 11.6~15.9 17.415 1.27
12.07
0.1524/0.150
BY190 18.2~24.9 11.125 1.015
18.95
0.3003/—
3.1.2 波导在微波天馈线系统的应用
图3-2 微波天馈线系统的结构图
3.1.3 波导在微波器件上的应用
17.4
0.238/--
BB22 1.72~2.61 109.2 13.10 2
2.06
0.03018/0.039
BB58 4.64~7.06 40.40 5.00 1.5
5.57
0.13066/0.170
BB100 8.20~12.5 22.86 5.00
1
9.84
0.1931/0.251
3.1.2 波导在微波天馈线系统的应用
• 金属波导和同轴线(同轴波导)的另一个应用是微波
谐振器和方圆波导(模式)变换器,微波谐振器,如
图3-3所示。谐振器在低频电路中通常用LC回路并联
构成,它的谐振频率为:
f0
2π
1 LC
图3-3 各种谐振器
3.1.3 波导在微波器件上的应用
• 当要求提高谐振频率时,必须减小L和C。减小电容的 措施是增大平行板距离,减小电感的措施是减少电感线 圈的匝数,直到仅有一匝为止,如图3-4(b)所示;再 进一步提高频率的方法是,将多个单匝线圈并联以减小 电感L,如图3-4(c)所示;进一步增加电感数目,以 致相连成片,形成一个封闭的中间凹进去的导体空腔如 图3-4(d)所示,这就成了重入式空腔谐振器;继续把 构成电容的两极拉开,则谐振频率可进一步提高,这样 就形成了一个圆盒子和方盒子,如图3-4(e)所示,这 是微波空腔谐振器的常用形式。
3.1.1 波导传输线的结构及种类
图3-1 金属波导传输线的结构
3.1.2 波导在微波天馈线系统的应用
• 矩形波导和圆波导较为广泛地应用于远距离能量传 输,常用波导的电参数,如表3-1和表3-2所示。
• 矩形波导和圆波导是在微波技术中采用最多的一种 波导管,如微波中继、雷达、卫星通信的天馈线部 分等,其长度小于100米,如图3-2所示。而目前移 动通信基站收/发机到发射天线的馈线部分大多采 用轻便的射频直径为7/8英寸的中同轴电缆。
第3章 波导传输线理论
1
内容提要
• 波导传输线及应用 • 波导传输线的常用分析方法及一般特性 • 矩形波导及其传输特性 • 圆波导及其传输特性 • 同轴线及其传输特性
2
3.1 波导传输线及应用
• 波导传输线的结构及种类 • 波导在微波天馈线系统的应用 • 波导在微波器件上的应用
3.1.1 波导传输线的结构及种类
3.1.2 波导在微波天馈线系统的应用
表3-1 国内矩形波导电参数表(第1位B为波导,第2位J为矩形, B为扁矩形截面)
型号
主模频率 范围/GHz
内截面尺寸/mm
主模衰减/(dB/m)
宽边a 窄边b 壁厚t 频率/GHz 理论值/最大值
BJ22 1.72~2.61 109.22 54.61 2 BJ32 2.6~3.95 72.14 34.04 2
2.952
0.0184/0.024
BY40 3.89~5.33 51.99 2.54
4.056
0.0297/0.039
BY56 5.30~7.27 38.10 2.03
5.534
0.0473/0.062
BY76 7.27~9.970 27.788 1.65
7.588
0.0759/0.099
BY104 9.97~13.7 20.244 1.27
3.1.3 波导在微波器件上的应用 图3-4 微波谐振器的演化过程
3.1.3 波导在微波器件上的应用 • 波导除了可做谐振器外,还可以做模式变换器,如图
3-5所示。圆波导中TE11模的场分布与矩形波导的 TE10模的场分布很相似,因此,在工程上通过将矩 形波导的横截面逐渐过渡变为圆波导,从而构成方圆 波导变换器,起波导耦合器的作用。