九上学生相似三角形讲义全

合集下载

相似三角形的性质与判定讲义)

相似三角形的性质与判定讲义)

相似三角形的性质与判定讲义)-CAL-FENGHAI.-(YICAI)-Company One1相似三角形的性质与判定讲义【知识点拨】一、相似三角形性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.(5)相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等二、 相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.(2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆. 三、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

相似三角形知识点讲义

相似三角形知识点讲义

相似三角形知识点讲义知识点1 相似图形形状相同的图形叫相似图形,或者说是相似形,在相似多边形中,最简单的是相似三角形.如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

知识点2 比例线段的相关概念两条线段长度的比叫做这两条线段的比。

如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm ba =,或写成n m b a ::=.注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位.在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad cb =.例题⒈若AB =1m ,CD =25cm ,则AB ∶CD = ;若线段AB=m, CD=n ,则AB ∶CD= . ⒉若MN ∶PQ =4∶7,则PQ ∶MN= , MN= PQ , PQ= MN 。

知识点3 比例的性质 基本性质:(1)bc ad d c b a =⇔=::; (2)b a c b c c a ⋅=⇔=2::. 注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:ddc b b ad c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等. 等比性质:如果)0(≠++++====n f d b n m f e d c b a ,那么b a n f d b m e c a =++++++++ .注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立. 例1若线段a ,b ,c ,d 成比例,其中a =5㎝,b =7㎝,c =4㎝,则,d = . 例2若a·b=c·d 则有a ∶d= ;若m ∶x=n ∶y, 则x ∶y= . 例3已知4x -5y =0,则(x +y )∶(x -y )的值为 .例4若x ∶y ∶z =2∶7∶5,且x -2y +3z=6,则x= ,y= ,z= ; 例5设x 3 =y 5 =z 7 ,则x+y y =__ _,y+3z 3y-2z =__ __.;其中032≠+-f d b .例6若kba c ca b cb a =+=+=+,求k 的值。

相似三角形详细讲义

相似三角形详细讲义

知识梳理相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于”.相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是:BC DE // ,ADE ∽ABC . 相似三角形的等价关系(1)反身性:对于任一ABC 有ABC ∽ABC .(2)对称性:若ABC ∽'''C B A ,则'''C B A ∽ABC .(3)传递性:若ABC ∽C B A '',且C B A ''∽C B A ,则ABC ∽C B A . 三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.(在遇到两个三角形的三边都知道的情况优先考虑,把边长分别从小到大排列,然后分别计算他们的比值是否相等来判断是否相似)6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

(完整版)相似三角形最全讲义(教师版)

(完整版)相似三角形最全讲义(教师版)

相似三角形基本知识知识点一:放缩与相似形1.图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质 (1)有关概念1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如d cb a =4、比例外项:在比例dcb a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例d c b a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例d c b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。

8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: bc ad d cb a =⇔= (两外项的积等于两内项积) 2.反比性质:c da b dc b a =⇒= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项4.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a .5.等比性质:(分子分母分别相加,比值不变.) 如果)0(≠++++====n f d b nmf e d c b a ΛΛ,那么b a n f d b m ec a =++++++++ΛΛ. 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

初三相似三角形讲义易

初三相似三角形讲义易

三角形相似 一、基本知识及需要说明的问题: (一)比例的性质 1.比例的基本性质:bc ad dcb a =⇔= 此性质非常重要,要求掌握把比例式化成等积式、把等积式转化成比例的方法. 2.合、分比性质:ddc b b ad c b a d d c b b a d c b a -=-⇒=+=+⇒=或 注意:此性质是分子加(减)分母比分母,不变的是分母.如:已知d c cb a a dc b a +=+=:,求证 证明:∵d c b a = ∴c d a b = ∴c d c a b a +=+ ∴dc cb a a +=+ 3.等比性质:若)0(≠+⋅⋅⋅+++=⋅⋅⋅===n f d b n m f e d c b a 则ban f d b m e c a =+⋅⋅⋅++++⋅⋅⋅+++. 4.比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)相似三角形1、相似三角形的判定①两角对应相等的两个三角形相似(此定理用的最多); ②两边对应成比例且夹角相等的两个三角形相似; ③三边对应成比例的两个三角形相似;④直角边和斜边对应成比例的两个直角三角形相似.2、直角三角形斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似(三)相似三角形的性质①相似三角形对应角相等、对应边成比例.②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比(对应边的比)②相似三角形面积比等于相似比的平方(对应边的比) 补充:相似三角形的识别方法(1)定义法:三角对应相等,三边对应成比例的两个三角形相似。

(2)平行线法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

注意:适用此方法的基本图形,(简记为A 型,X 型) (3)三边对应成比例的两个三角形相似。

(4)两边对应成比例并且它们的夹角也相等的两个三角形相似。

(5)两角对应相等的两个三角形相似。

九年级数学相似三角形人教版知识精讲

九年级数学相似三角形人教版知识精讲

初三数学相似三角形人教版【同步教育信息】 一. 本周教学内容: 相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。

2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。

3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。

4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。

本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。

相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。

(二)重要知识点介绍: 1. 比例线段的有关概念:在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质:①基本性质:a b cd ad bc =⇔= ②合比性质:±±a b c d a b b c dd =⇒=③等比性质:……≠……a b c d m n b d n a c m b d n ab ===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

初三相似三角形讲义

初三相似三角形讲义

初二升初三数学相似三角形知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。

如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。

相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。

注意:(1)相似比是有顺序的。

(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。

(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。

(2)两个等边三角形一定相似,两个等腰三角形不一定相似。

(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。

知识点3、相似三角形的性质相似三角形的对应角相等,对应边成比例,对应线段的比等于相似比,根据这一性质,可计算角的度数或边的长度。

平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2C F l3可得EFBC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4、如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

九年级数学总复习(件:第21课时相似三角形PPT课件

九年级数学总复习(件:第21课时相似三角形PPT课件

(5)顶角⑥______的两等腰三角形类似
相等
(1)类似三角形的⑦__对__应__角__相等;对应边
成比例;
性 (2)类似三角形的对应高的比、对应中线的 质 比和对应角平分线的比都等于类似比;
(3)类似三角形的周长比等于⑧_类__似__比___, 面积比等于⑨_类__似__比__的__平__方____
∵DE=3,
∴AG= 9 ,
2
∵△ABC∽△FCD,BC=2CD,

SFCD (CD)2 1 SABC BC 4
∵S△ABC=
1 2
∴S△FCD=
1 4
BC×AG= 1
2 9
S△ABC= 2 .
×8× 9
2
=18,
G
第4题解图
类型三 类似多边形的性质计算 例 3 把矩形ABCD对折,折痕为MN,
比例
顶角相等 一对底角相等 底和腰对应成比例
几 种 基 本 图 形
考点三 类似多边形及其性质 1.定义:各角对应⑩_相__等__,各边对应 11
_成__比__例__的两个多边形叫做类似多边形.类似多 边形 12_对__应__边__的比叫做类似比.
2.性质 (1)类似多边形的对应角 13__相__等__,对应边 14 _成__比__例___. (2)类似多边形的周长比等于15 _类__似__比__,面 积比等于 16__类__似__比__的__平__方___.
ab 13k5k 18k 9
针对演练
已知 abacbck,则k的值为 2或-1
c ba
_【_解__析___】. 根据比例的基本性质,三等式相加,
即可得出k值;∵
abacbck,
c ba
∴ abacbck,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲相似图形与成比例线段【学习目标】1、从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念。

2、了解成比例线段的概念,会确定线段的比。

【学习重点】相似图形的概念与成比例线段的概念。

【学习难点】成比例线段概念。

【学习过程】知识点一:比例线段定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们长度的比)与另外两条线段的比,如果a cb d,那么就说这四条线段a、b、c、d叫做成比例线段,简称比例线段。

例:如四条线段的长度分别是4cm、8cm、3cm、6cm判断这四条线段是否成比例?解:练习一:1、如图所示:(1)求线段比ABBC、CDDE、ACBE、ACCD(2)试指出图中成比例线段2、线段a、b、c、d的长度分别是30mm、2cm、0.8cm、12mm判断这四条线段是否成比例?3、线段a、b、c、d的长度分别是2、3、2、6判断这四条线段是否成比例?4、已知A、B两地的实际距离是250m若画在图上的距离是5cm,则图上距离与实际距离的比是___________5、已知线段a=12、 b =2+c=2若a cb x=,则x =_________若()0b y y y c =>,则y =__________6、下列四组线段中,不成比例的是 ( )A a=3 b=6 c=2 d=4C a=4 b=6 c=5 d=10 知识点二:比例线段的性质比例性质是根据等式的性质得到的,推理过程如下: (1) 基本性质:如果a cb d=,那么ad bc =(两边同乘bd ,0bd ≠) 在0abcd ≠的情况下,还有以下几种变形b d ac =、a b cd =、c d a b= (2) 合比性质:如果a cb d =,那么a bcd b d±±= (3) 等比性质:如果a c em b d fn====()0b d f n ++++≠,那么a c e m ab d f n b++++=++++ 例2 填空: 如果23a b =,则a = 2a = 、 a b b += 、 a b b-=练习二: 1、已知35a b =,求a ba b+- 2、若234a b c ==,则23a b c a++=_________3、已知mx ny =,则下列各式中不正确的是( )Am x n y= Bm n y x= Cy m x n= Dx y n m= 4、已知570x y -=,则xy=_______5、已知345x y z==,求x y z x y z +++-=________第2讲平行线分线段成比例【学习目标】1.理解掌握平行线分线段成比例定理,会用符号“∽”表示相似三角形, 如△ABC ∽ △C B A ''';2. 知道相似多边形的主要特征3.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算。

【学习重点】理解掌握平行线分线段成比例定理及应用.相似多边形的主要特征与识别。

【学习难点】掌握平行线分线段成比例定理应用.运用相似多边形的特征进行相关的计算。

【学习过程】知识点三:平行线分三角形两边成比例线段(1) 如图27.2-1),任意画两条直线l 1 , l 2,再画三条与l 1 , l 2 相交的平行线l 3 , l 4, l 5.分别量度l 3 , l 4, l 5.在l 1 上截得的两条线段AB, BC 和在l 2 上截得的两条线段DE, EF 的长度, AB ︰BC 与DE ︰EF 相等吗?任意平移l 5 , 再量度AB, BC, DE, EF 的长度, AB ︰BC 与DE ︰EF 相等吗?(2) 问题,AB ︰AC=DE ︰( ),BC ︰AC=( )︰DF .强调“对应线段的比是否相等” (3) 归纳总结:平行线分线段成比例定理 三条_________截两条直线,所得的_______________。

应重点关注:平行线分线段成比例定理中相比线段同线;4)例1 如图、若AB=3cm ,BC=5cm ,EK=4cm ,写出EKKF= =_____、 ABAC= =______。

求FK 的长?[活动2]平行线分线段成比例定理推论思考:1、如果把图27.2-1中l 1 , l 2两条直线相交,交点A 刚落到l 3上,如图27.2-2(1),,所得的对应线段的比会相等吗?依据是什么?AB CEKF2、如果把图27.2-1中l 1 ,l 2两条直线相交,交点A刚落到l 4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?3、任意平移l 5 , 再量度AB, BC, DE, EF 的平行于三角形一边的直线截其他两边(或两边的延长线)所截得的3、 归纳总结:平行线分线段成比例定理推论 平行于三角形一边的直线截其他两边(或两边延长线),所得的 线段 。

例1:如图在ABC ∆中,90C ∠=︒,,3,2,5DE BC BD cm DC cm BE cm ⊥===求EA 的长 解:例2如图,在△ABC 中,DE∥BC,AD=EC ,DB=1cm ,AE=4cm ,BC=5cm ,求DE 的长.分析:由DE ∥BC ,可得△ADE ∽△ABC ,再由相似三角形的性质,有ACAEAB AD =,又由AD=EC 可求出AD 的长,再根据ABADBC DE =求出DE 的长. 解:[巩固练习]1.如图,在△ABC 中,DE∥BC,AC=4 ,AB=3,EC=1.求AD 和BD.2.如图,在□ABCD 中,EF ∥AB ,DE:EA=2:3,EF=4,求CD 的长.[能力提升]1.如图,△ABC ∽△AED, 其中DE ∥BC ,找出对应角并写出对应边的比例式.2.如图,△ABC ∽△AED ,其中∠ADE=∠B ,找出对应角并写出对应边的比例式.[归纳]判定三角形相似的(预备)定理:平行于三角形一边的直线和其他两边相交,所成的三角形与原来三角形相似。

这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.练习2:1、 如图,在Rt ABC ∆中,90C ∠=︒,DE ⊥AC 交AB 于D ,交AC 于E ,如果DE =5,AE =12,AC =28.求AB 的长2、在ABC ∆中,DE //BC ,交AB 于D ,交AC 于E ,F 为BC 上一点,DE 交AF 于G ,已知AD=2BD ,AE =5,求(1)AGAF;(2)AC 的长3、 如图:在ABC ∆中,点D 、E 分别在AB 、AC 上,已知AD =3,AB =5,A E=2,EC =43,由此判断DE 与BC 的关系是___________,理由是____________________________4、 如图:AM :MB=AN :NC=1:3,则MN :BC=__________5、 如图:在ABC ∆中,90C ∠=︒,四边形EDFC 为接正方形,AC =5,BC =3,求:AE :DF的比值。

6、在ABC ∆中,D 、E 分别在AB 、AC 上,且DE //BC ,如果23AD DB =,且AC =10,求AE 及EC 的长。

7.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.8、如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)第3讲 相似多边形【学习目标】1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等。

2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算。

【学习重点】相似多边形的主要特征与识别。

【学习难点】运用相似多边形的特征进行相关的计算。

【学习过程】[探究研讨][活动1]观察,图27.1-4(1)中的△A 1B 1C 1是由正△ABC 放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?知识点四:相似多边形1、 相似形定义:具有 的图形称为相似形2、 相似多边形:对应角 , 的多边形叫相似多边形3、 相似多边形的性质:○1相似多边形的对应角相等,对应边的比相等 反过来,如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。

3.【结论】:(1)相似多边形的特征:相似多边形的对应角______,对应边的比_______.反之,如果两个多边形的对应角______,对应边的比_______,那么这两个多边形_______.几何语言:在⊿ABC 和⊿A 1B 1C 1中若111;;C C B B A A ∠=∠∠=∠∠=∠.111111C A ACC B BC B A AB == 则⊿ABC 和⊿A 1B 1C 1相似(2)相似比:相似多边形________的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形______,因此________形是一种特殊的相似形.[例题解析]例1、(选择题)下列说确的是( )A .所有的平行四边形都相似B .所有的矩形都相似C .所有的菱形都相似D .所有的正方形都相似分析:A 中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A 错;B 中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B 错;C 中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C 也错;D 中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D 说确,因此此题应选D .例2、如图:已知,四边形ABCD 与四边形A B C D ''''相似,求B C '',C D ''长和D ∠大小解:巩固练习11.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm ,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边a 、b 、c 、d 的长度.54如图,四边形ABCD 和EFGH 相似,求角βα和的大小和EH 的长度x .27.1-6练习2:1、下列说确的是 ( ) A 任意两个菱形一定相似B 任意两个矩形一定相似C 有一个角是30︒的两个等腰三角形相似D 任意两个等腰直角三角形一定相似2、已知26AOB ∠=︒,在放大镜里看到的AOB ∠的度数是___________3、在ABC ∆中,BC =15cm ,AC =45cm,AB =54cm,另一个与它相似的三角形最短边是5cm,则最长一边是4、用一个放大镜看一个四边形ABCD ,若该四边形的边长放大10倍后,下列说确的是( ) A A ∠是原来的10倍B 周长是原来的10倍C 每个角都发生了变化D 以上说法都不对5.四边形ABCD 与四边形A B C D ''''相似图形,且A 与A '、B 与B '、C 与C '是对应点,已知AB =10、BC =8、CD =8、AD =6、30A B ''=,求四边形A B C D ''''的其余三边的边长及周长。

相关文档
最新文档