【4月山东枣庄二调数学】山东省枣庄市2020届高三下学期第二次模拟考试数学试题及答案解析
山东省枣庄市2020届高三模拟考试(二调)解析版

2
,
12
上单调递减,故
C
错;因为
f
12
sin
6
3
sin
2
1 ,所以
12
是
f
x 的一个极值点,故
D
正确,故选
D.
6.B【解析】由
loga
b
logb
a
loga
b
1 loga
b
5 2
,解得
loga
b
1 2
或
loga
b
2
,所以
b2
a
或
b a2 .又 ab ba ,代入,得 2b a b2 或 b 2a a2 ,解得 b 2, a 4 或 a 2,b 4 (舍去),
13
.
20
【
解
析
】
x
1 x
6
的
展
开
式
中
二
项
式
系
数
最
大
的
项
是
T4
13
3
C63x 2
,
其
系
数
为
13 C63 20.
14.0【解析】 AM MN AD DM MC CN
=
AD
2 3
DC
1 3
DC
1 2
AD
2 9
2
DC
1 2
2
AD
2 9
32
1 2
22
0.
15.4, 0 , 3 1【解析】本题考查椭圆的几何性质.因为直线 3x y 4 3 0 过点 F1 ,令 y 0 ,
得 x 4 , 所 以 F1 4,0, F2 4,0 ; 易 知 直 线 3x y 4 3 0 的 倾 斜 角 为 60 , 即
山东省2020届高三数学二模试卷

山东省2020届高三数学二模试卷含解析一、单选题(共8题;共16分)1.已知角的终边经过点,则()A. B. C. D.2.已知集合,则()A. B. C. D.3.设复数z满足,z在复平面内对应的点为,则()A. B.C. D.4.设,,,则a,b,c的大小关系是()A. B. C. D.5.已知正方形的边长为()A. 3B. -3C. 6D. -66.函数y= 的图象大致是()A. B.C. D.7.已知O,A,B,C为平面内的四点,其中A,B,C三点共线,点O在直线外,且满足.其中,则的最小值为()A. 21B. 25C. 27D. 348.我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.椭球是椭圆绕其长轴旋转所成的旋转体,如图,将底面半径都为.高都为的半椭球和已被挖去了圆锥的圆柱(被挖去的圆锥以圆柱的上底面为底面,下底面的圆心为顶点)放置于同一平面上,用平行于平面且与平面任意距离d处的平面截这两个几何体,截面分别为圆面和圆环,可以证明圆= 圆环总成立.据此,椭圆的短半轴长为2,长半轴长为4的椭球的体积是()A. B. C. D.二、多选题(共4题;共12分)9.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中错误的是()A. 消耗1升汽油乙车最多可行驶5千米.B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多.C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油.D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油.10.设,分别为双曲线的左、右焦点,若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则关于该双曲线的下列结论正确的是()A. 渐近线方程为B. 渐近线方程为C. 离心率为D. 离心率为11.已知函数的图象的一条对称轴为,则下列结论中正确的是()A. 是最小正周期为的奇函数B. 是图像的一个对称中心C. 在上单调递增D. 先将函数图象上各点的纵坐标缩短为原来的,然后把所得函数图象再向左平移个单位长度,即可得到函数的图象.12.如图,点M是正方体中的侧面上的一个动点,则下列结论正确的是()A. 点M存在无数个位置满足B. 若正方体的棱长为1,三棱锥的体积最大值为C. 在线段上存在点M,使异面直线与所成的角是D. 点M存在无数个位置满足到直线和直线的距离相等.三、填空题(共3题;共3分)13.古典著作《连山易》中记载了金、木、水、火土之间相生相克的关系,如图所示,现从五种不同属性的物质中任取两种,则取出的两种物质恰是相克关系的概率为________14.已知点A,B,C,D均在球O的球面上,,,若三棱锥体积的最大值是,则球O的表面积为________15.设是定义在R上且周期为6的周期函数,若函数的图象关于点对称,函数在区间(其中)上的零点的个数的最小值为,则________四、双空题(共1题;共1分)16.动圆E与圆外切,并与直线相切,则动圆圆心E的轨迹方程为________,过点作倾斜角互补的两条直线,分别与圆心E的轨迹相交于A,B两点,则直线的斜率为________.五、解答题(共6题;共61分)17.已知△的内角A,B,C的对边分别为a,b,c,若,________,求△的周长L和面积S.在① ,,② ,,③ ,这三个条件中,任选一个补充在上面问题中的横线处,并加以解答.18.已知为等差数列,,,为等比数列,且,.(1)求,的通项公式;(2)记,求数列的前n项和.19.如图所示,在等腰梯形中,∥,,直角梯形所在的平面垂直于平面,且,.(1)证明:平面平面;(2)点在线段上,试确定点的位置,使平面与平面所成的二面角的余弦值为.20.已知椭圆经过点,离心率为(1)求椭圆C的方程;(2)设直线与椭圆C相交于A,B两点,若以,为邻边的平行四边形的顶点P在椭圆C上,求证:平行四边形的面积为定值.21.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区200名患者的相关信息,得到如下表格:潜伏期(单位:天)人数17 41 62 50 26 3 1附:0.05 0.025 0.0103.841 5.024 6.635,其中(1)求这200名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述200名患者中抽取40人得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期天潜伏期天总计50岁以上(含50岁)2050岁以下9总计40(3)以这200名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入硏究,该研究团队在该地区随机调查了10名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?22.已知函数,(1)讨论函数的单调性;(2)当时,证明曲线分别在点和点处的切线为不同的直线;(3)已知过点能作曲线的三条切线,求m,n所满足的条件.答案解析部分一、单选题1.【答案】B【解析】【解答】解:由于角的终边经过点,则,.故答案为:B.【分析】由条件利用任意角的三角函数的定义,求得和的值,可得的值.2.【答案】C【解析】【解答】解:集合则.故答案为:C.【分析】先化简集合B,再根据交集的定义即可求出.3.【答案】A【解析】【解答】解:∵z在复平面内对应的点为,∴,又,.故答案为:A.【分析】由z在复平面内对应的点为,可得,然后代入,即可得答案.4.【答案】D【解析】【解答】解:,,,∴.故答案为:D.【分析】利用对数函数和指数函数的性质求解.5.【答案】A【解析】【解答】解:因为正方形的边长为3,,则.故答案为:A.【分析】直接根据向量的三角形法则把所求问题转化为已知长度和夹角的向量来表示,即可求解结论.6.【答案】D【解析】【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D【分析】根据掌握函数的奇偶性和函数的单调性即可判断.7.【答案】B【解析】【解答】解:根据题意,A,B,C三点共线,点O在直线外,.设,,则,,消去得,(当且仅当时等式成立).故答案为:B.【分析】根据题意,易得,则,根据基本不等式的应用运算,易得的最小值.8.【答案】C【解析】【解答】解:∵圆= 圆环总成立,∴半椭球的体积为:,∴椭球的体积,∵椭球体短轴长为2,长半轴长为4,∴该椭球体的体积.故答案为:C.【分析】由圆= 圆环总成立,求出椭球的体积,代入b与a的值得答案.二、多选题9.【答案】A,B,C【解析】【解答】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,A错误,符合题意;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,B错误,符合题意;对于C,由图象可知当速度为80km/h 时,甲车的燃油效率为10km/L,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km,燃油为8升,C错误,符合题意;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,D正确,不符合题意.故答案为:ABC.【分析】过横轴上某一点做纵轴的平行线,这条线和三条折线的交点的意思是相同速度下的三个车的不同的燃油效率,过纵轴上某一点做横轴的平行线,这条线和三条折线的交点的意思是相同燃油效率下的三个车的不同的速度,利用这一点就可以很快解决问题.涉及到将图形语言转化为数学语言的能力和简单的逻辑推理能力.10.【答案】A,C【解析】【解答】解:设,由,可得,由到直线的距离等于双曲线的实轴长,设的中点,由等腰三角形的性质可得,,即有,,即,可得,即有,则双曲线的渐近线方程为,即;离心率.故答案为:AC.【分析】设,运用双曲线的定义和等腰三角形的性质可得关于a,b,c的方程,再由隐含条件即可得到a与b的关系,求出双曲线的渐近线方程及离心率即可.11.【答案】B,D【解析】【解答】解:,当时,取到最值,即解得,.A:,故不是奇函数,A不符合题意;B:,则是图像的一个对称中心,B符合题意;C:当时,,又在上先增后减,则在上先增后减,C不符合题意;D. 将函数图象上各点的纵坐标缩短为原来的,然后把所得函数图象再向左平移个单位长度,得,D符合题意.故答案为:BD.【分析】化简函数,将代入得函数最值,可求得,进而可得,通过计算,可判断A;通过计算,可判断B;当时,,可得在上的单调性,可判断C;通过振幅变换和平移变换,可判断D12.【答案】A,B,D【解析】【解答】解:A.连接,由正方体的性质可得,则面当点上时,有,故点M存在无数个位置满足,A符合题意;B.由已知,当点M与点重合时,点M到面的距离最大,则三棱锥的体积最大值为,B符合题意;C. 连接,因为则为异面直线与所成的角设正方体棱长为1,,则,点到线的距离为,,解得,所以在线段上不存在点M,使异面直线与所成的角是,C不符合题意;D. 连接,过M作交于N,由面,面,得,则为点到直线的距离,为点到直线的距离,由已知,则点M在以为焦点,以为准线的抛物线上,故这样的点M有无数个,D符合题意.故答案为:ABD.【分析】通过证明面,可得当点上时,有,可判断A;由已知,当点与点重合时,点到面的距离最大,计算可判断B;C. 连接,因为,则为异面直线与所成的角,利用余弦定理算出的距离,可判断C;连接,过M作交于N,得到,则点在以为焦点,以为准线的抛物线上,可判断D.三、填空题13.【答案】【解析】【解答】解:古典著作《连山易》中记载了金、木、水、火土之间相生相克的关系,现从五种不同属性的物质中任取两种,基本事件总数,取出的两种物质恰是相克关系包含的基本事件有:水克火,木克土,火克金,土克水,金克木,共5种,则取出的两种物质恰是相克关系的概率为.故答案为:.【分析】基本事件总数,利用列举法求出取出的两种物质恰是相克关系包含的基本事件有5种,由此能求出取出的两种物质恰是相克关系的概率.14.【答案】【解析】【解答】解:设的外接圆的半径为,∵,,则,为直角三角形,且,∵三棱锥体积的最大值是,,,,均在球的球面上,∴到平面的最大距离,设球的半径为,则,即解得,∴球的表面积为.故答案为:.【分析】设的外接圆的半径为r,可得为直角三角形,可求出,由已知得D到平面的最大距离h,设球O的半径为R,则,由此能求出R,从而能求出球O的表面积.15.【答案】,,或(表示不超过x的最大整数)【解析】【解答】将的图象向左平移1个单位,得到的图象,因为函数的图象关于点对称,即有的图象关于原点对称,即为定义在上的奇函数,可得,又为周期为6的周期函数,可得.可令,则,即,可得,当时,在上,有;当时,在上,有;当时,在上,有;当时,在上,有,,…,可得即,或(表示不超过的最大整数)故答案为:,或(表示不超过的最大整数)【分析】由图象平移可知,为定义在R上的奇函数,可得,又为周期为6的周期函数,可得,分别求得时,的值,归纳即可得到所求通项.四、双空题16.【答案】;-1【解析】【解答】解:如图,由题意可知,,则,∴点到直线的距离等于到点的距离,∴动圆圆心的轨迹是以为焦点,以为准线的抛物线,则其轨迹方程为;点坐标为,设,由已知设:,即:,代入抛物线的方程得:,即,则,故,设,即,代入抛物线的方程得:,即,则:,故,,直线AB的斜率,∴直线AB的斜率为−1.故答案为:;−1.【分析】由已知可得点到直线的距离等于到点的距离,即动圆圆心的轨迹是以M为焦点,以为准线的抛物线,则轨迹方程可求;设出直线的方程,与抛物线方程联立,求出的坐标,利用斜率公式,即可求得直线的斜率五、解答题17.【答案】解: 选① 因为,,且,,所以,,在△中,,即,所以,由正弦定理得,,因为,所以,所以△的周长,△的面积.选② 因为,所以由正弦定理得,因为,所以. 又因为.由余弦定理得所以. 解得. 所以.所以△的周长.△的面积.选③ 因为,,所以由余弦定理得,.即. 解得或(舍去).所以△的周长,因为,所以,所以△的面积,【解析】【分析】选择①:根据条件求出,,则可求出,再根据正弦定理可求出,进而可得周长面积;选择②:,,.由正弦定理可得:.由余弦定理可得:,联立解得:,进而可得周长面积;选择③:由余弦定理可得,则周长可求,再根据可得,通过面积公式可得面积18.【答案】(1)解:设等差数列的公差为d,由题意得,解得,所以数列的通项公式,即.设等比数列的公比为,由,,得,,解得,所以数列的通项公式;(2)解:由(1)知,则,,两式相减得,所以【解析】【分析】(1)设等差数列的公差为d,由等差数列的通项公式,解方程可得首项和公差,进而得到;设等比数列的公比为q,由等比数列的通项公式,解方程可得首项和公比,进而得到;(2)求得,由数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.19.【答案】(1)解:因为平面平面,平面平面,,平面,所以平面,又平面,所以,在△中,,,,由余弦定理得,,所以,所以.又,,所以平面,又平面,所以平面平面(2)解:以C为坐标原点,以,所在直线分别为x轴、y轴建立如图所示的空间直角坐标系,,,,,,,,,,,,设,则.设平面的一个法向量为,则,即,取,得.设平面的一个法向量为,由,得,令,得,因为平面与平面所成的二面角的余弦值为,所以,整理得,解得或(舍去),所以点M为线段中点时,平面与平面所成的二面角的余弦值为.【解析】【分析】(1)推导出平面,,,从而平面,由此能证明平面平面;(2)以为坐标原点,以,所在直线分别为轴、轴建立空间直角坐标系,利用向量法能求出点为线段中点时,平面与平面所成的二面角的余弦值.20.【答案】(1)解:因为椭圆过点,代入椭圆方程,可得①,又因为离心率为,所以,从而②,联立①②,解得,,所以椭圆为;(2)解:把代入椭圆方程,得,所以,设,,则,所以,因为四边形是平行四边形,所以,所以P点坐标为.又因为点P在椭圆上,所以,即.因为.又点O到直线的距离,所以平行四边形的面积,即平行四边形的面积为定值.【解析】【分析】(1)由题意可得关于的方程组,求得的值,则椭圆方程可求;(2)联立直线方程与椭圆方程,化为关于x的一元二次方程,利用根与系数的关系及四边形是平行四边形,可得点坐标,把P点坐标代入椭圆方程,得到,利用弦长公式求得,再由点到直线的距离公式求出点O到直线l的距离,代入三角形面积公式即可证明平行四边形的面积为定值21.【答案】(1)解:(天).(2)解:根据题意,补充完整的列联表如下:潜伏期天潜伏期天总计50岁以上(含50岁)15 5 2050岁以下9 11 20总计24 16 40则,经查表,得,所以没有的把握认为潜伏期与患者年龄有关;(3)解:由题意可知,该地区每名患者潜伏期超过6天发生的概率为.设调查的10名患者中潜伏期超过6天的人数为X,由于该地区人数较多,则近似服从二项分布,即,, (10)由,得化简得,又,所以,即这10名患者中潜伏期超过6天的人数最有可能是4人.【解析】【分析】(1)利用平均值的定义求解即可;(2)根据题目所给的数据填写2×2列联表,根据公式计算,对照题目中的表格,得出统计结论;(3)先求出该地区每名患者潜伏期超过6天发生的概率,设调查的10名患者中潜伏期超过6天的人数为X,由于该地区人数较多,则X近似服从二项分布,即,,…,10,由得:,即这10名患者中潜伏期超过6天的人数最有可能是4人.22.【答案】(1)解:因为,所以,所以当时,;当时,.所以在上单调递增,在上单调递减;(2)解:因为,所以,.又因为,.所以曲线在点处的切线方程为;曲线在点处的切线方程为.因为.所以.所以两条切线不可能相同.(3)解:设直线l过点与曲线在点处相切,设直线,则消去,得.因为过点能作曲线的三条切线,所以关于的方程有三个不等实根.设,则有三个零点.又,①若,则,所以在上单调递增,至多一个零点,故不符合题意;②若,则当时,,单调递增;当时,,单调递减;当时,,单调递增.所以的极大值为,极小值为. 又有三个零点,所以,即,所以;③若,则当时,,单调递增;当,,单调递减;当时,,单调递增,所以的极大值为,极小值为.又有三个零点,所以,即,所以,综上所述,当时,;当时,.【解析】【分析】(1)对求导,根据的符号判断的单调性;(2)先分别求出曲线分别在点和点处的切线方程,然后根据条件证明两者为不同的直线的方程;(3)先设直线过点与曲线在点处相切,再设直线,根据两者联立得到方程,要求此方程有三个不等实根即可.然后构造函数,研究该函数有3个零点的条件即可.。
山东省枣庄市2020届高三模拟考试(二调)数学试题

秘密★启用前山东省威海市2020届高考模拟考试(4月一模)数学试题2020.4本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|lg(1)}A x y x ==+,{}|2,x B y y x ==-∈R ,则A B ⋃=( )A .(1,0)-B .(1,)-+∞C .RD .(,0)-∞ 2.已知i 是虚数单位,1i -是关于x 的方程20(,)x px q p q ++=∈R 的一个根,则p q +=( )A .4B .4-C .2D .2-3.“cos 0θ<”是“θ为第二或第三象限角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.2013年5月,华人数学家张益唐的论文《素数间的有界距离》在《数学年刊》上发表,破解了困扰数学界长达一个多世纪的难题,证明了孪生素数猜想的弱化形式,即发现存在无穷多差小于7000万的素数对.这是第一次有人证明存在无穷多组间距小于定值的素数对.孪生素数猜想是希尔伯特在1900年提出的23个问题中的第8个,可以这样描述:存在无穷多个素数p ,使得2p +是素数,素数对(,2)p p +称为孪生素.数在不超过16的素数中任意取出不同的两个,则可组成孪生素数的概率为( )A .110B .421C .415D .155.已知函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .()f x 的最小正周期为2πB .()f x 的图象关于点,03π⎛⎫ ⎪⎝⎭对称 C .()f x 在11,212ππ⎛⎫ ⎪⎝⎭上单调递增 D .512π是()f x 的一个极值点 6.已知0a b >>,若5log log 2a b b a +=,b a a b =,则a b =( )AB .2C .D .4 7.函数6cos ()2sin x f x x x=-的图象大致为( ) A . B . C . D .8.已知点(,)P m n 是函数y =图象上的动点,则|4321|m n +-的最小值是( ) A .25 B .21 C .20 D .4二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.2019年4月23日,国家统计局统计了2019年第一季度居民人均消费支出的情况,并绘制了饼图(如图),则下列说法正确的是( )A .第一季度居民人均每月消费支出约为1633元B .第一季度居民人均收入为4900元C .第一季度居民在食品烟酒项目的人均消费支出最多D .第一季度居民在居住项目的人均消费支出为1029元10.如图,透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论:A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,11AC 始终与水面所在平面平行D .当容器倾斜如图(3)所示时,AE AH ⋅为定值11.已知P 为双曲线22:13x C y -=上的动点,过P 作两渐近线的垂线,垂足分别为A ,B ,记线段PA ,PB 的长分别为m ,n ,则( )A .若PA ,PB 的斜率分别为1k ,2k ,则123k k =- B .12mn >C .4m n +D .||AB 的最小值为32 12.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( )A .,[]1x x x ∃∈+R …B .,,[][][]x y x y x y ∀∈++R …C .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦L 同时成立,则正整数n 的最大值是5三、填空题:本题共4小题,每小题5分,共20分.13.6x⎛ ⎝的展开式中二项式系数最大的项的系数为____________.(用数字作答) 14.在平行四边形ABCD 中,3AB =,2AD =,点M 满足2DM MC =uuu u r uuu r ,点N 满足12CN DA =uuu r uu u r ,则AM MN ⋅=uuu r uuu r _________.15.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1F ,2F 0y -+=过点1F 且与C 在第二象限的交点为P ,若160POF ∠=︒(O 为原点),则2F 的坐标为________,C 的离心率为__________.16.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,14AA =,ABC △是边长为1D 是线段11B C 的中点,点D 是线段11A D 上的动点,则三棱锥D ABC -外接球的表面积的取值集合为_____________(用区间表示).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①4S 是2a 与21a 的等差中项;②7a 是33S 与22a 的等比中项;③数列{}2n a 的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题.已知{}n a 是公差为2的等差数列,其前n 项和为n S ,________________________.(1)求n a ;(2)设34n n n b a ⎛⎫=⋅ ⎪⎝⎭,是否存在*k ∈N ,使得278k b >?若存在,求出k 的值;若不存在,说明理由.18.在ABC △中,角,,A B C 的对边分别为,,a b c ,且cos sin a b C B -=.(1)求B ;(2)若2a =,且ABC △为锐角三角形,求ABC △的面积S 的取值范围. 19.如图,侧棱与底面垂直的四棱柱1111ABCD A B C D -的底面ABCD 是平行四边形,12AM MA =u u u r u u u r ,12CN NC =uuu r uuu r .(1)求证:AN ∥平面11MB D ;(2)若22AB AD ==,60BAD ∠=︒,13AA =,求1NB 与平面11MB D 所成角的大小.20.已知抛物线2:2(0)C x py p =>的焦点为F ,直线1:1(0)l y kx k =+>与C 的交点为A ,B ,且当1k =时,/||||5AF BF +=.(1)求C 的方程;(2)直线2l 与C 相切于点P ,且21l l ∥,若PAB △的面积为4,求k .21.某省2020年高考将实施新的高考改革方案.考生的高考总成绩由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、政治、历史、地理6科中选择3门作为选考科目,语文、数学、外语三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A ,B +,B ,C +,C ,D +,D ,E 共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%,7%,16%,24%,24%,16%,7%,3%.等级考试科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到91~100,81~90,71~80,61~70,51~60,41~50,31~40,21~30八个分数区间,得到考生的等级成绩. 举例说明:某同学化学学科原始分为65分,该学科C +等级的原始分分布区间为58~69,则该同学化学学科的原始成绩属C +等级.而C +等级的转换分区间为61~70,那么该同学化学学科的转换分计算方法为:设该同学化学学科的转换等级分为x ,696570655861x x --=--,求得66.73x =.四舍五入后该同学化学学科赋分成绩为67.为给高一学生合理选科提供依据,全省对六个选考科目进行测试,某校高一年级2000人,根据该校高一学生的物理原始成绩制成频率分布直方图(见右图).由频率分布直方图,可以认为该校高一学生的物理原始成绩X 服从正态分布()2,(0)N μσσ>,用这2000名学生的平均物理成绩x 作为μ的估计值,用这2000名学生的物理成绩的方差2s 作为2σ的估计值.(1)若张明同学在这次考试中的物理原始分为86分,等级为B +,其所在原始分分布区间为82~93,求张明转换后的物理成绩(精确到1);按高考改革方案,若从全省考生中随机抽取100人,记Y 表示这100人中等级成绩在区间[81,100]内的人数,求Y 最有可能的取值(概率最大);(2)①求x ,2s (同一组中的数据用该组区间的中点作代表);②由①中的数据,记该校高一学生的物理原始分高于84分的人数为Z ,求()E Z .附:若()2~,(0)X N μσσ>,则()0.6827P X μσμσ-<+=…,(22)0.9545P X μσμσ-<+=…,(33)0.9973P X μσμσ-<+=….22.(1)若x ∀∈R ,x a e x -…恒成立,求实数a 的最大值0a ;(2)在(1)的条件下,求证:函数0()cos xe f x x a x x=++在区间(,0)π-内存在唯一的极大值点0x ,且()002f x x >.2020届高三模拟考试数学试题参考答案及评分标准2020.4一、单项选择题:本大题共8小题,每小题5分,共40分.CABD DBAC二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.ACD 10.AD 11.ABD 12.BCD三、填空题:本题共4小题,每小题5分,共20分.13.20- 14.0 15.(4,0) 1 16.[25,32]ππ四、解答题:本题共6小题,共70分.17.(1)解:若选①4S 是2a 与21a 的等差中项,则42212S a a =+, 即()()1114324222022a a a ⨯⎛⎫+⨯=+++⨯ ⎪⎝⎭. 解得13a =.所以32(1)21n a n n =+-=+.若选②7a 是33S 与22a 的等比中项,则237223S a a =⋅, 即()()2111316222122a a a -⎛⎫+⨯=+⨯+⨯ ⎪⎝⎭. 解得13a =.所以32(1)21n a n n =+-=+.若选③数列{}2n a 的前5项和为65,则2(1)2[2(1)2]24n n a a n n +-=+-⋅=.又212a a =+,所以{}2n a 是首项为12a +,公差为4的等差数列.由{}2n a 的前5项和为65,得()154524652a ⨯++⨯=. 解得13a =.所以32(1)21n a n n =+-=+.(2)33(21)44n n n n b a n ⎛⎫⎛⎫=⋅=+⋅ ⎪ ⎪⎝⎭⎝⎭. 1133(23)(21)44n nn n b b n n ++⎛⎫⎛⎫-=+⋅-+⋅ ⎪ ⎪⎝⎭⎝⎭ 1133[3(23)4(21)](52)44n nn n n n n -+=+-+=-. 所以110520 2.51,2n n n n b b b b n n n ++>⇔->⇔->⇔<⇔=;110520 2.53,4,5,n n n n b b b b n n n ++<⇔-<⇔-<⇔>⇔=L所以123456b b b b b b <<>>>>L .所以{}n b 中的最大项为333727(231)464b ⨯⎛⎫=⨯+⋅= ⎪⎝⎭.显然37278272764648b ⨯⨯=<=.所以*27,8n n b ∀∈<N . 所以不存在*k ∈N ,使得278k b >. 18.(1)山题设条件及正弦定理,得sin sin cos sin A B C C B -=.由sin sin()sin cos cos sin A B C B C B C =+=+,得cos sin sin B C C B =. 由0C π<<,得sin 0C ≠.所以cos B B =.又cos 0B ≠(若cos 0B =,则sin 0B =,22sin cos 0B B +=.这与22sin cos 1B B +=矛盾),所以tan B =.又0B π<<,得6B π=. (2)在ABC △中,由正弦定理,得sin sin c a C A =,即25sin sin 6c C C π=⎛⎫- ⎪⎝⎭. 所以2sin 5sin 6C c C π=⎛⎫- ⎪⎝⎭. ABC △的面积112sin 1sin 25222sin 6C S ac B C π==⨯⨯⨯⎛⎫- ⎪⎝⎭=⎝⎭2cos sin C C=+. 由ABC △为锐角三角形,得02C π<<,5062B C ππ<=-<,所以32C ππ<<,从而tan C >sin cos C C >.所以cos 0sin 3C C <<S << 所以S的取值范是23⎛ ⎝⎭.19.(1)证法1:取AM 的中点E ,连接1EC 、11AC .设1111AC B D O ⋂=,连接MO . 由题意,O 是线段11AC 的中点,E 是线段MA 的中点, 所以MO 是11A C E △的中位线,所以1MO EC ∥. 由题意,113AE AA =,1113NC CC =,11AA CC =, 所以1AE NC =,又1AE NC ∥,所以四边形1AEC N 是平行四边形. 所以1AN EC ∥.又1MO EC ∥,所以AN MO ∥.又AN ⊄平面11MB D ,MO ⊂平面11MB D ,所以AN ∥平面11MB D .证法2:AN AB BC CN =++uuu r uu u r uu u r uuu r111112A B A D MA =++u u u u r u u u u r u u u r11111111()()MA A B MA D M A B MD =+++=+u u u r u u u u r u u u r u u u u r u u u u r u u u u r .又AN ⊄平面11MB D ,所以AN ∥平面11MB D .(2)在ABD △中,22AB AD ==,60BAD ∠=︒, 由余弦定理,得22212212cos603BD =+-⨯⨯⨯︒=. 可见222DA DB AB +=,所以DA DB ⊥. 以D 为坐标原点,以DA uu u r ,DB uuu r ,1DD uuu u r 所在方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D xyz -,则(1,0,2)M,1B ,1(0,0,3)D,(N -.所以1(1,0,1)D M =-u u u u r,11D B =u u u u r ,1(1,0,1)NB =u u u r .设(,,)n x y z =r 为平面11MB D 的法向量,则1110,0,n D M n D B ⎧⋅=⎪⎨⋅=⎪⎩r uuuu r r uuuu r即0,0.x z -=⎧⎪= 令1x =,则(1,0,1)n =r . 可见,1NB uuu r 就是平面11MB D 的一个法向量,所以1NB 与平面11MB D 所成的角为90°.20.(1)解法1:设()11,A x y ,()22,B x y .由221x py y x ⎧=⎨=+⎩消去y ,得2220x px p --=.判别式2480p p ∆=+>,122x x p +=.因此1212||||2325AF BF y y p x x p p +=++=+++=+=,解得1p =. 所以C 的方程为22x y =.解法2:设()11,A x y ,()22,B x y . 由221x py y x ⎧=⎨=+⎩消去x ,得2(22)10y p y -++=.判别式2(22)40p ∆=+->,1222y y p +=+.由抛物线的定义,12||||325AF BF y y p p +=++=+=,解得1p =. 所以C 的方程为22x y =.(2)方法1:22x y =即为212y x =,求导得y x '=.设2001,2P x x ⎛⎫⎪⎝⎭,当0x x =时,0y x '=,因此直线2l 的斜率为0x . 又因为12l l ∥,所以0k x =,因此21,2P k k ⎛⎫ ⎪⎝⎭.由221x y y kx ⎧=⎨=+⎩,得2220x kx --=. 2480k ∆=+>,则122x x k +=,122x x =-.因此||AB ==.直线1:1l y kx =+即为10kx y -+=.因此点21,2P k k ⎛⎫ ⎪⎝⎭到直线1l211k +=. 所以PAB △的面积为21111||22k S AB h +=⋅=⨯312=. 由题意,3142=,即332=2=. 又因为0k >,所以k =方法2:由方法1可得21,2P k k ⎛⎫ ⎪⎝⎭,直线2l 的斜率为k .因此直线2l 的方程为21()2y k k x k -=-.令0x =,则212y k =-. 设直线2l 与y 轴交于点Q ,则点Q 的坐标为210,2k ⎛⎫-⎪⎝⎭. 设(0,1)D ,由方法1可知,122x x k +=,122x x =-. 因为12l l ∥,所以PAB △的面积与QAB △的面积相等.PAB △的面积1211||||22S DQ x x DQ =⋅-=231111222k ⎛=+= ⎝由题意,3142=,即332=2=. 又因为0k >,所以k =方法3:设AB 的中点为M ,由方法1可知,122x x k +=,122x x =-. 因此122M x x x k +==,211M M y kx k =+=+. 又因为21,2P k k ⎛⎫ ⎪⎝⎭的横坐标也为k ,所以PM y ∥轴.因此PAB △的面积为1211||22M p S PM x x y y =⋅-=-231111222k ⎛=+= ⎝由题意,3142=,即332=2=. 又因为0k >,所以k =21.(1)设张明转换后的物理等级分为x ,由938690868281xx --=--,求得84.27x ≈.所以,张明转换后的物理成绩为84分. 由题意,~(100,0.1)Y B . 下分两种解法:解法1:由()(1),()(1)P Y k P Y k P Y k P Y k ==-⎧⎨==+⎩……得10011100(1)10010010011100(1)1001000.10.90.10.90.10.90.10.9,.k k k k k k k k k k k k C C C C ------++--⎧⎨⎩…… 解得9.110.1k 剟.又*k ∈N ,所以10k =. 所以,Y 最有可能的取值是10.解法2:1001001110011100()0.10.9101(1)0.10.99kk k k k k P Y k C kP Y k C k-----=-===-,1,2,3,,100k =L . 所以()1011110.1(1)9P Y k k k P Y k k =->⇔>⇔<=-;()110.1(1)P Y k k P Y k =<⇔>=-.于是,当10.1k <时,(1)()P Y k P Y k =-<=;当10.1k >时,(1)()P Y k P Y k =->=. 所以10k =时,()P Y k =最大.故Y 最有可能的取值是10.(2)①解:300.02400.08500.22600.36700.22800.08900.0260x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.22222(3060)0.02(4060)0.08(5060)0.22(6060)0.36s =-⨯+-⨯+-⨯+-⨯222(7060)0.22(8060)0.08(9060)0.02144+-⨯+-⨯+-⨯=.②由①中的数据,60μ=,12σ=,所以()2~60,12X N .所以26021284μσ+=+⨯=.所以1(22)10.9545(84)0.0227522P X P X μσμσ--<+->===…由题意,~(2000,0.02275)Z B . 所以()20000.0227545.5E Z =⨯=.22.(1)解:令xy e x =-,则01xxy e e e '=-=-. 可见,00y x '<⇔<;00y x '>⇔>.故函数xy e x =-在(,0)-∞上单调递减,在(,0)-∞上单调递增. 所以,当且仅当0x =时,函数xy e =,x 取最小值1. 由题意,实数1a ….所以01a =.(2)由(1),2222(1)(1)sin ()sin 1x x e x e x x x x f x x x x ---+'=-+=. 令22()(1)sin xg x e x x x x =--+,则()2()2sin cos 22sin cos 2x xg x xe x x x x x x e x x x '=--+=--+. 令()2sin cos 2x h x e x x x =--+.①当,02x π⎡⎫∈-⎪⎢⎣⎭时,0x e >,2sin 0x ->,cos 0x x -…,所以()0h x >. 可见,()()0g x xh x '=<,所以()g x 在,02π⎡⎫-⎪⎢⎣⎭上单调递减. 又22213210222g e ππππ+⎛⎫-=->-> ⎪⎝⎭(由(1),可得212e ππ+<,所以1212ππ+<), (0)10g =-<,所以存在唯一的0,02x π⎛⎫∈- ⎪⎝⎭,使得()00g x =.从而,当0[,2)x x π∈-时,()0g x >,()0f x '>,()f x 单调递增;当()0,0x x ∈时,()0g x <,()0f x '<,()f x 单调递减.②当,2x ππ⎛⎫∈--⎪⎝⎭时,令2()(1)x p x e x x =-+. 则()()220xxp x xe x x e '=+=+<.所以()p x 在,2ππ⎛⎫--⎪⎝⎭上单调递减. 所以222132()10244p x p e ππππ+⎛⎫>-=->-> ⎪⎝⎭(由(1),可得212e ππ+<,所以2121e ππ+<). 又当,2x ππ⎛⎫∈--⎪⎝⎭时,20x >,sin 0x <,2sin 0x x ->, 所以当,2x ππ⎛⎫∈--⎪⎝⎭时,2()()sin 0g x p x x x =->,从而()0f x '>.所以()f x 在,2ππ⎛⎤-- ⎥⎝⎦单调递增.综上所述,()f x 在()0,x π-上单调递增,在()0,0x 上单词递减. 所以,函数()f x 在区间(,0)π-内存在唯一极大值点0x . 关于()002f x x >的证明如下: 由上面的讨论,0,02x π⎛⎫∈- ⎪⎝⎭,且()()020000201sin 0x g x e x x x x =--+=,所以()0000001sin x e x x x x --+=,所以()000001sin 1x x x e x x -=-.于是()()00000000001sin cos cos 1x x x e f x x x x x x x -=++=++-.令()sin q x x x =-.当,02x π⎛⎫∈-⎪⎝⎭时,()1cos 0q x x '=->.所以()q x 在,02π⎛⎫- ⎪⎝⎭上单调递增.所以,当,02x π⎛⎫∈-⎪⎝⎭时,()(0)0q x q <=,即sin x x <. 又因为0,02x π⎛⎫∈-⎪⎝⎭,所以00sin x x <,0011sin 0x x ->->,所以001sin 011x x -<<-. 所以()()0000000000001sin cos cos 2cos 21x x f x x x x x x x x x x -=++>++=+>-.。
山东省枣庄市数学高三理数第二次模拟考试试卷

山东省枣庄市数学高三理数第二次模拟考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)三个数, , 的大小顺序为()A .B .C .D .2. (2分) (2019高三上·汕头期末) 已知复数,则下列结论正确的是()A . 的虚部为iB .C . 为纯虚数D .3. (2分) (2019高三上·汕头期末) 设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件4. (2分)已知函数则在区间[0,]上的最大值与最小值分别是()A . 1,-2B . 2,-1C . 1,-1D . 2,-25. (2分)(2017·安庆模拟) 已知F1、F2为双曲线的焦点,过F2垂直于实轴的直线交双曲线于A、B两点,BF1交y轴于点C,若AC⊥BF1 ,则双曲线的离心率为()A .B .C . 2D . 26. (2分) (2018高三上·辽宁期末) 如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A .B .C .D .7. (2分)若a≠b,数列a,x1 , x2 , b和数列a,y1 , y2 , y3 , b都是等差数列,则 =()A .B .C . 1D .8. (2分)在区间和分别取一个数,记为,则方程表示焦点在轴上且离心率小于的椭圆的概率为()A .B .C .D .9. (2分) (2017高二下·黑龙江期末) 已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.3,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率是()A .B .C .D .10. (2分)(2017·济南模拟) 执行如下框图所示算法,若实数a、b不相等,依次输入a+b,a,b,输出值依次记为f(a+b),f(a),f(b),则f(a+b)﹣f(a)﹣f(b)的值为()A . 0B . 1或﹣1C . 0或±1D . 以上均不正确11. (2分)(2017·龙岩模拟) 已知函数f(x)的实义域为R,其图象关于点(﹣1,0)中心对称,其导函数为f′(x),当x<﹣1时,(x+1)[f(x)+(x+1)f′(x)]<0.则不等式xf(x﹣1)>f(0)的解集为()A . (1,+∞)B . (﹣∞,﹣1)C . (﹣1,1)D . (﹣∞,﹣1)∪(1,+∞)12. (2分) (2019高三上·朝阳月考) 在平面直角坐标系中,锐角的顶点与O重合,始边与x轴的非负半轴重合,终边与单位圆交点的纵坐标为.将角沿逆时针方向旋转角后,得到角,则()A . 的最大值为,的最小值为B . 的最大值为,的最小值为C . 的最大值为,的最小值为D . 的最大值为,的最小值为二、填空题 (共4题;共4分)13. (1分)已知的展开式中所有项的系数之和为16,则展开式中含项的系数为________.(用数字作答).14. (1分)(2017·济南模拟) 以曲线与y=x为边的封闭图形的面积为________.15. (1分) (2017高一下·启东期末) 已知正四棱锥的底面边长是2,侧面积为12,则该正四棱锥的体积为________.16. (1分)(2020·安阳模拟) 2019年暑假期间,河南有一新开发的景区在各大媒体循环播放广告,观众甲首次看到该景区的广告后,不来此景区的概率为,从第二次看到广告起,若前一次不来此景区,则这次来此景区的概率是,若前一次来此景区,则这次来此景区的概率是 .记观众甲第n次看到广告后不来此景区的概率为,若当时,恒成立,则M的最小值为________.三、解答题 (共7题;共65分)17. (5分)已知△ABC的三个内角A、B、C的对边分别为a,b,c,且△ABC的面积S=.(1)求角B的大小;(2)若a=2,且,求边c的取值范围.18. (10分) (2018高三上·沈阳期末) 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分,为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格(单位:人).参考公式:,其中 .参考数据:0.150.100.050.0250.0102.072 2.7063.841 5.024 6.635(1)根据表中数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出了3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.19. (10分)(2017·江西模拟) 如图,在以A,B,C,D,E,F为顶点的多面体中,四边形ACDF是菱形,∠FAC=60°,AB∥DE,BC∥EF,AB=BC=3,AF=2 .(1)求证:平面ABC⊥平面ACDF;(2)求平面AEF与平面ACE所成的锐二面角的余弦值.20. (10分)(2018·南京模拟) 如图,在平面直角坐标系中,椭圆的下顶点为,点是椭圆上异于点的动点,直线分别与轴交于点,且点是线段的中点.当点运动到点处时,点的坐标为.(1)求椭圆的标准方程;(2)设直线交轴于点,当点均在轴右侧,且时,求直线的方程.21. (10分) (2015高二下·椒江期中) 已知a为正的常数,函数f(x)=|ax﹣x2|+lnx.(1)若a=2,求函数f(x)的单调递增区间;(2)设g(x)= ,求g(x)在区间[1,e]上的最小值.(e≈2.71828为自然对数的底数)22. (10分) (2019高一下·石河子月考) 已知以点为圆心的圆与轴交于点,与轴交于点,其中为坐标原点。
2023-2024学年山东省枣庄市高三第二次模拟考试数学试题+答案解析(附后)

一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.复数的共轭复数是( )A. B.C.D. 2.已知集合,,则2023-2024学年山东省枣庄市高三第二次模拟考试数学试题( )A.,B.,C.,D.,3.指数函数的图象如图所示,则图象顶点横坐标的取值范围是( )A. B. C. D.4.5.已知,,是同一平面内两两不共线的单位向量,下列结论可能成立的是( )A. B.C. 存在不全为0的实数,,使D. 若,则6.某地区有20000名考生参加了高三第二次调研考试.经过数据分析,数学成绩X 近似服从正态分布,则数学成绩位于的人数约为( )参考数据:,,A. 455B. 2718C. 6346D. 95457.如图,在棱长为1的正方体中,M 是的中点,点P 是侧面上的动点,且平面,则线段MP 长度的取值范围为( )A. B. C. D.8.已知,,曲线上存在点,使得,则a 的范围是( )A.B.C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知曲线:,:,则( ) A.的长轴长为 B. 的渐近线方程为C.与的离心率互为倒数 D. 与的焦点相同10.已知为等差数列,前n 项和为,,公差,则( )A.B. 当戓6时,取得最小值为30C. 数列的前10项和为50D. 当时,与数列共有671项互为相反数11.已知函数的图象过点和,的最小正周期为T ,则( ) A. T 可能取 B.在上至少有3个零点C. 直线可能是曲线的一条对称轴D. 若函数的图象在上的最高点和最低点共有4个,则12.已知函数,则下列结论正确的是( )A. 当时,若有三个零点,则b的取值范围为B. 若满足,则C. 若过点可作出曲线的三条切线,则D. 若存在极值点,且,其中,则三、填空题:本题共4小题,每小题5分,共20分。
2024届山东枣庄市高考第二次模拟测试数学试题

2024届山东枣庄市高考第二次模拟测试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,下列命题正确的是( ) A .若m α,m β,n α∥,n β∥,则αβB .若m n ∥,m α⊥,n β⊥,则αβC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m n ⊥,m α,n β⊥,则αβ⊥ 2.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( ) A .74B .32C .2D .543.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为( ) A .3B .4C .5D .64.如图,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )A .22B 3C .212D 31+ 5.在正方体1111ABCD A B C D -中,球1O 同时与以A 为公共顶点的三个面相切,球2O 同时与以1C 为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,1AB 为准线的抛物线经过12O O ,,设球12O O ,的半径分别为12r r ,,则12r r =( ) A .512- B .32- C .212-D .23-6.如图,在三棱锥D ABC -中,DC ⊥平面ABC ,AC BC ⊥,2AC BC CD ===,E ,F ,G 分别是棱AB ,AC ,AD 的中点,则异面直线BG 与EF 所成角的余弦值为A .0B .63C .33D .17.设全集U =R ,集合{}2A x x =<,{}230B x x x =-<,则()UA B =( )A .()0,3B .[)2,3C .()0,2D .()0,∞+8.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点()1,2P ,则cos2θ=( ) A .35B .45-C .35D .459.已知函数()5sin 12f x x π⎛⎫=+ ⎪⎝⎭,要得到函数()cos g x x =的图象,只需将()y f x =的图象( ) A .向左平移12π个单位长度B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 10.已知函数2()ln(1)33x x f x x x -=++-,不等式()22(4)50f x f x +++对x ∈R 恒成立,则a 的取值范围为( ) A .[2,)-+∞B .(,2]-∞-C .5,2⎡⎫-+∞⎪⎢⎣⎭D .5,2⎛⎤-∞- ⎥⎝⎦11.复数2iz i=-(i 是虚数单位)在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:422=+,633=+,835=+,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( ) A .121B .221C .115D .215二、填空题:本题共4小题,每小题5分,共20分。
2020年山东省枣庄市届高三第二次模拟考试数学文试题与答案

2020届高三模拟考试文科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =--≥,则R C A =( )A .(1,2)-B .[1,2]-C .(2,1)-D .[2,1]- 2.已知复数1iz i=+(i 是虚数单位),则z =( )A .1B .12C .2 D3.已知123a -=,31log 2b =,2log 3c =,则a ,b ,c 的大小关系是( ) A .a c b >> B .c a b >> C .a b c >> D .c b a >> 4.下图给出的是计算11112462018+++⋅⋅⋅+值的程序框图,其中判断框内可填入的条件是( )A .2016?i >B .2018?i >C .2016?i ≤D .2018?i ≤ 5.已知2()log (41)xf x ax =-+是偶函数,则a =( )A .1B .1-C .2D .2-6.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若()(sin sin )a b A B +-()sin c b C =-,则A =( )A .6π B .3πC .56πD .23π7.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,在此正方形中任取一点,则此点取自阴影部分的概率是( )A .316 B .38 C .14 D .188.已知1sin()43πα-=,则sin 2α=( )A .79-B .79C .19-D .199.函数()ln(1)f x x x =-+的大致图象为( )A .B .C .D . 10.某几何体的三视图如图所示,其中俯视图是等腰三角形,则该几何体的体积为( )A .32B .643 C .163 D .32311.设1F 、2F 是椭圆C :2212x y m +=的两个焦点,若C 上存在点M 满足12120F MF ∠=o ,则m 的取值范围是( )A .1(0,][8,)2+∞UB .(0,1][8,)+∞UC .1(0,][4,)2+∞U D .(0,1][4,)+∞U12.已知函数2()(12)()f x x x ax b =+++(,)a b R ∈的图象关于点(1,0)对称,则()f x 在[1,1]-上的最大值为( )A.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13 已知实数x ,y 满足0010x y x y ≥⎧⎪≥⎨⎪+-≤⎩的最大值为 .14.在平行四边形ABCD 中,1AB =,2AD =,则AC BD ⋅=u u u r u u u r.15.已知圆M 与直线0x y -=及40x y -+=都相切,圆心在直线2y x =-+上,则圆M 的标准方程为 .16.已知()sin cos f x x x ωω=-2()3ω>,若函数()f x 图象的任何一条对称轴与x 轴交点的横坐标都不属于区间(,2)ππ,则ω的取值范围是 .(结果用区间表示)三、解答题:本大题共6小题,共70分.17.已知数列{}n a 的前n 项和2352n n n S +=.(Ⅰ)求{}n a 的通项公式; (Ⅱ)设13n n n b a a +=,求数列{}n b 的前n 项和. 18.在四棱锥S ABCD -中,底面ABCD 为矩形,平面SAB ⊥平面ABCD ,平面SAD ⊥平面ABCD ,且23SA AD AB ==.(Ⅰ)证明:SA ⊥平面ABCD ;(Ⅱ)若E 为SC 的中点,三棱锥E BCD -的体积为89,求四棱锥S ABCD -外接球的表面积. 19.随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:(0,10]、(10,20]、(20,30]、(30,40]、(40,50]、(50,60],整理得到如下频率分布直方图:根据一周内平均每天学习数学的时间t ,将学生对于数学的喜好程度分为三个等级:(Ⅰ)试估计甲高中学生一周内平均每天学习数学的时间的中位数m 甲(精确到0.01);(Ⅱ)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值X 甲与X 乙及方差2S 甲与2S 乙的大小关系(只需写出结论),并计算其中的X 甲、2S 甲(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从甲高中与乙高中随机抽取的80名同学中数学喜好程度为“痴迷”的学生中随机抽取2人,求选出的2人中甲高中与乙高中各有1人的概率.20.已知抛物线C :22(01)y px p =<<上的点(,1)P m 到其焦点F 的距离为54. (Ⅰ)求C 的方程;(Ⅱ)已知直线l 不过点P 且与C 相交于A ,B 两点,且直线PA 与直线PB 的斜率之积为1,证明:l 过定点.21.已知曲线2()1ln ()y f x x a x a R ==--∈与x 轴有唯一公共点A . (Ⅰ)求实数a 的取值范围;(Ⅱ)曲线()y f x =在点A 处的切线斜率为27a a --.若两个不相等的正实数1x ,2x 满足12()()f x f x =,求证:121x x <.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为121x t y t a =-⎧⎨=--⎩(t 为参数).(Ⅰ)若1a =,求直线l 被曲线C 截得的线段的长度;(Ⅱ)若11a =,在曲线C 上求一点M ,使得点M 到直线l 的距离最小,并求出最小距离. 23.选修4-5:不等式选讲 已知函数()3f x x a =-.(Ⅰ)当4a =时,求不等式()3f x <的解集;(Ⅱ)设函数()1g x x =+.当x R ∈时,()()1f x g x +>恒成立,求实数a 的取值范围.2020届高三模拟考试 数学(文科)参考答案一、选择题1-5: ACBDA 6-10: BCBAD 11、12:AD二、填空题13. 2 14. 3 15. 22(2)2x y +-= 16. 37[,]48三、解答题17.(Ⅰ)解:114a S ==. 当2n ≥时,1n n n a S S -=-22353(1)5(1)22n n n n +-+-=-. 又14a =符合2n ≥时n a 的形式,所以{}n a 的通项公式为31n a n =+. (Ⅱ)由(Ⅰ)知3(31)(34)n b n n =++113134n n =-++. 数列{}n b 的前n 项和为121111()()47710n b b b ++⋅⋅⋅+=-+-1111()()32313134n n n n +⋅⋅⋅+-+--+++11434n =-+. 18.(Ⅰ)证明:由底面ABCD 为矩形,得BC AB ⊥.又平面SAB ⊥平面ABCD ,平面SAB I 平面ABCD AB =,BC ⊂平面ABCD , 所以BC ⊥平面SAB .所以BC SA ⊥. 同理可得CD SA ⊥.又BC CD C =I ,BC ⊂平面ABCD ,CD ⊂平面ABCD , 所以SA ⊥平面ABCD .(Ⅱ)解:设6SA a =,则2AB a =,3AD a =.13E BCD BCD V S h -∆=⨯⨯111()()322BC CD SA =⨯⨯⨯⨯ 311(23)(3)332a a a a =⨯⨯⨯⨯=.又89E BCD V -=,所以3839a =.解得23a =. 四棱锥S ABCD -的外接球是以AB 、AD 、AS 为棱的长方体的外接球,设半径为R .则2R =1473a ==,即73R =. 所以,四棱锥S ABCD -的外接球的表面积为219649R ππ=.19. 解:(Ⅰ)由样本估计总体的思想,甲高中学生一周内平均每天学习数学的时间的中位数0.5(0.10.2)200.3m -+=+甲1026.67⨯≈;(Ⅱ)X X <甲乙;22S S >甲乙;50.1150.2250.3X =⨯+⨯+⨯甲350.2450.15550.0527.5+⨯+⨯+⨯=;221[(527.5)(400.1)40S =⨯-⨯⨯甲2(1527.5)(400.2)+-⨯⨯2(2527.5)(400.3)+-⨯⨯ 2(3527.5)(400.2)+-⨯⨯2(4527.5)(400.15)+-⨯⨯2(5527.5)(400.05)]+-⨯⨯178.75=.(Ⅲ)甲高中随机选取的40名学生中“痴迷”的学生有40(0.00510)2⨯⨯=人,记为1A ,2A ;乙高中随机选取的40名学生中“痴迷”的学生有40(0.01510)6⨯⨯=人,记为1B ,2B ,3B ,4B ,5B ,6B . 随机选出2人有以下28种可能:12(,)A A ,11(,)A B ,12(,)A B ,13(,)A B ,14(,)A B ,15(,)A B ,16(,)A B , 21(,)A B ,22(,)A B ,23(,)A B ,24(,)A B ,25(,)A B ,26(,)A B ,12(,)B B , 13(,)B B ,14(,)B B ,15(,)B B ,16(,)B B ,23(,)B B ,24(,)B B ,25(,)B B , 26(,)B B ,34(,)B B ,35(,)B B ,36(,)B B ,45(,)B B ,46(,)B B ,56(,)B B ,甲、乙两所高中各有1人,有以下12种可能:11(,)A B ,12(,)A B ,13(,)A B ,14(,)A B ,15(,)A B ,16(,)A B ,21(,)A B ,22(,)A B ,23(,)A B ,24(,)A B ,25(,)A B ,26(,)A B .所以,从甲、乙两所高中数学喜好程度为“痴迷”的同学中随机选出2人,选出的2人中甲、乙两所高中各有1人的概率为123287=. 20.解:(Ⅰ)由题意,得21pm =,即12m p=. 由抛物线的定义,得1()222p pPF m p =--=+. 由题意,15224p p +=.解得12p =,或2p =(舍去). 所以C 的方程为2y x =.(Ⅱ)证法一:设直线PA 的斜率为k (显然0k ≠),则直线PA 的方程为1(1)y k x -=-,则1y kx k =+-.由21y kx k y x=+-⎧⎨=⎩消去y 并整理得22[2(1)1]k x k k x +--2(1)0k +-=. 设11(,)A x y ,由韦达定理,得212(1)1k x k -⨯=,即212(1)k x k -=.2112(1)11k y kx k k k k -=+-=⋅+-11k=-+.所以22(1)1(,1)k A k k --+. 由题意,直线PB 的斜率为1k. 同理可得221(1)1(,1)11()k B kk--+,即22((1),1)B k k --. 若直线l 的斜率不存在,则222(1)(1)k k k-=-.解得1k =,或1k =-. 当1k =时,直线PA 与直线PB 的斜率均为1,A ,B 两点重合,与题意不符; 当1k =-时,直线PA 与直线PB 的斜率均为1-,A ,B 两点重合,与题意不符. 所以,直线l 的斜率必存在.直线l 的方程为2(1)(1)k y k k --=-2[(1)]x k --,即21(1)k y x k =--.所以直线l 过定点(0,1)-. 证法二:由(1),得(1,1)P . 若l 的斜率不存在,则l 与x 轴垂直. 设11(,)A x y ,则11(,)B x y -,211y x =. 则11111111PA PBy y k k x x ---=⋅--211221111(1)(1)y x x x --==--111x =-. (110x -≠,否则,11x =,则(1,1)A ,或(1,1)B ,直线l 过点P ,与题设条件矛盾) 由题意,1111x =-,所以10x =.这时A ,B 两点重合,与题意不符. 所以l 的斜率必存在.设l 的斜率为k ,显然0k ≠,设l :y kx t =+, 由直线l 不过点(1,1)P ,所以1k t +≠.由2y x y kx t⎧=⎨=+⎩消去y 并整理得222(21)0k x kt x t +-+=. 由判别式140kt ∆=->,得14kt <. 设11(,)A x y ,22(,)B x y ,则12212ktx x k-+=①,2122t x x k =②, 则12121111PA PBy y k k x x --=⋅--12121111kx t kx t x x +-+-=⋅--2212121212(1)()(1)()1k x x k t x x t x x x x +-++-=-++. 由题意,2212121212(1)()(1)1()1k x x k t x x t x x x x +-++-=-++. 故212(1)(1)k x x kt k -+-+212()20x x t t ++-=③将①②代入③式并化简整理得2210t kt k k---=,即210t kt k ---=. 即(1)(1)(1)0t t k t +--+=,即(1)(1)0t t k +--=.又1k t +≠,即10t k --≠,所以10t +=,即1t =-. 所以l :1y kx =-.显然l 过定点(0,1)-. 证法三:由(1),得(1,1)P .设l :x ny t =+,由直线l 不过点(1,1)P ,所以1n t +≠.由2y x x ny t⎧=⎨=+⎩消去x 并整理得20y ny t --=. 由题意,判别式240n t ∆=+>.设11(,)A x y ,22(,)B x y ,则12y y n +=①,12y y t =-② 则12121111PA PB y y k k x x --=⋅--1222121111y y y y --=⋅--12121()1y y y y =+++. 由题意,1212()11y y y y +++=,即1212()0y y y y ++=③ 将①②代入③式得0t n -+=,即t n =. 所以l :(1)x n y =+.显然l 过定点(0,1)-.21.(Ⅰ)解:函数()f x 的定义域为(0,)+∞.(1)0f =. 由题意,函数()f x 有唯一零点1.'()2a f x x x=-. (1)若0a ≤,则0a -≥.显然'()0f x >恒成立,所以()f x 在(0,)+∞上是增函数. 又(1)0f =,所以0a ≤符合题意.(2)若0a >,22'()x af x x-=.'()0f x x >⇔>'()00f x x <⇔<<. 所以()f x在上是减函数,在)+∞上是增函数.所以min ()f x f =1ln 222a a a =--.由题意,必有0f ≤(若0f >,则()0f x >恒成立,()f x 无零点,不符合题意)①若0f <,则1ln 0222a a a --<. 令()1ln (0)222a a a g a a =-->,则11'()ln 222a g a =-111ln 22222a a a -⨯⨯=-. '()002g a a >⇔<<;'()02g a a <⇔>.所以函数()g a 在(0,2)上是增函数,在(2,)+∞上是减函数.所以max ()(2)0g a g ==.所以()0g a ≤,当且仅当2a =时取等号.所以,00f a <⇔>,且2a ≠.取正数1}a b e -<,则2()1ln 1ln f b b a b a b =-->--11()0a a>--⨯-=; 取正数1c a >+,显然c >>而2()1ln f c c a x =--, 令()ln h x x x =-,则1'()1h x x =-.当1x >时,显然1'()10h x x=-<. 所以()h x 在[1,)+∞上是减函数.所以,当1x >时,()ln h x x x =-(1)10h <=-<,所以ln x x <.因为1c >,所以2()1ln f c c a c =--21()1c ac c c a >--=--110c >⨯->. 又()f x在上是减函数,在)+∞上是增函数, 则由零点存在性定理,()f x在、)+∞上各有一个零点. 可见,02a <<,或2a >不符合题意.注:0a >时,若利用00lim ()x f x →+=+∞,0f <,lim ()x f x →+∞=+∞,说明()f x在、)+∞上各有一个零点.②若0f =1=,即2a =.符合题意.综上,实数a 的取值范围为{|0,2}a a a ≤=或.(Ⅱ)由题意,2'(1)27f a a a =-=--.所以29a =,即3a =±.由(Ⅰ)的结论,得3a =-. 2()13ln f x x x =-+,()f x 在(0,)+∞上是增函数.()001f x x <⇔<<;()01f x x >⇔>. 由12()()f x f x =,不妨设12x x <,则1201x x <<<.从而有12()()f x f x -=,即221122(13ln )13ln x x x x --+=-+.所以2212123ln 20x x x x ++-=121223ln 2x x x x >+-.令()23ln 2p t t t =+-,显然()p t 在(0,)+∞上是增函数,且(1)0p =.所以()001p t t <⇔<<.从而由121223ln 20x x x x +-<,得121x x <.22.选修4-4:坐标系与参数方程 解:(1)曲线C 的普通方程为22194x y +=. 当1a =时,直线l 的普通方程为2y x =. 由222194y x x y =⎧⎪⎨+=⎪⎩.解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩, 直线l 被曲线C=. (2)解法一:11a =时,直线l 的普通方程为2100x y --=.由点到直线的距离公式,椭圆3cos 2sin x y θθ=⎧⎨=⎩上的点(3cos ,2sin )M θθ到直线l :2100x y --=的距离为d ===, 其中0θ满足0cos θ=0sin θ=由三角函数性质知,当00θθ+=时,d取最小值此时,03cos 3cos()10θθ=-=,02sin 2sin()5θθ=-=-. 因此,当点M位于(105-时,点M 到l的距离取最小值解法二:当11a =时,直线l 的普通方程为2100x y --=.设与l 平行,且与椭圆22194x y +=相切的直线m 的方程为20x y t -+=. 由2220194x y t x y -+=⎧⎪⎨+=⎪⎩消去y 并整理得2240369360x tx t ++-=. 由判别式22(36)440(936)0t t ∆=-⨯⨯-=,解得t =±所以,直线m的方程为20x y -+=,或20x y --=.要使两平行直线l 与m 间的距离最小,则直线m的方程为20x y --=. 这时,l 与m间的距离d==. 此时点M的坐标为方程组2220194x y x y ⎧--=⎪⎨+=⎪⎩的解105x y ⎧=⎪⎪⎨⎪=-⎪⎩. 因此,当点M位于时,点M 到直线l的距离取最小值23.选修4-5:不等式选讲解:(1)当4a =时,()34f x x =-. 由343x -<,解得1733x <<. 所以,不等式()3f x <的解集为17{|}33x x <<. (2)()()31f x g x x a x +=-++3()13ax x =-++2133a a x x x =-+-++ 13a x x ≥-++(当且仅当3a x =时取等号) ()(1)3a x x ≥--+(当且仅当()(1)03a x x -+≤时取等号) 13a =+. 综上,当3a x =时,()()f x g x +有最小值13a +. 故由题意得113a +>,解得6a <-,或0a >. 所以,实数a 的取值范围为(,6)(0,)-∞-+∞U .。
山东省枣庄市2020届高三模拟(二调)考试数学试题(PDF)(有答案)

A.没有水的部分始终呈棱柱形
B.水面 EFGH 所在四边形的面积为定值
C.随着容器倾斜度的不同, A1C1 始终与水面所在平面平行
D.当容器倾斜如图(3)所示时, AE ⋅ AH 为定值 11.已知 P 为双曲线 C :x2 − y2 = 1 上的动点,过 P 作两渐近线的垂线,垂足分别为 A, B ,
秘密★启用前
2020 届高三模拟考试
数学试题
2020.4
本试卷分第Ⅰ卷和第 II 卷两部分.满分 150 分.考试用时 120 分钟.考试结束后,将 本试卷和答题卡一并交回. 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.如
为
, C 的离心率为
.(本题第一空 2 分,第二空 3 分)
16.三棱柱 ABC − A1B1C1 中, AA1 ⊥ 平面 ABC , AA1 = 4 , △ABC 是边长为 2 3 的正三
角形,D1 是线段 B1C1 的中点,点 D 是线段 A1D1 上的动点,则三棱锥 D − ABC 外接球
需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡 上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.已知集合 A = {x | y = lg (x +1)} , B = {y | y = −2x , x ∈ R} ,则 A U B =
3 记线段 PA, PB 的长分别为 m,n ,则
A.若 PA, PB 的斜率分别为 k1, k2 ,则 k1k2 = −3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D. 1 5
高三数学 第 1 页 共 6 页
5.已知函数
f
(x)
=
sin(2x
−
π )
,则下列结论正确的是
3
A. f (x) 的最小正周期为 2π
B. f (x) 的图象关于点 ( π ,0) 对称 3
C. f (x) 在 ( π ,11π) 上单调递增 2 12
D. 5π 是 f (x) 的一个极值点 12
3 记线段 PA, PB 的长分别为 m,n ,则
A.若 PA, PB 的斜率分别为 k1, k2 ,则 k1k2 = −3
B. mn > 1 2
C. 4m + n 的最小值为 3
D. | AB| 的最小值为 3 2
12.对 ∀x ∈ R ,[x] 表示不超过 x 的最大整数.十八世纪, y = [x] 被“数学王子”高斯采
用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是
A. ∃x ∈ R , x…[x] +1
B. ∀x, y ∈ R ,[x] + [ y]„[x + y]
C.函数 y = x − [x] (x ∈ R) 的值域为[0, 1)
D.若 ∃t ∈ R ,使得[t3 ] = 1,[t4 ] = 2 ,[t5 ] = 3 ,…,[tn ] = n − 2 同时成立,则正整数
为
, C 的离心率为
.(本题第一空 2 分,第二空 3 分)
16.三棱柱 ABC − A1B1C1 中, AA1 ⊥ 平面 ABC , AA1 = 4 , △ABC 是边长为 2 3 的正三
角形,D1 是线段 B1C1 的中点,点 D 是线段 A1D1 上的动点,则三棱锥 D − ABC 外接球
需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡 上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.已知集合 A = {x | y = lg (x +1)} , B = {y | y = −2x , x ∈ R} ,则 A U B =
=
1
uuur DA
,则
uuuur AM
⋅
uuuur MN
=
.
2
高三数学 第 3 页 共 6 页
15.已知椭圆 C
:x2 a2
+
y2 b2
= 1 (a
>b
>
0) 的左,右焦点分别为 F1 ,F2
,直线
3x − y + 4
3=0
过点 F1 且与 C 在第二象限的交点为 P ,若 ∠POF1 = 60° ( O 为原点),则 F2 的坐标
秘密★启用前
2020 届高三模拟考试
数学试题
2020.4
本试卷分第Ⅰ卷和第 II 卷两部分.满分 150 分.考试用时 120 分钟.考试结束后,将 本试卷和答题卡一并交回. 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.如
A. (−1, 0)
B. (−1, + ∞)
C. R
D. (−∞, 0)
2.已知 i 是虚数单位,i − 1是关于 x 的方程 x2 + px + q = 0( p, q ∈ R) 的一个根,则 p + q =
A. 4
B. −4
C. 2
3.“ cosθ < 0 ”是 “θ 为第二或第三象限角”的
D. −2
A.没有水的部分始终呈棱柱形
B.水面 EFGH 所在四边形的面积为定值
C.随着容器倾斜度的不同, A1C1 始终与水面所在平面平行
D.当容器倾斜如图(3)所示时, AE ⋅ AH 为定值 11.已知 P 为双曲线 C :x2 − y2 = 1 上的动点,过 P 作两渐近线的垂线,垂足分别为 A, B ,
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.2013 年 5 月,华人数学家张益唐的论文《素数间的有界距离》在《数学年刊》上发表,
破解了困扰数学界长达一个多世纪的难题,证明了孪生素数猜想的弱化形式,即发现
存在无穷多差小于 7000 万的素数对.这是第一次有人证明存在无穷多组间距小于定值
6.已知 a
>
b
>
0
,若 loga
b
+
logb
a
=
5 2
,
ab
=
ba
,则
a b
=
A. 2
B. 2
C. 2 2
D. 4
7.函数 f (x) = 6cos x 的图象大致为 2x − sin x
y
y
y
yOLeabharlann xA.Ox
O
O
x
x
B.
C.
D.
8.已知点 P(m, n) 是函数 y = −x2 − 2x 图象上的动点,则 | 4m + 3n − 21| 的最小值是
的素数对.孪生素数猜想是希尔伯特在 1900 年提出的 23 个问题中的第 8 个,可以这
样描述:存在无穷多个素数 p ,使得 p + 2 是素数,素数对 ( p, p + 2) 称为孪生素数.在
不超过16 的素数中任意取出不同的两个,则可组成孪生素数的概率为
A. 1 10
B. 4 21
C. 4 15
绘制了饼图(如图),则下列说法正确的是
A. 第一季度居民人均每月消费支出约为 1 633 元 B. 第一季度居民人均收入为 4 900 元 C. 第一季度居民在食品烟酒项目的人均消费
支出最多
D. 第一季度居民在居住项目的人均消费支出 为 1 029 元
高三数学 第 2 页 共 6 页
10.如图,透明塑料制成的长方体容器 ABCD − A1B1C1D1 内灌进一些水,固定容器一边 AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论:
A. 25
B. 21
C. 20
D. 4
二、多项选择题:本大题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有
多项符合题目要求.全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分.
9.2019 年 4 月 23 日,国家统计局统计了 2019 年第一季度居民人均消费支出的情况,并
n 的最大值是 5
三、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13. (x − 1 )6 的展开式中二项式系数最大的项的系数为
.(用数字作答)
x
uuuur uuuur
14.在平行四边形 ABCD 中, AB = 3 , AD = 2 ,点 M 满足 DM = 2MC ,点 N 满足
uuur CN