离子液体——一种新型的绿色溶剂
bmim型离子液体

bmim型离子液体
BMIM型离子液体是一种新型的绿色溶剂,它是由一种离子液体BMIM(1-丁基-3-甲基咪唑六氟磷酸盐)组成的。
BMIM型离子液体具有很多优点,如高热稳定性、低挥发性、高溶解度、可回收性等,因此在化学、材料、生物等领域得到了广泛的应用。
BMIM型离子液体在化学领域中的应用非常广泛,它可以作为催化剂、溶剂、反应介质等。
在有机合成中,BMIM型离子液体可以作为催化剂,促进反应的进行,提高反应的效率和选择性。
同时,BMIM型离子液体还可以作为溶剂,可以溶解一些传统有机溶剂不能溶解的化合物,从而扩大了反应的适用范围。
此外,BMIM型离子液体还可以作为反应介质,可以在无水条件下进行反应,避免了水分对反应的干扰。
在材料领域中,BMIM型离子液体也有着广泛的应用。
它可以作为溶剂、模板剂、表面活性剂等。
在纳米材料的制备中,BMIM型离子液体可以作为模板剂,控制纳米材料的形貌和尺寸。
同时,BMIM 型离子液体还可以作为表面活性剂,可以改善材料的分散性和稳定性。
在生物领域中,BMIM型离子液体也有着广泛的应用。
它可以作为生物催化剂、生物传感器等。
在生物催化剂中,BMIM型离子液体可以作为反应介质,可以提高酶的稳定性和活性。
同时,BMIM型离子液体还可以作为生物传感器,可以检测生物分子的浓度和活性。
BMIM型离子液体是一种非常有前途的绿色溶剂,它在化学、材料、生物等领域都有着广泛的应用。
随着科技的不断发展,相信BMIM 型离子液体将会有更加广泛的应用前景。
离子液体综述

离子液体综述离子液体是一种新型的绿色溶剂,具有独特的物理和化学性质。
本文将详细介绍离子液体的定义和性质、合成和分离、在化学反应和材料科学中的应用以及在生物医学中的用途,同时探讨离子液体的环保和安全问题以及研究现状和前景。
1.离子液体的定义和性质离子液体是指全部由离子组成的液体,通常由有机阳离子和无机阴离子组成。
离子液体具有以下主要性质:(1)低蒸气压:离子液体在常温下不易挥发,蒸气压很低,因此可以作为绿色溶剂使用。
(2)良好的热稳定性:离子液体具有很高的热稳定性,可以在高温下使用。
(3)良好的电化学窗口:离子液体具有很宽的电化学窗口,可以作为电解质的良好溶剂。
(4)液体范围宽:离子液体的熔点较低,可以在很宽的温度范围内保持液态。
2.离子液体的合成和分离离子液体的合成主要通过化学反应和电化学合成两种方法实现。
化学反应法是通过酸碱反应或复分解反应等合成离子液体。
电化学合成法是在电解池中通电电解来制备离子液体。
对于离子液体的分离,通常采用物理分离方法,如过滤、萃取和蒸馏等。
由于离子液体的特殊性质,需要使用特殊设备进行分离和纯化。
3.离子液体在化学反应中的应用离子液体在化学反应中具有广泛的应用,主要作为催化剂、反应介质和萃取剂等。
(1)催化剂:离子液体可以作为催化剂用于许多化学反应,如烷基化反应、酯化反应和聚合反应等。
离子液体能够改变反应动力学,提高反应速率和选择性。
(2)反应介质:离子液体可以作为反应介质,使得反应在均相中进行,提高反应效率和产物的纯度。
(3)萃取剂:离子液体可以作为萃取剂用于萃取金属离子和有机物,具有高效、环保等优点。
4.离子液体在材料科学中的应用离子液体在材料科学中也有广泛的应用,主要涉及高分子材料、陶瓷材料、晶体材料等领域。
(1)高分子材料:离子液体可以作为聚合反应的介质和引发剂,制备高性能的高分子材料。
(2)陶瓷材料:离子液体可以作为溶质,制备高性能的陶瓷材料,改变材料的微观结构和性能。
离子液体的合成及其在有机合成中的应用

离子液体的合成及其在有机合成中的应用一、本文概述离子液体是一种特殊的液态盐,具有独特的物理化学性质,如高离子导电性、低蒸汽压、良好的热稳定性、宽的电化学窗口和可设计性等。
这些特性使得离子液体在有机合成中展现出广阔的应用前景。
本文旨在探讨离子液体的合成方法及其在有机合成领域中的应用。
我们将详细介绍离子液体的合成方法,包括通过酸碱中和反应、季铵化反应、离子交换反应等合成不同类型的离子液体。
我们还将讨论如何通过调控离子液体的阴阳离子组成和结构,优化其性能以满足不同应用需求。
我们将综述离子液体在有机合成中的应用。
离子液体可以作为溶剂、催化剂和反应介质,在多种有机合成反应中发挥重要作用。
例如,离子液体可以用于提高有机反应的速率和选择性,实现绿色合成和节能减排。
离子液体还可以用于合成具有特殊结构和功能的有机化合物,如手性分子、高分子材料和纳米材料等。
我们将对离子液体在有机合成中的优势和挑战进行总结,并展望其未来的发展方向。
离子液体作为一种新型绿色溶剂和催化剂,在有机合成中具有广阔的应用前景。
然而,离子液体的成本、稳定性和毒性等问题仍需解决。
因此,未来的研究将集中在开发新型离子液体、优化其合成方法和拓展其应用领域等方面。
通过本文的阐述,我们期望能够为读者提供一个关于离子液体合成及其在有机合成中应用的全面而深入的理解,为离子液体在相关领域的研究和应用提供有益的参考。
二、离子液体的合成离子液体,作为一种独特的溶剂和反应介质,近年来在化学领域引起了广泛的关注。
离子液体的合成是其在各种应用中使用的基础,涉及到了多种化学原理和合成技术。
离子液体的合成主要可以分为两类:一步合成法和两步合成法。
一步合成法是通过一步化学反应直接生成离子液体,这种方法通常适用于那些离子液体组分之间反应活性较高,且不易发生副反应的情况。
两步合成法则首先合成离子液体的阳离子或阴离子前驱体,然后再通过离子交换或酸碱中和等反应得到目标离子液体。
这种方法在合成复杂离子液体时更为常见。
简述离子液体及其在萃取分离中的研究应用

简述离子液体及其在萃取分离中的研究应用摘要:离子液体作为一种环境友好的新型绿色溶剂,具有独特的性质,目前已在萃取分离领域得到很好的研究和应用.本文重点介绍了离子液体在萃取分离有机物、金属离子、气体分子和生物分子方面的应用研究。
关键词:离子液体;萃取;分离;1.引言目前广泛应用的萃取分离技术有液相萃取、固相萃取、微波萃取、液膜萃取等.随着近几年绿色化学的兴起,离子液体作为继超临界流体CO2以来的又一新型溶剂,在样品前处理中分离、富集的应用也得到进一步发展,给传统的萃取分离注入了新的内容.离子液体是一类新型的绿色介质,具有不易挥发、导电性强、粘度大、蒸气压小、性质稳定、可设计性、对许多无机盐和有机物有良好的溶解性等优点,因而其应用领域非常广泛,目前离子液体已在萃取分离、电化学、化学、环境、生物技术、材料等诸多领域都得到开发和应用。
基于离子液体萃取效率高、可循环利用等优点,其在传统的萃取中的应用研究很多,并且具有广泛的应用前景。
2.离子液体简介2.1离子液体的结构和分类离子液体,又称室温离子液体,或室温熔融盐,是指在室温或接近室温时呈液态,并由有机阳离子和无机阴离子组成的熔融盐体系.按照阴阳离子排列组合方式的不同,离子液体的种类有很多.目前通常根据有机阳离子母体的不同,将离子液体分为4类,分别是咪唑盐类(I)、季铵盐类(II)、吡啶盐类(Ⅲ)、季膦盐类(IV)[1].离子液体的种类并不仅限于此,其他代表性的离子液体还有锍盐离子液体、手性离子液体,两性离子液体等。
2.2离子液体的特点与传统有机溶剂和电解质相比,离子液体的主要特点是:①蒸汽压低,不易挥发;②具有较大的稳定温度范围和较高的化学稳定性;③具有较大的结构可调性,适合用作分离溶剂;④具有介质和催化双重功能,对于许多无机和有机物质溶解性好;⑤离子液体作为电解质具有较大的电化学窗口、导电性、热稳定性和抗氧化性等[2]。
总之离子液体兼有液体与固体的功能特性,因此被称为“液体”分子筛.3.离子液体在萃取分离中的应用3.1离子液体萃取有机物离子液体蒸气压低,热稳定性好,液态范围广,对很多有机物有显著而不同的选择性,萃取完后可以分离萃取物循环使用。
离子液体——一种新型的绿色溶剂

离子液体——一种新型的绿色溶剂张萍,沈正荣﹡(浙江省医学科学院,浙江杭州310013)摘要:目的综述离子液体的组成、性质、合成方法以及在溶解方面的应用。
方法查阅近年文献,进行归纳整理。
结果和结论离子液体是室温下呈液态的离子化合物,具有很多独特的性能,作为一种新型的绿色溶剂推动了绿色化学的发展。
关键词:离子液体;绿色化学;溶剂随着科技发展和环保意识的增强,寻找绿色反应溶剂和发现环境友好催化剂是绿色化学的主要研究方向之一。
室温离子液体作为一种新型的绿色溶剂正在迅速发展,成为科学研究的热点。
室温离子液体是指主要由有机阳离子和无机或有机阴离子构成的在室温或近于室温下呈液态的盐类,也称室温熔融盐,但是它不同于我们通常所说的离子化合物。
传统意义上的离子化合物在室温下一般都是固体,其强大的离子键使阴、阳离子在晶格上只能作振动,不能转动或平动。
他们一般都具有较高的熔点、沸点和硬度。
然而对于离子液体,如果把阴、阳离子做得很大且又极不对称,由于空间阻碍,强大的静电力无法使阴、阳离子在微观上作紧密堆积,使得阴、阳离子在室温下不仅可以振动,甚至可以转动、平动,整个有序的晶体结构遭到彻底破坏,离子之间作用力减小,晶格能降低,从而使离子化合物的熔点下降,在室温下成为液态[1]。
离子液体具有很多传统的分子溶剂不可比拟的独特性能。
1. 离子液体的组成离子液体的阳离子主要有以下四类[2,3]:烷基季铵离子[NR x H4-x]+;烷基季膦离子[PR x H4-x]+;N-烷基取代吡啶离子[RPy]+;1,3-二烷基取代咪唑离子,或称为N,N’-二烷基取代咪唑离子,记为[RR’im]+;其中最稳定的是烷基取代的咪唑阳离子。
阴离子则可以是AlC14-、BF4-、PF4-、CF3COO-、CF3SO3-、(CF3SO2)2 N-、SbF6-等有机离子和配合物离子,有些情况下也可以是Cl-、Br-、I-、NO3-、ClO4-等简单无机离子。
离子液体的分类、合成与应用

离子液体的分类、合成与应用离子液体是一种新型的绿色溶剂,具有独特的物理和化学性质,在许多领域中有着广泛的应用。
本文旨在介绍离子液体的分类、合成与应用,以期为相关领域的研究提供一定的参考。
离子液体是指全部由离子组成的液体,具有良好的导电性、稳定性和可设计性。
离子液体在科学领域中有着广泛的应用,如催化剂、电化学、材料科学等。
本文将重点介绍离子液体的分类、合成与应用。
离子液体可以根据不同的阳离子和阴离子进行分类。
根据阳离子的类型,离子液体主要分为以下几类:烷基咪唑离子液体:这类离子液体具有较高的熔点和良好的热稳定性,是应用最广泛的离子液体之一。
吡啶鎓离子液体:这类离子液体具有良好的化学稳定性和较高的粘度,适用于高温下的催化反应。
季铵盐离子液体:这类离子液体具有较低的熔点和较高的电导率,适用于电化学领域。
季膦盐离子液体:这类离子液体具有较高的稳定性和低毒性,适用于食品和医药等领域。
根据阴离子的类型,离子液体也可以分为以下几类:氯离子型离子液体:以氯离子为阴离子的离子液体,具有较低的熔点和较高的电导率。
溴离子型离子液体:以溴离子为阴离子的离子液体,具有较高的稳定性和良好的溶解性。
氟离子型离子液体:以氟离子为阴离子的离子液体,具有极高的稳定性和低表面张力。
磷酸根型离子液体:以磷酸根为阴离子的离子液体,具有较高的粘度和良好的热稳定性。
选择合适的阳离子和阴离子:根据需要选择合适的阳离子和阴离子,以满足对离子液体的性质和应用要求。
合成阳离子:将选择的阳离子进行化学合成,得到目标阳离子。
合成阴离子:将选择的阴离子进行化学合成,得到目标阴离子。
合成离子液体:将合成的阳离子和阴离子在一定的条件下混合,得到目标离子液体。
影响离子液体合成的因素有很多,如反应温度、反应时间、溶剂种类和浓度等。
在实际合成过程中,需要对这些因素进行优化和控制,以保证合成的离子液体具有优良的性质和稳定性。
离子液体在许多领域中有着广泛的应用,其主要应用领域包括:催化反应:离子液体可以作为催化剂的载体,提高催化剂的活性和选择性。
2024年离子液体市场前景分析

2024年离子液体市场前景分析引言离子液体作为一种新型的绿色溶剂,在许多领域展现出了广泛的应用前景。
本文旨在对离子液体市场的发展进行分析,并探讨其未来的前景。
市场概况离子液体市场目前呈现出快速增长的趋势。
离子液体具有低毒、环保、易回收等特点,广泛应用于化工、材料科学、能源领域等。
特别是在化工领域,离子液体已经取代传统有机溶剂成为重要的溶剂选择。
市场驱动因素离子液体市场的增长得益于以下几个关键因素:1. 环保需求离子液体作为无机盐体系的化合物,在生产和应用过程中不会产生挥发性有机化合物和有害物质的排放,有助于减少环境污染,符合当今社会对环保的更高要求。
2. 特殊性能离子液体具有一系列独特的物化特性,例如高热稳定性、宽电化学窗口和较低的蒸汽压等。
这些特殊性能使离子液体在许多领域具有独特的优势,如电化学能源存储、催化剂和传感器等。
3. 替代传统溶剂离子液体可以替代传统的有机溶剂,避免有机溶剂对环境和人体健康的潜在危害。
随着环保意识的不断增强和相关法规的推动,离子液体在溶剂领域有望继续得到广泛应用。
市场挑战尽管离子液体市场存在广阔的发展空间,但仍然面临一些挑战:1. 成本问题离子液体的生产成本相对较高,主要包括原料成本、合成工艺和分离纯化等。
成本问题限制了离子液体的大规模应用和市场竞争力。
2. 技术研发离子液体作为一种相对较新的物质,其研发和应用仍处于不断探索的阶段。
需要加大对离子液体的基础研究和应用开发力度,以解决现有技术瓶颈。
3. 规范与标准离子液体市场缺乏一致的行业规范和标准,这对于市场主体的选择和产品质量控制带来了一定的困扰。
市场前景展望尽管离子液体市场面临一些挑战,但其前景依然广阔。
1. 发展领域多样化随着对环境友好化物质的需求增加,离子液体将在更多领域展现其独特的应用优势。
如电力储备、化学品替代、催化剂和液体电解质等。
2. 技术创新推动技术创新将促进离子液体市场的持续发展。
例如,开发更经济高效的制备方法、提高离子液体纯度和稳定性等方面的研究,将有助于进一步推动离子液体市场的发展。
离子液体的前沿、进展及应用

参考内容
离子液体,作为一种新型的绿色溶剂,具有独特的物理化学性质,如高稳定 性、低蒸气压、良好的溶解性和可调的离子环境等。近年来,离子液体的应用研 究取得了显著的进展,涉及到化学反应工程、电化学能源储存与转化等多个领域。 本次演示将介绍离子液体应用研究的重要性和意义,阐述研究离子液体应用的主 要方法,并探讨近年来离子液体应用研究的进展和未来发展趋势。
2、离子液体在新能源领域的应用研究:进一步探索离子液体在太阳能、风 能、燃料电池等新能源领域的应用,提高能源的转化效率和稳定性。
3、离子液体在环保和可持续发展领域的研究:深入探究离子液体在环保、 资源回收利用等方面的应用,为实现可持续发展提供有效解决方案。
4、离子液体在生物医学领域的应用研究:探索离子液体在药物传递、生物 成像、癌症治疗等方面的应用,为生物医学领域提供新的研究思路和治疗手段。
三、离子液体的应用
离子液体因其独特的性质,在许多领域具有广泛的应用。以下是离子液体的 一些主要应用:
1、化学反应ຫໍສະໝຸດ 离子液体在化学反应中作为溶剂和催化剂,可以提高反应速率和选择性。例 如,在某些有机合成反应中,使用磷酸类离子液体作为催化剂可以提高产物的纯 度和收率。
2、分离技术
离子液体在分离技术中作为萃取剂和分离剂,可以有效地分离和纯化各种物 质。例如,季铵类离子液体在生物样品分离中表现出良好的萃取性能和选择性。
二、离子液体的性质
离子液体的性质主要由其组成的离子决定。下面从酸、碱和盐的角度介绍离 子液体的性质。
1、酸的性质
离子液体中的酸性主要是由其组成的酸性离子决定的。这些离子的种类和数 量会影响其酸性和氧化性。例如,磷酸类离子液体具有较高的酸性和氧化性,因 此在一些化学反应中可作为催化剂使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子液体——一种新型的绿色溶剂摘要:离子液体作为“绿色的、可设计性”溶剂越来越受到关注。
本文介绍了离子液体种类、特性和制备,综述了离子液体在萃取分离生物制品和生物燃料中、在萃取金属离子和稀土分离中以及在分离过程、电化学、化学反应及材料领域中的应用,展望了离子液体的应用前景。
关键词:离子液体;绿色化学;溶剂随着科技发展和环保意识的增强,寻找绿色反应溶剂和发现环境友好催化剂是绿色化学的主要研究方向之一。
室温离子液体作为一种新型的绿色溶剂正在迅速发展,成为科学研究的热点。
室温离子液体是指主要由有机阳离子和无机或有机阴离子构成的在室温或近于温下呈液态的盐类,也称室温熔融盐,但是它不同于我们通常所说的离子化合物。
传统意义上的离子化合物在室温下一般都是固体,其强大的离子键使阴、阳离子在晶格上只能作振动,不能转动或平动。
他们一般都具有较高的熔点、沸点和硬度。
然而对于离子液体,如果把阴、阳离子做得很大且又极不对称,由于空间阻碍,强大的静电力无法使阴、阳离子在微观上作紧密堆积,使得阴、阳离子在室温下不仅可以振动,甚至可以转动、平动,整个有序的晶体结构遭到彻底破坏,离子之间作用力减小,晶格能降低,从而使离子化合物的熔点下降,在室温下成为液态。
离子液体具有很多传统的分子溶剂不可比拟的独特性能。
1. 离子液体的分类(1)根据离子液体发现的先后顺序和年代可以将离子液体划分为第一、第二和第三代离子液体。
1948年美国专利报道了主要用于电镀领域的三氯化铝和卤化乙基吡啶离子液体,可称之为第一代离子液体。
20世纪90年代,稳定性更好的由二烷基咪唑阳离子和四氟硼酸、六氟磷酸阴离子构成的离子液体产生,此类被称为第二代离子液体。
2000年以来,二烷基咪唑阳离子液体的种类和功能被进一步的丰富,制备出功能化离子液体,从而赋予离子液体以某种特殊性质、用途和功能,使其成为“任务专一性离子液体”,这一类成为第三代离子液体。
(2)依据阳离子的不同可以将离子液体分为季铵盐类、季膦盐类、咪唑类、吡啶类、三氮唑类、苯并三氮唑类等。
根据阴离子的组成可以将离子液体分为两大类:一类是组成可调的氯铝酸类离子液体;一类是其组成固定,大多数对水和空气稳定的其他负离子型离子液体。
(3)根据离子液体在水中的溶解性不同,大体上可以将其分为亲水性离子液体(如[Bmim]BF4、[Emim]C1、[Emim]BF4、[BPy]BF。
)和憎水性离子液体(如[Bmim]PF6、[Omim]PF6、[Bmim]SbF6、[BPy]PF6等)。
(4)根据离子液体的酸碱性还可以把室温离子液体分为Lewis酸性、Lewis碱性、Brqbnsted酸性、Brqbnsted碱性和中性离子液体。
Lewis酸性或Lewis碱性离子液体如氯铝酸类离子液体;Brqbnsted酸性离子液体指含有活泼酸性质子的离子液体,如甲基咪唑与氟硼酸直接反应得到的离子液体;Brdpnsted碱性离子液体指阴离子为OH-的离子液体,如[Bmim]OH;中性离子液体则非常多,应用也最广,如[Bmim]BF4、[Bmim]PF6等。
【1】2. 离子液体的性质(1) 熔点:离子液体的熔点较低,与室温相近。
可以通过调节其阴离子或阳离子的组成改变其熔点。
一般地,离子的体积变大,对称性降低,离子对间作用力变弱,电荷分布均匀,则离子液体的熔点较低。
(2) 密度:离子液体的密度与阴、阳离子有关。
随着阳离子变大,离子液体的密度变小。
随着阴离子变大,离子液体的密度也变大。
因此,为得到某种密度的离子液体,可以先选择相应的阴离子来确定密度的大致范围,再选择阳离子对其进行微调。
(3) 粘度:离子液体粘度的大小主要由液体中的氢键和范德华力来决定,大多数离子液体的粘度为32-500cP。
通过调变阴阳离子可以改变其粘度。
通常具有较长烷基链的阳离子和较大体积的阴离子形成的离子液体粘度较高。
升高温度或者添加某些有机溶剂可以降低离子液体的粘度。
(4) 酸碱性:离子液体的Lewis 酸碱性随着其组成而改变。
以[EMIM]Cl-AlCl3为例,当x(AlCl3)<0.5 时,离子液体呈碱性;当x(AlCl3)=0.5时,离子液体呈中性;当x(AlCl3)>0.5 时,离子液体呈酸性。
(5) 热稳定性:离子液体的热稳定性与组成它的阴阳离子有关。
胺和膦的离子液体的热稳定性差,例如三烷基铵离子的离子液体在真空中80℃时就会分解,而离子液体[EMIM]BF4热稳定性好,在300℃仍然稳定。
(6) 极性和溶解性:离子液体的一个显著特征就是具有较高的极性,其极性一般为0.6-0.7,与低级醇和甲酰胺的极性相当。
正是由于这种高极性使得离子液体的溶解性很好,能溶解有机物、无机物和聚合物等,是化学反应的理想介质。
控制离子液体阴阳离子的组成可以在一定程度上调节它与其它溶剂之间的互溶性。
(7) 导电性:离子液体的室温离子电导率一般在10-3S·cm-1左右,其大小与离子液体的粘度、分子量、密度以及离子大小有关。
其中粘度的影响最大,粘度越大,导电性越差;密度越大,导电性越好。
(8) 电化学窗口:大部分离子液体的电化学稳定电位窗为4V 左右,离子液体的氧化电势与阴离子有关,约为2V(相对I-/I3-),还原电势因阳离子的不同而有差异。
除此以外,离子液体具有可以忽略的蒸汽压,它不会成为蒸汽扩散到大气中去,从而造成环境污染;一般不可燃,大多具有较好的化学稳定性,一般可以回收使用,利于环保,是一种“绿色溶剂”。
离子液体可以有很宽的液态范围(有的可达约300℃)。
因此,采用液体离子作为反应溶剂,人们可以在更大的温度范围内研究和控制反应。
[2]3. 离子液体合成方法【3】ILs的制备主要涉及酸碱中和和复分解反应,其合成方法有直接合成法和两步合成法。
直接合成法就是通过酸碱中和或季铵化反应一步合成ILs。
[C2H5NH3]NO3、某些1-丁基-3-甲基咪唑盐可以直接合成。
但大多数情况下,直接合成法无法得到目标ILs,必须采用两步合成法。
即第一步通过季铵化反应制备出含有目标阳离子的卤盐([阳离子]+X-),第二步通过复分解反应用目标阴离子Y置换出X得到目标ILs。
用此方法制备了[emim]BF4、[emim]MeC02等一系列ILs。
我国学者还提出了“在ILs中制备ILs”的设想,并制备了[emim]P6、[emim]BF4等ILs。
英国学者Deedeft等采用微波促进法进行ILs的合成,反应时间短,产品的纯度高。
4. 离子液体在萃取分离中的应用传统的有机溶剂萃取分离技术,通常需要使用大量挥发性有机溶剂,容易引起交叉污染和环境污染问题.随着人们环境保护意识的增强,世界范围内对绿色化学的呼声越来越高。
水的分离提取只适用于亲水产物的提纯,使用范围非常有限.传为一类新兴的绿色液-液提取介质,离子液体在生物制品的提取、废水净化、油品脱硫、金属离子的萃取和稀土分离等方面已展示出诱人的前景。
离子液体与传统的分子型有机萃取溶剂相比具有独特的理化性能,通常能够与水或有机溶剂形成两相,并利用溶质在两相中的不同分配系数来达到萃取分离的目的。
离子液体具有能溶解某些有机化合物、无机化合物和有机金属化合物,而与大量有机溶剂不相混溶的特性。
利用离子液体的不挥发性,可通过蒸馏回收的方法使之循环使用,同时又不产生液相和气相污染,为离子液体的绿色化应用奠定了基础。
(1)在萃取分离含酚有机废水和油品脱硫中的应用用离子液体萃取挥发性有机物时,因离子液体的高热稳定性和低蒸气压性,萃取完成后的离予液体可通过加热的方法与挥发性萃取物分离,回收的离子液体可循环使用。
Huddlestou等用憎水性离子液体[BMIM]PF6从水中萃取苯的衍生物如甲苯、苯胺、苯甲酸、氯苯等.研究发现,有机酸碱的分配系数与溶液的pH 值和溶质质子化程度密切相关.通过调节溶液的pH德,可以控制溶质在两相间的分配系数,提高萃取过程的可调节性。
李闲等研究了疏水性离子液体对予苯酚的萃取能力,指出,通过调节离子液体的结构,可使其适用予不同成分的含酚废水。
张进等成功研究了不同含硫组成的燃油体系,考察了以离子液体为萃取剂时,脱硫时间、温度等因素对萃取率的影响,发现[BMIM]PF6萃取硫的平衡速度较快,操作条件较温和。
(2)在萃取分离生物制品和生物燃料中的应用刘庆芬等成功利用离子液俸的双水相体系萃取了青霉素。
顾彦龙等采用离子液体和醇的互溶体系,实现了牛磺酸和Na2SO4两种在生产中共生的固体混合物的分离。
邓凡政等引选取了[BMIM]BF4+NaH2PO4的双水相体系,萃取分离了食用色素苋菜红。
丙酮-乙醇-丁醇发酵法是生产生物燃料的重要方法.乙醇沸点较低,多用蒸馏法除去,而丁醇多用三丁基膦萃取除去,虽然分配系数较高,但对发酵微生物毒性较大。
Faddev等采用【BMIM】BF6和[OMIM]BF6作为丁醇萃取剂,发现其分配系数是三丁基膦的2-3倍,且对发酵微生物几乎没有毒性。
(3)在萃取金属离子和稀土分离中的应用未修饰的离子液体萃取水中金属离子的分配系数往往较低,通常在离子液体的阳离子中引入配位原子或加入萃取荆以提高萃取率。
Visser等在憎水的咪唑基六氟磷酸盐的取代基上引入不同酌配位原子或配位结构,如脲、硫脲、硫醚等,合成了一类用于萃取水中含有重金属离子Cd2+、H92+的功能化离子液体。
研究结果表明,改性后的功能化离子液体随其修饰烷基链长的增长,对金属离子的萃取分配系数呈上升趋势,其中用脲和硫脲修饰后的离子液体对Cd2+、Hg2+的分配系数分别高达360和210。
Visser等又报道了离子液体与冠醚混合萃取碱金属和碱土金属离子(如Cs2+、Sr2+)的研究,研究发现,将冠醚DTB-18-c-6(dicyclohexano-18-Cro-Wn-6)加入到[C8MIM][PF6]中,可得到大于100的分配系数。
Sheng等研究发现,以NTF2一为负离子的离子液体与冠醚混合后,从水溶液中萃取Sr(NO3),分配系数高达103-104数量级,但文中并未提及冠醚的种类。
我国的稀土资源储量世界第一。
稀土分离是稀土材料发展的源头,探索新型的清洁、绿色以及高效的湿法冶金分离技术是目前稀土分离工业的重要课题之一。
传统的稀土分离工业大量使用具有挥发性的煤油等有机溶剂,效率低,污染度高。
陈继等引开发了离子液体与稀土萃取剂组成的新萃取体系,在稀土分离中利用离子液体的固定化技术,制备了一种离子液基复合材料,以固定疏水性离子液体,试验结果表明,该复合材料对Y3+和重稀土元素有较好的分离效果,经4次萃取/反萃,复合材料对Y3+的去除率仍高于78%,稳定且可重复使用。
氰特加拿大公司利用[C8MIM]PF6/Cyanex923体系分离Y3+和重稀土(HRE)时发现,加入EDTA可显著改善Y3+与其他稀土的分离系数。