2014高考数学一轮汇总训练《变化率与导数、导数的计算 》理 新人教A版
(聚焦典型)2014届高三数学一轮复习《变化率与导数、导数的运算》理 新人教B版

[第13讲 变化率与导数、导数的运算](时间:45分钟 分值:100分)基础热身1.[2013·江西卷] 若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0) 2.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =2x -3D .y =-2x -23.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-14.y =cos x 1-x的导数是( )A .y ′=cos x +sin x +x sin x(1-x )2B .y ′=cos x -sin x +x sin x(1-x )2C .y ′=cos x -sin x +x sin x1-xD .y ′=cos x +sin x -x sin x(1-x )2能力提升5.[2013·沈阳模拟] 若函数y =x 33-x 2+1(0<x <2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )A.π4B.π6C.5π6D.3π46.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a等于( )A .-2B .-1C .1D .2 7.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)…(x -a 8),则f ′(0)=( )A .26B .29C .212D .2158.若曲线y =x -12在点⎝⎛⎭⎪⎫a ,a -12处的切线与两个坐标轴围成的三角形的面积为18,则a =( )A .64B .32C .16D .89.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π4B.⎣⎢⎡⎭⎪⎫π4,π2C.⎝ ⎛⎦⎥⎤π2,3π4D.⎣⎢⎡⎭⎪⎫3π4,π10.[2013·深圳模拟] 已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,则x 0的值为________.11.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b =________.12.[2013·豫北六校联考] 已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为________.13.已知f (x )=e x -e-x e x +e-x ,则f ′(0)=________.14.(10分)求下列函数的导数:(1)y =sin ⎝ ⎛⎭⎪⎫π4-x +cos ⎝ ⎛⎭⎪⎫π4+x ; (2)y =e 1-2x+ln(3-x );(3)y =ln 1-x1+x.15.(13分)设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f (x )的解析式;(2)证明:函数y =f (x )的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y =f (x )上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.难点突破16.(12分)用导数方法求和:1+2x+3x2+…+nx n-1(x≠0,1,n∈N*).课时作业(十三)【基础热身】1.C [解析] f ′(x )=2x -2-4x >0,即x 2-x -2x>0.∵x >0,∴(x -2)(x +1)>0,∴x >2.2.A [解析] ∵y ′=⎪⎪⎪2(x +2)2x =-1=2,∴切线方程为y =2x +1. 3.A [解析] ∵y ′=2x +a⎪⎪⎪)x =0=a ,∴a =1,(0,b )在切线x -y +1=0上,∴b =1.4.B [解析] y ′=-(1-x )sin x -(-1)cos x (1-x )2=cos x -sin x +x sin x(1-x )2. 【能力提升】5.D [解析] y ′=x 2-2x ,当0<x <2时,-1≤y ′<0,即-1≤tan α<0,故3π4≤α<π,α的最小值为3π4.6.D [解析] f ′(x )=sin x +x cos x ,f ′⎝ ⎛⎭⎪⎫π2=1,即函数f (x )=x sin x +1在x =π2处的切线的斜率是1,直线ax +2y +1=0的斜率是-a2,所以⎝ ⎛⎭⎪⎫-a 2×1=-1,解得a =2.7.C [解析] f ′(x )=[x ·(x -a 1)(x -a 2)…(x -a 8)]′=(x -a 1)(x -a 2)…(x -a 8)+x [(x -a 1)(x -a 2)…(x -a 8)]′,所以f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=212.8.A [解析] y ′=-12x -32,所以k =-12a -32,切线方程为y -a -12=-12a -32(x -a ).令x =0,得y =32a -12;令y =0,得x =3a .所以三角形的面积是S =12·3a ·32a -12=94a 12=18,解得a =64.9.D [解析] 由于y ′=⎝ ⎛⎭⎪⎫4e x +1′=-4e x(e x +1)2,而α为曲线在点P 处的切线的倾斜角,则k =tan α=-4e x (e +1)<0.又(e x +1)2≥(2e x )2=4e x ,当且仅当e x=1,即x =0时,取等号,那么k =tan α=-4e x (e x +1)2≥-1,即-1≤k <0,那么对应的α∈⎣⎢⎡⎭⎪⎫3π4,π. 10.0或-23 [解析] 由题意2x 0=-3x 20,解得x 0=0或-23.11.ln2-1 [解析] y ′=1x ,令1x =12得x =2,故切点(2,l n2),代入直线方程,得ln2=12×2+b ,所以b =ln2-1.12.2 [解析] 函数y =ln(x +a )的导数为y ′=1x +a ,设切点(x 0,y 0),则切线方程为y -ln(x 0+a )=1x 0+a (x -x 0),即y =x +1,所以⎩⎪⎨⎪⎧1x 0+a =1,ln (x 0+a )-x 0x 0+a=1,解得a =2.13.1 [解析] ∵f ′(x )=⎝ ⎛⎭⎪⎫e x -e -x e x +e -x ′=⎝ ⎛⎭⎪⎫e 2x -1e 2x +1′=⎝ ⎛⎭⎪⎫1-2e 2x +1′=2(e 2x +1)-2·e 2x·2=4e 2x(e 2x +1)2,∴f ′(0)=44=1. 14.解:(1)y ′=cos ⎝ ⎛⎭⎪⎫π4-x ·⎝ ⎛⎭⎪⎫π4-x ′-sin ⎝ ⎛⎭⎪⎫π4+x ·⎝ ⎛⎭⎪⎫π4+x ′=-cos ⎝ ⎛⎭⎪⎫π4-x -sin ⎝ ⎛⎭⎪⎫π4+x =-2sin ⎝ ⎛⎭⎪⎫π4+x . (2)y ′=e 1-2x ·(1-2x )′+13-x ·(3-x )′=-2e 1-2x+1x -3.(3)∵y =ln(1-x )-ln(1+x ),∴y ′=11-x ·(1-x )′+11+x (1+x )′=1x -1+1x +1=2xx 2-1.15.解:(1)f ′(x )=a -1(x +b )2,于是⎩⎪⎨⎪⎧2a +12+b =3,a -1(2+b )2=0,解得⎩⎪⎨⎪⎧a =1,b =-1或⎩⎪⎨⎪⎧a =94,b =-83.因为a ,b ∈Z ,故f (x )=x +1x -1.(2)证明:已知函数y 1=x ,y 2=1x都是奇函数.所以函数g (x )=x +1x也是奇函数,其图象是以原点为中心的中心对称图形.而f (x )=x-1+1x -1+1,可知函数g (x )的图象按向量a =(1,1)平移,即得到函数f (x )的图象,故函数f (x )的图象是以点(1,1)为中心的中心对称图形.(3)证明:在曲线上任取一点⎝ ⎛⎭⎪⎫x 0,x 0+1x 0-1. 由f ′(x 0)=1-1(x 0-1)2知,过此点的切线方程为y -x 20-x 0+1x 0-1=⎣⎢⎡⎦⎥⎤1-1(x 0-1)2(x -x 0).令x =1得y =x 0+1x 0-1,切线与直线x =1交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1.令y =x 得y =2x 0-1,切线与直线y =x 交点为(2x 0-1,2x 0-1). 直线x =1与直线y =x 的交点为(1,1).从而所围三角形的面积为12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1|2x 0-1-1|=12⎪⎪⎪⎪⎪⎪2x 0-1|2x 0-2|=2.所以,所围三角形的面积为定值2. 【难点突破】16.解:逆用导数公式,把1+2x +3x 2+…+nx n -1转化为等比数列{x n}的前n 项和的导数,求解和式的导数即可.1+2x +3x 2+…+nx n -1=x ′+(x 2)′+(x 3)′+…+(x n )′=(x +x 2+x 3+…+x n)′ =⎣⎢⎡⎦⎥⎤x (1-x n )1-x ′=⎝ ⎛⎭⎪⎫x -x n +11-x ′ =[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )21-(n+1)x n+nx n+1=(1-x)2。
2014年人教A版选修1-1课件 3.1 变化率与导数

x
练习: (补充) 运动员起跳后相对于水面的高度 h (m) 与起跳后 的时间 t (s) 存在函数关系 h(t) 4.9t2+6.5t+10. 求以 下时间段的函数增量 △h 和自变量增量 △t, 并求出 该段的平均变化率, 解释其物理意义. (1) 0 t 65 ; (2) 0 t 65 ; (3) 65 t 65 . 98 49 49 98 解: (1) h h( 65 ) h(0) 49 65 65 2 4.9 ( ) + 6.5 + 10 (4.9 02 + 6.5 0 + 10) 49 49 0. h 0 0. 实际是 65 65 t 0 . t 65 这样吗? 49 49 49 65 ]这时段的平均速度为 0. 计算得 t 在 [0, 49
练习: (补充) 运动员起跳后相对于水面的高度 h (m) 与起跳后 的时间 t (s) 存在函数关系 h(t) 4.9t2+6.5t+10. 求以 下时间段的函数增量 △h 和自变量增量 △t, 并求出 该段的平均变化率, 解释其物理意义. (1) 0 t 65 ; (2) 0 t 65 ; (3) 65 t 65 . 98 49 49 98 解: (3) h h( 65 ) h( 65 ) 49 98 65 65 65 65 2 2 4.9 ( ) + 6.5 + 10 (4.9 ( ) + 6.5 + 10) 49 49 98 98 13 65 13 65 . h 4 98 4 98 13 . t 65 4 65 65 65 t . 98 49 98 98 这时段的平均速度为负, 速度是向下的.
2014届高考数学一轮复习 第8章《平面解析几何》(第3课时)知识过关检测 理 新人教A版

2014届高考数学(理)一轮复习知识过关检测:第8章《平面解析几何》(第3课时)(新人教A 版)一、选择题1.(2012·高考辽宁卷)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0 解析:选C.要使直线平分圆,只要直线经过圆的圆心即可,由题知圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心,故选C.2.(2013·日照质检)方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是( )A.⎝ ⎛⎭⎪⎫-1,17B.⎝ ⎛⎭⎪⎫-1,12C.⎝ ⎛⎭⎪⎫-17,1 D .(1,2) 解析:选C.由D 2+E 2-4F >0,得7t 2-6t -1<0,即-17<t <1.3.若PQ 是圆x 2+y 2=9的弦,PQ 的中点A 的坐标是(1,2),则直线PQ 的方程是( ) A .x +2y -3=0 B .x +2y -5=0 C .2x -y +4=0 D .2x -y =0解析:选B.结合圆的几何性质易知直线PQ 过点A (1,2),且和直线OA 垂直,故其方程为:y -2=-12(x -1),整理得x +2y -5=0.4.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴均相切,则该圆的标准方程是( )A .(x -3)2+⎝ ⎛⎭⎪⎫y -732=1B .(x -2)2+(y -1)2=1C .(x -1)2+(y -3)2=1 D.⎝ ⎛⎭⎪⎫x -322+(y -1)2=1 解析:选B.设圆心为(a ,b )(a >0,b >0),依题意有|4a -3b |42+-2=b =1,∴a =2,b =1, ∴圆的标准方程(x -2)2+(y -1)2=1,故选B.5.已知圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .10 6B .20 6C .30 6D .40 6解析:选B.由题意知圆的标准方程为(x -3)2+(y -4)2=52,点(3,5)在圆内,且与圆心的距离为1,故最长弦长为直径10,最短弦长为252-12=46,∴四边形ABC D 的面积S =12×10×46=20 6. 二、填空题6.(2011·高考辽宁卷)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为________.解析:设圆心坐标为(a,0),易知a -2+-2=a -2+-2,解得a =2,∴圆心为(2,0),半径为10,∴圆C 的方程为(x -2)2+y 2=10.答案:(x -2)2+y 2=107.圆C :x 2+y 2+2x -2y -2=0的圆心到直线3x +4y +14=0的距离是________.解析:因为圆心坐标为(-1,1),所以圆心到直线3x +4y +14=0的距离为|-3+4+14|32+42=3.答案:38.(2013·西安质检)经过两点A (-1,4),B (3,2)且圆心在y 轴上的圆的方程为________.解析:由题干易知:AB 的垂直平分线的方程为2x -y +1=0, 令x =0得y =1,即所求圆的圆心为C (0,1).半径为r =|AC |=-1-2+-2=10.所以,所求圆的方程为x 2+(y -1)2=10.答案:x 2+(y -1)2=10 三、解答题9.根据下列条件,求圆的方程:(1)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6;(2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2).解:(1)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P 、Q 两点的坐标分别代入得⎩⎪⎨⎪⎧2D -4E -F =20, ①3D -E +F =-10. ②又令y =0,得x 2+Dx +F =0. ③ 设x 1,x 2是方程③的两根,由|x 1-x 2|=6有D 2-4F =36, ④由①、②、④解得⎩⎪⎨⎪⎧ D =-2E =-4F =-8或⎩⎪⎨⎪⎧D =-6E =-8F =0.故所求圆的方程为x 2+y 2-2x -4y -8=0,或x 2+y 2-6x -8y =0.(2)设所求方程为(x -x 0)2+(y -y 0)2=r 2, 根据已知条件得⎩⎪⎨⎪⎧y 0=-4x 0,-x 02+-2-y 02=r 2,|x 0+y 0-1|2=r ,解得⎩⎨⎧x 0=1,y=-4,r =2 2.因此所求圆的方程为(x -1)2+(y +4)2=8.10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2), ∴直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又直径|CD |=410,∴|PA |=210,∴(a +1)2+b 2=40,②由①②解得⎩⎪⎨⎪⎧ a =-3b =6或⎩⎪⎨⎪⎧a =5b =-2.∴圆心P (-3,6)或P (5,-2),∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.一、选择题 1.(2012·高考湖北卷)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0解析:选A.两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P (1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程为x +y -2=0.2.若实数x ,y 满足x 2+y 2-2x +4y =0,则x -2y 的最大值为( ) A. 5 B .10 C .9 D .5+2 5解析:选B.设x -2y =t ,即x -2y -t =0.因为直线与圆有交点,所以圆心(1,-2)到直线的距离为|1+2×2-t |12+-2≤5,解得0≤t ≤10,即x -2y 的最大值为10. 二、填空题3.(2013·济南质检)若两直线y =x +2a 和y =2x +a +1的交点为P ,P 在圆x 2+y 2=4的内部,则a 的取值范围是________.解析:由⎩⎪⎨⎪⎧y =x +2ay =2x +a +1,得P (a -1,3a -1).∴(a -1)2+(3a -1)2<4. ∴-15<a <1.答案:⎝ ⎛⎭⎪⎫-15,1 4.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为________.解析:直线x -y +1=0与x 轴的交点为(-1,0),即圆C 的圆心坐标为(-1,0).又圆C 与直线x +y +3=0相切,∴圆C 的半径为r =|-1+0+3|2= 2.∴圆C 的方程为(x +1)2+y 2=2.答案:(x +1)2+y 2=2 三、解答题5.在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.解:(1)设圆C 的圆心为C (a ,b ),则圆C 的方程为(x -a )2+(y -b )2=8, ∵直线y =x 与圆C 相切于坐标原点O . ∴O 点在圆C 上,且OC 垂直于直线y =x ,于是有⎩⎪⎨⎪⎧a 2+b 2=8ba=-1,解得⎩⎪⎨⎪⎧a =2b =-2或⎩⎪⎨⎪⎧a =-2b =2.由于点C (a ,b )在第二象限,故a <0,b >0.∴a =-2,b =2.∴圆C 的方程为(x +2)2+(y -2)2=8. (2)假设存在点Q 符合要求,设Q (x ,y ),则有⎩⎪⎨⎪⎧x -2+y 2=16,x +2+y -2=8. 解之得x =45或x =0(舍去).∴y =125.所以存在点Q (45,125),使Q 到定点F (4,0)的距离等于线段OF 的长.。
2014版山东《复习方略》(人教A版数学理)课时提升作业第二章 第十节变化率与导数、导数的计算

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(十三)一、选择题1.(2013·泰安模拟)已知函数f(x)=asin x且f′(π)=2,则a的值为( )(A)1 (B)2 (D)-22.(2013·合肥模拟)若抛物线y=x2在点(a,a2)处的切线与两坐标轴围成的三角形的面积为16,则a=( )(A)4 (B)±4 (C)8 (D)±83.(2013·海口模拟)下列曲线的所有切线构成的集合中,存在无数对互相垂直的切线的曲线是( )(A)f(x)=e x (B)f(x)=x3(C)f(x)=ln x (D)f(x)=sin x4.(2013·青岛模拟)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为( )(A)2 (B)-14(C)4 (D)-125.如图,其中有一个是函数f(x)=13x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)为( )(A)2 (B)-13 (C)3 (D)-126.(2013·莱芜模拟)已知点P 在曲线x 4y e 1=+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )(A)(0,4π) (B)(,42ππ)(C)(3,24ππ)(D)[3,4ππ)二、填空题7.如图,函数F(x)=f(x)+21x 5的图象在点P 处的切线方程是y =-x +8,则f(5)+f ′(5)=_________.8.设a >0,f(x)=ax 2+bx +c ,曲线y =f(x)在点P(x 0,f(x 0))处切线的倾斜角的取值范围为[0,4π],则点P 到曲线y =f(x)的对称轴的距离的取值范围为___________.9.(能力挑战题)若曲线f(x)=ax 2+lnx 存在垂直于y 轴的切线,则实数a 的取值范围是 . 三、解答题10.求下列各函数的导数: (1)y=(x+1)(x+2)(x+3)..(3)y =e -x sin 2x. 11.已知曲线y=314x 33,(1)求曲线过点P(2,4)的切线方程. (2)求曲线的斜率为4的切线方程.12.(能力挑战题)已知函数f(x)=ax 3+3x 2-6ax -11,g(x)=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0. (1)求a 的值.(2)是否存在k 的值,使直线m 既是曲线y =f(x)的切线,又是曲线y =g(x)的切线?如果存在,求出k 的值;如果不存在,说明理由.答案解析1.【解析】选D.因为f ′(x)=acos x , 所以f ′(π)=acos π=-a=2, 所以a=-2,故选D.2.【解析】选B.y ′=2x,所以在点(a,a 2)处的切线方程为:y-a 2=2a(x-a),令x=0,得y=-a 2;令y=0,得x=12a,所以切线与两坐标轴围成的三角形的面积S=12〓|-a 2|〓|12a|=14|a 3|=16,解得a=〒4.3.【解析】选D.设切点的横坐标为x 1,x 2,则存在无数对互相垂直的切线,即f ′(x 1)·f ′(x 2)=-1有无数对x 1,x 2使之成立,对于A 由于f ′(x)=e x >0,所以不存在f ′(x 1)·f ′(x 2)=-1成立; 对于B 由于f ′(x)=3x 2≥0,所以也不存在f ′(x 1)·f ′(x 2)=-1成立; 对于C 由于f(x)=ln x 的定义域为(0,+≦), ≨f ′(x)=1x>0;对于D,由于f ′(x)=cos x ,所以f ′(x 1)·f ′(x 2)=cos x 1·cos x 2, 若x 1=2m π,m ∈Z,x 2=(2k +1)π,k ∈Z , 则f ′(x 1)·f ′(x 2)=-1恒成立.4.【解析】选C.因为曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,所以 g ′(1)=2.又f ′(x)=g ′(x)+2x,故曲线y=f(x)在点(1,f(1))处的切线的斜率为f ′(1)=g ′(1)+2=4. 5.【解析】选B.≧f ′(x)=x 2+2ax+(a 2-1), ≨导函数f ′(x)的图象开口向上. 又≧a ≠0,≨其图象必为(3).由图象特征知f ′(0)=0,且对称轴x=-a>0, ≨a=-1,故f(-1)=-13.6.【解析】选D.x xx 22x x 4e 4e y .(e 1)e 2e 1'=-=-+++设t=e x ∈(0,+≦),则24t 4y ,1t 2t 1(t )2t'=-=-++++≧1t 2t+≥,≨y ′∈[-1,0),α∈[3,4ππ). 7.【解析】F ′(x)=f ′(x)+25x ,由题意可知F ′(5)=f ′(5)+2=-1, ≨f ′(5)=-3.又点(5,3)在F(x)的图象上,≨f(5)+5=3, ≨f(5)=-2,≨f(5)+f ′(5)=-5. 答案:-58.【解析】≧y =f(x)在点P(x 0,f(x 0))处切线的倾斜角的取值范围为[0,4π],≨0≤f ′(x 0)≤1,即0≤2ax 0+b ≤1.又≧a >0,≨b 2a -≤x 0≤1b 2a-,≨0≤x 0+b 2a ≤12a ,即点P 到曲线y =f(x)的对称轴的距离的取值范围为[0,12a].答案:[0,12a]9.【思路点拨】求出导函数,根据导函数有零点,求a 的取值范围.【解析】由题意该函数的定义域为(0,+≦),且f ′(x)=2ax+1x.因为存在垂直于y 轴的切线,故此时斜率为0,问题转化为x>0时导函数f ′(x)=2ax+1x存在零点的问题.方法一(图象法):再将之转化为g(x)=-2ax 与h(x)=1x存在交点.当a=0时不符合题意,当a>0时,如图1,数形结合可得没有交点,当a<0时,如图2,此时正好有一个交点,故有a<0,应填(-≦,0).方法二(分离变量法):上述也可等价于方程2ax+1x=0在(0,+≦)内有解,显然可得a=212x-∈(-≦,0). 答案:(-≦,0)10.【解析】(1)方法一:y=(x 2+3x+2)(x+3)=x 3+6x 2+11x+6, ≨y ′=3x 2+12x+11.方法二:y ′=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)·(x+3)′ =[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)·(x+2) =(x+2+x+1)(x+3)+(x+1)(x+2) =(2x+3)(x+3)+(x+1)(x+2) =3x 2+12x+11. (2)≧21x=-, ≨y ′=22221x 21x 1x 1x ''-(-)()==-(-)(-). (3)y ′=(-e -x )sin 2x +e -x (cos 2x)〓2 =e -x (2cos 2x -sin 2x).11.【解析】(1)设曲线y=314x 33+与过点P(2,4)的切线相切于点A(x 0,13x 03+43),则切线的斜率k=02x x 0y |x ='=,≨切线方程为y-(3014x 33+)=x 02(x-x 0),即y=x 02·x-23x 03+43.≧点P(2,4)在切线上,≨4=2300242x x 33-+,即x 03-3x 02+4=0,≨x 03+x 02-4x 02+4=0, ≨(x 0+1)(x 0-2)2=0, 解得x 0=-1或x 0=2,故所求的切线方程为4x-y-4=0或x-y+2=0. (2)设切点为(x 0,y 0),则切线的斜率为k= x 02=4,x 0=〒2,所以切点为(2,4),(-2,-43), ≨切线方程为y-4=4(x-2)和y+43=4(x+2), 即4x-y-4=0和12x-3y+20=0. 【变式备选】已知函数f(x)=x 3+x-16.(1)求曲线y =f(x)在点(2,-6)处的切线方程.(2)如果曲线y=f(x)的某一切线与直线y=-14x+3垂直,求切点坐标与切线的方程.【解析】(1)可判定点(2,-6)在曲线y =f(x)上. ≧f ′(x)=(x 3+x -16)′=3x 2+1,≨在点(2,-6)处的切线的斜率为k =f ′(2)=13, ≨切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)≧切线与直线y=-14x+3垂直, ≨切线的斜率k=4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 02+1=4, ≨x 0=〒1,≨0000x 1x 1y 14y 18.⎧⎧⎨⎨⎩⎩=,=-,或=-=-≨切点坐标为(1,-14)或(-1,-18),切线方程为y=4(x-1)-14或y=4(x+1)-18. 即y=4x-18或y=4x-14.12.【解析】(1)f ′(x)=3ax 2+6x -6a ,f ′(-1)=0, 即3a -6-6a =0,≨a =-2.(2)存在.≧直线m 恒过定点(0,9),直线m 是曲线y =g(x)的切线,设切点为(x 0,3x 02+6x 0+12), ≧g ′(x 0)=6x 0+6,≨切线方程为y -(3x 02+6x 0+12)=(6x 0+6)(x -x 0),将点(0,9)代入,得 x 0=〒1,当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由f ′(x)=0得-6x 2+6x +12=0, 即有x =-1或x =2,当x =-1时,y =f(x)的切线方程为y =-18; 当x =2时,y =f(x)的切线方程为y =9. ≨公切线是y =9.又令f ′(x)=12得-6x 2+6x +12=12, ≨x =0或x =1.当x =0时,y =f(x)的切线方程为y =12x -11; 当x =1时,y =f(x)的切线方程为y =12x -10, ≨公切线不是y =12x +9.综上所述公切线是y=9,此时k=0.关闭Word文档返回原板块。
2014高考数学一轮汇总训练《简单的三角恒等变换 》理 新人教A版

第六节 简单的三角恒等变换[备考方向要明了][归纳²知识整合]1.半角公式 (1)用cos α表示sin 2α2,cos 2α2,tan 2α2. sin2α2=1-cos α2;cos 2α2=1+cos α2;tan 2α2=1-cos α1+cos α. (2)用cos α表示sin α2,cos α2,tan α2.sin α2=±1-cos α2; cos α2=±1+cos α2; tan α2=±1-cos α1+cos α.(3)用sin α,cos α表示tan α2.tan α2=sin α1+cos α=1-cos αsin α.[探究] 如何用tan α表示sin 2α与cos 2α? 提示:sin 2α=2sin αcos α=2sin αcos αsin 2 α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α. 2.形如a sin x +b cos x 的化简a sin x +b cos x =a 2+b 2sin(x +φ),其中tan φ=ba.[自测²牛刀小试]1.(教材习题改编)化简2+cos 2-sin 21的结果是( ) A .-cos 1 B .cos 1 C.3cos 1 D .-3cos 1解析:选C2+cos 2-sin 21=1+cos 2+1-sin 21=2cos 21+cos 21=3cos 1.2.sin 235°-12sin 20°的值为( )A.12 B .-12C .-1D .1解析:选B sin 235°-12sin 20°=2sin 235°-12sin 20°=-cos 70°2sin 20°=-sin 20°2sin 20°=-12.3.若f (x )=2tan x -2sin 2x2-1sin x 2cos x 2,则f ⎝ ⎛⎭⎪⎫π12的值为( ) A .-43 3B .8C .4 3D .-4 3解析:选B ∵f (x )=2tan x +1-2sin2x212sin x =2tan x +2cos x sin x =2sin x cos x =4sin2x ,∴f ⎝ ⎛⎭⎪⎫π12=4sinπ6=8.4.(教材习题改编)函数y =3cos 4x +sin 4x 的最小正周期为________. 解析:y =3cos 4x +sin 4x =2⎝⎛⎭⎪⎫32cos 4x +12sin 4x=2⎝ ⎛⎭⎪⎫cos π6cos 4x +sin π6sin 4x =2cos ⎝ ⎛⎭⎪⎫4x -π6,故T =2π4=π2.答案:π25.若cos α=-45,α是第三象限角,则1+tanα21-tanα2=________.解析:∵cos α=-45,且α是第三象限角,∴sin α=-35,∴1+tan α21-tan α2=cos α2+sinα2cos α2cos α2-sin α2cosα2=cos α2+sinα2cos α2-sinα2=⎝ ⎛⎭⎪⎫cos α2+sin α22⎝ ⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2=1+sin αcos 2α2-sin 2α2=1+sin αcos α=1-35-45=-12.答案:-12[例1] (1)化简:sin 2α-2cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=________;(2)已知0<x <π2,化简:lg ⎝ ⎛⎭⎪⎫cos x ²tan x +1-2sin 2x 2+lg ⎣⎢⎡⎦⎥⎤2cos ⎝⎛⎭⎪⎫x -π4-lg(1+sin 2x ). [自主解答] (1)原式=2sin αcos α-2cos 2α22sin α-cos α=22²cos α.(2)原式=lg(sin x +cos x )+lg(sin x +cos x )-lg(1+sin 2x ) =lgsin x +cos x 21+sin 2x=lg 1+sin 2x 1+sin 2x=lg 1=0.[答案] (1)22cos α ———————————————————1.三角函数式的化简原则一是统一角,二是统一函数名,能求值的求值,必要时切化弦,更易通分、约分. 2.三角函数式化简的要求 1能求出值的应求出值; 2尽量使三角函数种数最少; 3尽量使项数最少; 4尽量使分母不含三角函数; 5尽量使被开方数不含三角函数. 3.三角函数化简的方法化简的方法主要有弦切互化,异名化同名,异角化同角,降幂或升幂.1.化简:⎝ ⎛⎭⎪⎪⎫1tan α2-tan α2²⎝ ⎛⎭⎪⎫1+tan α²tan α2. 解:原式=⎝ ⎛⎭⎪⎫cos α2sin α2-sin α2cos α2²⎝ ⎛⎭⎪⎫1+sin αcos α²sinα2cosα2=cos αsin α2cosα2²⎝ ⎛⎭⎪⎫1+sin αcos α²sin α2cos α2 =2cos αsin α+2cos αsin α²sin αcos α²sinα2cosα2=2cos αsin α+2sin α2cosα2=2cos αsin α+4sin2α2sin α=2cos α+4sin 2α2sin α=2⎝ ⎛⎭⎪⎫1-2sin 2α2+4sin2α2sin α=2sin α.[例2] 已知3π4<α<π,tan α+1tan α=-103.(1)求tan α的值;(2)求5sin 2α2+8sin α2cos α2+11cos 2α2-82sin ⎝ ⎛⎭⎪⎫α-π4的值.[自主解答] (1)∵tan α+1tan α=-103, ∴3tan 2α+10tan α+3=0, 解得tan α=-13或tan α=-3.∵3π4<α<π,∴-1<tan α<0. ∴tan α=-13.(2)∵tan α=-13,∴5sin 2α2+8sin α2cos α2+11cos 2α2-82sin ⎝⎛⎭⎪⎫α-π4=5⎝⎛⎭⎪⎫sin 2α2+cos 2α2+4sin α+6²1+cos α2-8sin α-cos α=5+4sin α+3+3cos α-8sin α-cos α=4sin α+3cos αsin α-cos α=4tan α+3tan α-1=-54.保持本例条件不变,求1-cos 2α-sin 2α1+cos 2α-sin 2α的值.解:1-cos 2α-sin 2α1+cos 2α-sin 2α=2sin 2α-2sin αcos α2cos 2α -2sin αcos α =2sin αsin α-cos α2cos αcos α-sin α=-tan α=13.———————————————————已知三角函数式的值,求其他三角函数式值的一般思路 1先化简所求式子;2观察已知条件与所求式子之间的联系从三角函数名及角入手; 3将已知条件代入所求式子,化简求值.2.已知sin(2α-β)=35,sin β=-1213,且α∈⎝ ⎛⎭⎪⎫π2,π,β∈⎝ ⎛⎭⎪⎫-π2,0,求sin α的值.解:∵π2<α<π,∴π<2α<2π.∵-π2<β<0,∴0<-β<π2,π<2α-β<5π2,而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos(2α-β)=45.又-π2<β<0且sin β =-1213,∴cos β=513,∴cos 2α=cos[(2α-β)+β]=cos(2α-β)cos β-sin(2α-β)sin β =45³513-35³⎝ ⎛⎭⎪⎫-1213=5665. 又cos 2α=1-2sin 2α,∴sin 2α=9130.又α∈⎝ ⎛⎭⎪⎫π2,π,∴sin α=3130130.[例3] (2013²西域模拟)已知函数f (x )=3sin 2x +sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π2,π.(1)求f (x )的零点;(2)求f (x )的最大值和最小值. [自主解答] (1)令f (x )=0,得 sin x ²(3sin x +cos x )=0, 所以sin x =0或tan x =-33. 由sin x =0,x ∈⎣⎢⎡⎦⎥⎤π2,π,得x =π; 由tan x =-33,x ∈⎣⎢⎡⎦⎥⎤π2,π,得x =5π6. 综上,函数f (x )的零点为5π6或π.(2)f (x )=32(1-co s 2x )+12sin 2x =sin ⎝⎛⎭⎪⎫2x -π3+32. 因为x ∈⎣⎢⎡⎦⎥⎤π2,π,所以2x -π3∈⎣⎢⎡⎦⎥⎤2π3,5π3.所以当2x -π3=2π3,即x =π2时,f (x )的最大值为3;当2x -π3=3π2,即x =11π12时,f (x )的最小值为-1+32. ———————————————————公式a sin x +b cos x =a 2+b 2sin(x +φ)的应用及注意事项(1)利用a sin x +b cos x =a 2+b 2sin(x +φ)把形如y =a sin x +b cos x +k 的函数化为一个角的某种函数的一次式,可以求三角函数的周期、单调区间、值域和最值、对称轴等.(2)该公式是逆用两角和的正弦公式得到的.当φ为特殊角即a b的值为1或3⎝ ⎛⎭⎪⎫33时要熟练掌握.对φ是非特殊角时,只要求会求最值即可.3.(2013²银川模拟)已知函数f (x )=sin 2x -23sin 2x +3+1. (1)求f (x )的最小正周期及其单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤-π6,π6时,求f (x )的值域. 解:f (x )=sin 2x +3(1-2s in 2x )+1=sin 2x +3cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π3+1.(1)函数f (x )的最小正周期T =2π2=π.由正弦函数的性质知,当2k π-π2≤2x +π3≤2k π+π2,即k π-5π12≤x ≤k π+π12(k ∈Z )时,函数y =sin ⎝ ⎛⎭⎪⎫2x +π3为单调递增函数,故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).(2)∵x ∈⎣⎢⎡⎦⎥⎤-π6,π6,∴2x +π3∈⎣⎢⎡⎦⎥⎤0,2π3,∴sin ⎝⎛⎭⎪⎫2x +π3∈[0,1],∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1∈[1,3].∴f (x )的值域为[1,3].1个公式——辅助角公式可利用辅助角公式求最值、单调区间、周期.y =a sin α+b cos α=a 2+b 2sin(α+φ)其中tan φ=ba有a 2+b 2≥|y |.2个方向——三角恒等变换的基本方向三角函数求值、化简的基本思路是“变换”、通过适当的变换达到由此及彼的目的.变换的基本方向有两个:一是变换函数名称,可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;二是变换角的形式,可以使用两角和与差的三角函数公式、倍角公式、对角进行代数形式的变换等.3个步骤——三角恒等变换的步骤 三角恒等变换可以归纳为以下三步:创新交汇——三角恒等变换与函数性质的交汇问题1.三角恒等变换作为高考命题的重点内容之一,主要与三角函数的求值、化简以及三角函数的性质相结合命题,有时也与向量等其他知识交汇命题.2.解决此类问题时,一要重视三角变化中的诸多公式,熟悉它们之间的内在联系;二要熟悉三角变换中各方面的技巧,特别是切化弦、降幂和升幂、角的变换等技巧.[典例] (2012²安徽高考)设函数f (x )=22cos ⎝⎛⎭⎪⎫2x +π4+sin 2x .(1)求f (x )的最小正周期;(2)设函数g (x )对任意x ∈R ,有g ⎝ ⎛⎭⎪⎫x +π2=g (x ),且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x ).求g (x )在区间[-π,0]上的解析式.[解] (1)f (x )=22cos ⎝⎛⎭⎪⎫2x +π4+sin 2x=22⎝ ⎛⎭⎪⎫cos 2x cos π4-sin 2x sin π4+1-cos 2x2=12-12sin 2x , 故f (x )的最小正周期为π.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x )=12sin 2x ,故①当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,x +π2∈⎣⎢⎡⎦⎥⎤0,π2.由于对任意x ∈R ,g ⎝ ⎛⎭⎪⎫x +π2=g (x ),从而g (x )=g ⎝⎛⎭⎪⎫x +π2=12sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π2=12sin(π+2x )=-12sin 2x . ②当x ∈⎣⎢⎡⎭⎪⎫-π,-π2时,x +π∈⎣⎢⎡⎭⎪⎫0,π2,从而g (x )=g (x +π)=12sin[2(x +π)]=12sin 2x .综合①②得g (x )在[-π,0]上的解析式为 g (x )=⎩⎪⎨⎪⎧12sin 2x ,x ∈⎣⎢⎡⎭⎪⎫-π,-π2,-12sin 2x ,x ∈⎣⎢⎡⎦⎥⎤-π2,0.[名师点评]1.本题具有以下创新点(1)命题方式:本题突破以往依据函数图象确定三角函数解析式的传统,而是将抽象函数与函数的周期性等相结合,考查函数解析式的求法.(2)考查内容的创新:本题考查了函数周期性及分类讨论思想在求抽象函数及分段函数解析式中的应用,考查了考生分析问题、解决问题的能力以及逻辑推理能力.2.解决本题的关键有以下几点 (1)准确识别函数g (x )的周期T =π2;(2)根据周期恰当地将区间[-π,0]分成⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤-π2,0两部分,并正确求出相应的解析式;(3)具备较强的逻辑推理能力和运算能力. [变式训练]1.设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若n²m =1+cos(A +B ),则C 的值为________.解析:m²n =3sin A cos B +3cos A sin B =3sin(A +B )=3sin(π-C )=3sin C ,又cos(A +B )=cos(π-C )=-cos C ,故3sin C =1-cos C ,即3sin C +cos C =1,即2sin ⎝ ⎛⎭⎪⎫C +π6=1,即sin ⎝⎛⎭⎪⎫C +π6=12,由于π6<C +π6<7π6,故只有C +π6=5π6,即C =2π3.答案:23π2.(2013²江南十校联考)已知函数f (x )=sin x +cos x . (1)若f (x )=2f (-x ),求cos 2x -sin x cos x1+sin 2x的值;(2)求函数F (x )=f (x )²f (-x )+f 2(x )的最大值和单调递增区间. 解:(1)∵f (x )=sin x +cos x ,∴f (-x )=cos x -sin x . 又∵f (x )=2f (-x ),∴sin x +cos x =2(cos x -sin x ),且cos x ≠0, ∴tan x =13,∴cos 2x -sin x cos x 1+sin 2x =cos 2x -sin x cos x 2sin 2x +cos 2x =1-tan x 2tan 2x +1=611. (2)由题知F (x )=cos 2x -sin 2x +1+2sin x cos x , ∴F (x )=cos 2x +sin 2x +1, 即F (x )=2sin ⎝⎛⎭⎪⎫2x +π4+1.当sin ⎝⎛⎭⎪⎫2x +π4=1时,[F (x )]max =2+1.由-π2+2k π≤2x +π4≤π2+2k π(k ∈Z )得-3π8+k π≤x ≤π8+k π(k ∈Z ),故所求函数F (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ).一、选择题(本大题共6小题,每小题5分,共30分)1.(2013²济南模拟)函数y =sin x sin ⎝ ⎛⎭⎪⎫π2+x 的最小正周期是( ) A.π2B .πC .2πD .4π解析:选B ∵y =sin x cos x =12sin 2x ,∴T =2π2=π.2.(2013²沈阳四校联考)若1+cos 2αsin 2α=12,则tan 2α等于( )A.54 B .-54C.43D .-43解析:选D ∵1+cos 2αsin 2α=2cos 2α2sin αcos α=cos αsin α=12,∴tan α=2,∴tan 2α=2tan α1-tan 2α=41-4=-43. 3.已知α∈(-π,0),tan(3π+α)=a log a 13(a >0,且a ≠1),则cos ⎝ ⎛⎭⎪⎫32π+α的值为( )A.1010 B .-1010C.31010D .-31010解析:选B ∵由题意可知tan(3π+α)=13,∴tan α=13.又∵cos ⎝ ⎛⎭⎪⎫32π+α=cos ⎝ ⎛⎭⎪⎫π2-α=sin α, ∴cos ⎝⎛⎭⎪⎫3π2+α=-1010.∵α∈(-π,0), ∴sin α=-1010. 4.已知x ∈⎝ ⎛⎭⎪⎫π2,π,cos 2x =a ,则cos x =( ) A. 1-a 2 B .- 1-a2 C.1+a2D .-1+a2解析:选D 依题意得cos 2x =1+cos 2x 2=1+a 2;又x ∈⎝⎛⎭⎪⎫π2,π,因此cos x =-1+a2. 5.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( ) A .-235B.235C .-45D.45解析:选C cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎪⎫α+π6=5则sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝⎛⎭⎪⎫α+π6=-45. 6.设α∈⎝ ⎛⎭⎪⎫0,π2,则sin 3αcos α+cos 3αsin α的最小值为( ) A.2764 B.325C.536D .1解析:选D sin 3αcos α+cos 3αsin α=sin 4α+cos 4αsin αcos α=sin 2α+cos 2α2-2sin 2αcos 2αsin αcos α=1sin αcos α-2sin αcos α.令sin αcos α=t ,则t =12sin 2α.∵α∈⎝ ⎛⎭⎪⎫0,π2,∴t ∈⎝ ⎛⎦⎥⎤0,12.令g (t )=1t -2t ,g (t )在⎝ ⎛⎦⎥⎤0,12上是减函数, ∴当t =12时,g (t )min =2-1=1.二、填空题(本大题共3小题,每小题5分,共15分)7.若α、β是锐角,且sin α-sin β=-12,cos α-cos β=12,则tan(α-β)=________.解析:∵sin α-sin β=-12,cos α-cos β=12,两式平方相加得:2-2cos αcos β-2sin αsin β=12,即2-2cos(α-β)=12,∴cos(α-β)=34.∵α、β是锐角,且sin α-sin β=-12<0,∴0<α<β<π2.∴-π2<α-β<0.∴sin(α-β)=-1-cos 2α-β=-74.∴tan(α-β)=sin α-βcos α-β=-3答案:-738.设α是第二象限角,tan α=-43,且sin α2<cos α2,则cos α2=________.解析:∵α是第二象限角,∴α2可能在第一或第三象限.又sin α2<cos α2,∴α2为第三象限角,∴cos α2<0.∵tan α=-43,∴cos α=-35,∴cos α2=-1+cos α2=- 55. 答案:-559.(2012²江苏高考)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.解析:因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=45,所以sin ⎝ ⎛⎭⎪⎫α+π6=35,sin 2⎝ ⎛⎭⎪⎫α+π6=2425,cos 2⎝ ⎛⎭⎪⎫α+π6=725,所以sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=sin 2⎝ ⎛⎭⎪⎫α+π6cos π4-cos2⎝⎛⎭⎪⎫α+π6sin π4=17250.答案:17250三、解答题(本大题共3小题,每小题12分,共36分) 10.(1)化简4cos 4x -2cos 2x -1tan ⎝ ⎛⎭⎪⎫π4+x sin 2⎝ ⎛⎭⎪⎫π4-x ;(2)化简[2sin 50°+sin 10°(1+3tan 10°)]²2sin 280°. 解:(1)原式=1+cos 2x 2-2cos 2x -1tan ⎝ ⎛⎭⎪⎫π4+x cos 2⎝ ⎛⎭⎪⎫π4+x =cos 22x sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x =2cos 22xsin ⎝ ⎛⎭⎪⎫π2+2x =2cos 22xcos 2x=2cos 2x .(2)原式=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°²cos 10°+3sin 10°cos 10°²2²sin 80°=⎝⎛⎭⎪⎪⎫2sin 50°+2sin 10°²12cos 10°+32sin 10°cos 10°²2cos 10° =22[sin 50°²cos 10°+sin 10°²cos(60°-10°)] =22sin(50°+10°)=22³32= 6. 11.已知函数f (x )=sin x +cos x ,f ′(x )是f (x )的导函数. (1)求f ′(x )及函数y =f ′(x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数F (x )=f (x )f ′(x )+f 2(x )的值域.解:(1)由题意可知,f ′(x )=cos x -sin x =-2²sin ⎝ ⎛⎭⎪⎫x -π4,所以y =f ′(x )的最小正周期为T =2π. (2)F (x )=cos 2x -sin 2x +1+2sin x cos x =1+sin 2x +cos 2x =1+2sin ⎝⎛⎭⎪⎫2x +π4.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,∴sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1. ∴函数F (x )的值域为[0,1+ 2 ].12.已知函数f (x )=3cos(ωx +φ)⎝ ⎛⎭⎪⎫-π2<φ<0的最小正周期为π,且其图象经过点⎝⎛⎭⎪⎫5π12,0.(1)求函数f (x )的解析式;(2)若函数g (x )=f ⎝ ⎛⎭⎪⎫x 2+π6,α,β∈⎝⎛⎭⎪⎫0,π2,且g (α)=1,g (β)=324,求g (α-β)的值.解:(1)依题意函数的最小正周期T =2πω=π,解得ω=2,所以f (x )=3cos(2x +φ).因为函数f (x )的图象经过点⎝⎛⎭⎪⎫5π12,0,所以3cos ⎝ ⎛⎭⎪⎫2³5π12+φ=0,得到2³5π12+φ=k π+π2,k ∈Z ,即φ=k π-π3,k ∈Z .由-π2<φ<0得φ=-π3.故函数f (x )的解析式为f (x )=3cos ⎝⎛⎭⎪⎫2x -π3.(2)依题意有g (x )=3cos ⎣⎢⎡⎦⎥⎤2³⎝ ⎛⎭⎪⎫x 2+π6-π3=3cos x ,由g (α)=3cos α=1,得cos α=13,同理g (β)=3cos β=324,得cos β=24.而α,β∈⎝⎛⎭⎪⎫0,π2,所以sin α=1-⎝ ⎛⎭⎪⎫132=223, sin β=1-⎝⎛⎭⎪⎫242=144, 所以g (α-β)=3cos(α-β)=3(cos αcos β+sin αsin β)=3³⎝ ⎛⎭⎪⎫13³24+223³144=2+474.1.求值:(1)sin 10°sin 30°sin 50°sin 70°; (2)2cos 10°-sin 20°cos 20°.解:(1)原式=sin 10°cos 10°sin 50°sin 70°2cos 10°=sin 20°sin 50°sin 70°4cos 10°=sin 20°cos 20°sin 50°4cos 10°=sin 40°sin 50°8cos 10°=sin 80°16cos 10°=116.(2)原式=2cos 30°-20°-sin 20°cos 20°=2cos 30°cos 20°+2sin 30°sin 20°-sin 20°cos 20°=2cos 30°cos 20°cos 20°= 3.2.已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ). (1)求f (x )的解析式;(2)若角α是一个三角形的最小内角,试求函数f (x )的值域. 解:(1)∵由sin(2α+β)=3sin β, 得sin[(α+β)+α]=3sin[(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)²cos α-3cos(α+β)sin α,∴sin(α+β)cos α=2cos(α+β)²s in α,∴tan(α+β)=2tan α,于是tan α+tan β1-tan αtan β=2tan α,即x +y 1-xy =2x ,∴y =x 1+2x 2,即f (x )=x1+2x2. (2)∵角α是一个三角形的最小内角, ∴0<α≤π3,则0<x ≤ 3,f (x )=x 1+2x 2=11x+2x ≤121x²2x=24⎝ ⎛⎭⎪⎫当且仅当x =22时取“=”,故函数f (x )的值域为⎝ ⎛⎦⎥⎤0,24. 3.已知sin θ和cos θ是关于x 的方程x 2-2x sin α+sin 2β=0的两个根. 求证:2cos 2α=cos 2β.证明:因为sin θ,cos θ是方程x 2-2x sin α+sin 2β=0的两根,所以sin θ+cos θ=2sin α,sin θ²cos θ=sin 2β.因为(sin θ+cos θ)2=1+2sin θcos θ,所以(2sin α)2=1+2sin 2β,即4sin 2α=1+2sin 2β,所以2(1-cos 2α)=1+1-cos 2β,所以2cos 2α=cos 2β.4.A 是单位圆与x 轴正半轴的交点,点P 在单位圆上,∠AOP =θ(0<θ<π),OQ=OA +OP,四边形OAQP 的面积为S .(1)求OA ²OQ+S 的最大值及此时θ的值θ0;(2)设点B 的坐标为⎝ ⎛⎭⎪⎫-35,45,∠AOB =α,在(1)的条件下,求cos(α+θ0). 解:(1)由已知,A ,P 的坐标分别为(1,0),(cos θ,sin θ).则OQ=(1+cos θ,sin θ),OA ²OQ =1+cos θ.又S =2³12|OP |²|OA |²sin θ=sin θ,所以OA ²OQ +S =cos θ+1+sin θ=2²sin ⎝⎛⎭⎪⎫θ+π4+1(0<θ<π).故OA ²OQ +S 的最大值是2+1,此时θ0=π4.(2)∵cos α=-35,sin α=45,且sin θ0=cos θ0=22,∴cos(θ0+α)=cos θ0cos α-sin θ0sin α=-7210.。
2014高考数学一轮汇总训练《函数模型及其应用》理 新人教A版

第十节函数模型及其应用[备考方向要明了][归纳·知识整合]1.几种常见的函数模型2.三种函数模型性质比较[探究] 1.直线上升、指数增长、对数增长的增长特点是什么?提示:直线上升:匀速增长,其增长量固定不变;指数增长:先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;对数增长:先快后慢,其增长速度缓慢.2.你认为解答数学应用题的关键是什么?提示:解答数学应用题的关键有两点:一是认真读题,缜密审题,将实际问题中的自然语言转化为相应的数学语言;二是要合理选取变量,设定变量后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数、方程、不等式等数学模型.[自测·牛刀小试]1.(教材习题改编)在养分充足的情况下,细菌的数量会以指数函数的方式增加.假设细菌A 的数量每2个小时可以增加为原来的2倍;细菌B 的数量每5个小时可以增加为原来的4倍.现在若养分充足,且一开始两种细菌的数量相等,要使细菌A 的数量是B 的数量的两倍,需要的时间为( )A .5 hB .10 hC .15 hD .30 h解析:选B 假设一开始两种细菌数量均为m ,则依题意经过x 小时后,细菌A 的数量是f (x )=m ·2x 2,细菌B 的数量是g (x )=m ·4x 5,令m ·2x 2=2·m ·4x5,解得x =10.2.(教材习题改编)在某种新型材料的研制中,实验人员获得了下列一组实验数据.现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A.y =2x2C .y =12(x 2-1)D .y =2.61cos x解析:选B 通过检验可知,y =log 2x 较为接近.3.据调查,苹果园地铁的自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系是( )A .y =0.1x +800(0≤x ≤4 000)B .y =0.1x +1 200(0≤x ≤4 000)C .y =-0.1x +800(0≤x ≤4 000)D .y =-0.1x +1 200(0≤x ≤4 000)解析:选D y=0.2x+(4000-x)×0.3=-0.1x+1 200.4.(教材习题改编)某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是________.解析:因为储蓄按复利计算,所以本利和y随存期x变化的函数关系式是y=a(1+r)x,x∈N*.答案:y=a(1+r)x,x∈N*5.某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,按九折出售,每件还获利________元.解析:九折出售时价格为100×(1+25%)×90%=112.5元,此时每件还获利112.5-100=12.5元.答案:12.5[例1] 如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面的高度h和时间t之间的关系,其中不.正确的有( )A.1个B.2个C.3个D.4个[自主解答] 将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h 和时间t之间的关系可以从高度随时间的变化率上反映出来,图①应该是匀速的,故下面的图象不正确,②中的变化率应该是越来越慢的,正确;③中的变化规律是先快后慢再快,正确;④中的变化规律是先慢后快再慢,也正确,故只有①是错误的.[答案] A———————————————————用函数图象刻画实际问题的解题思路将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.1.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是( )A .①B .①②C .①③D .①②③解析:选A 由甲、乙两图知,进水速度是出水速度的12,所以0点到3点不出水,3点到4点也可能一个进水口进水,一个出水口出水,但总蓄水量降低,4点到6点也可能两个进水口进水,一个出水口出水,一定正确的是①.[例2] (2012·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[自主解答] (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k>0,故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0⇔a ≤6.所以当a 不超过6千米时,可击中目标. ——————————————————— 利用已知函数模型解决实际问题的步骤若题目给出了含参数的函数模型,或可确定其函数模型的图象,求解时先用待定系数法求出函数解析式中相关参数的值,再用求得的函数解析式解决实际问题.2.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系式是p =⎩⎪⎨⎪⎧t +20,0<t <25,t ∈N ,-t +100,25≤t ≤30,t ∈N *,且该商品的日销售量Q (件)与时间t (天)的函数关系式是Q =-t +40(0<t ≤30,t ∈N ).求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?解:设日销售金额为y (元),则y =p ·Q ,即y =⎩⎪⎨⎪⎧-t 2+20t +800,0<t <25,t ∈N ,t 2-140t +4 000,25≤t ≤30,t ∈N ,=⎩⎪⎨⎪⎧-t -102+900,0<t <25,t ∈N , ①t -702-900,25≤t ≤30,t ∈N . ②由①知,当t =10时,y max =900; 由②知,当t =25时,y max =1 125. 由1 125>900,知y max =1 125,即在第25天日销售额最大,为1 125元.[例3] 某特许专营店销售西安世界园艺博览会纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向世博会管理处交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售 2 000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少1元则增加销售400枚,而每增加1元则减少销售100枚,现设每枚纪念章的销售价格为x (元).(1)写出该特许专营店一年内销售这种纪念章所获得的利润y (元)与每枚纪念章的销售价格x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念章销售价格x 为多少元时,该特许专营店一年内利润y (元)最大,并求出这个最大值.[自主解答] (1)依题意y =⎩⎪⎨⎪⎧[2 000+40020-x ]x -7,0<x ≤20,[2 000-100x -20]x -7,20<x <40,∴y =⎩⎪⎨⎪⎧40025-x x -7,0<x ≤20,10040-x x -7,20<x <40.此函数的定义域为(0,40).(2)y =⎩⎪⎨⎪⎧400[-x -162+81],0<x ≤20,100⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x -4722+1 0894,20<x <40.若0<x ≤20,则当x =16时,y max =32 400(元).若20<x <40,则当x =472时,y max =27 225(元).综上可得当x =16时,该特许专营店获得的利润最大为32 400元. ———————————————————把实际问题数学化、建立数学模型一定要过好的三关(1)事理关:通过阅读、理解,明确问题讲的是什么,熟悉实际背景,为解题找出突破口.(2)文理关:将实际问题的文字语言转化为数学符号语言,用数学式子表达数学关系. (3)数理关:在构建数学模型的过程中,对已知数学知识进行检索,从而认定或构建相应的数学模型.3.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元.某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x,3x (吨).(1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费. 解:(1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨,y =1.8(5x +3x )=14.4x ;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x ≤4,且5x >4时,y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8.当乙的用水量超过4吨,即3x >4时,y =2×4×1.8+3×[(3x -4)+(5x -4)]=24x -9.6.所以y =⎩⎪⎨⎪⎧14.4x , 0≤x ≤45,20.4x -4.8, 45<x ≤43,24x -9.6, x >43.(2)由于y =f (x )在各段区间上均单调递增,当x ∈⎣⎢⎡⎦⎥⎤0,45时,y ≤f ⎝ ⎛⎭⎪⎫45<26.4;当x ∈⎝ ⎛⎦⎥⎤45,43时,y ≤f ⎝ ⎛⎭⎪⎫43<26.4; 当x ∈⎝ ⎛⎭⎪⎫43,+∞时,令24x -9.6=26.4,解得x =1.5. 所以甲户用水量为5x =5×1.5=7.5吨, 付费S 1=4×1.8+3.5×3=17.70(元); 乙户用水量为3x =4.5吨,付费S 2=4×1.8+0.5×3=8.70(元).1个防范——实际问题的定义域要特别关注实际问题的自变量的取值范围,合理确定函数的定义域. 1个步骤——解决实际应用问题的一般步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:答题模板——函数实际应用问题[典例] (2011·山东高考)(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且l ≥2r .假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c (c >3)千元.设该容器的建造费用为y 千元.(1)写出y 关于r 的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r .[快速规范审题]第(1)问1.审条件,挖解题信息观察条件:中间为圆柱形,左右两端均为半球形的容器,球的半径为r ,圆柱的母线为l ,以及容器的体积―――――――――――――→可根据体积公式建立关系式 4πr 33+πr 2l =80π3―――――――――――――――――――→利用表面积公式,可求球及圆柱的表面积S 球=4πr 2, S 圆柱=2πrl .2.审结论,明确解题方向观察所求结论:求y 关于r 的函数表达式,并求该函数的定义域――――――――――――――――――――――――→求总造价y ,应求出球形部分及圆柱形部分各自的造价球形部分的造价为4πr 2c ,圆柱型部分的造价为2πrl ×3. 3.建联系,找解题突破口总造价y =球形部分的造价+圆柱型部分的造价,即y =4πr 2c +2πrl ×3――――――――→应消掉l ,只保留r 由4πr 33+πr 2l =80π3解得l =803r 2-4r 3,故可得建造费用y =160πr-8πr 2+4πcr 2――――――――――――――――→由l ≥2r 可求r 的范围,即定义域0<r ≤2,问题得以解决. 第(2)问1.审条件,挖解题信息观察条件:建造费用y =160πr-8πr 2+4πcr 2,定义域为(0,2].2.审结论,明确解题方向观察所求结论:求该容器的建造费用最小时的r ―――――――――――――→建造费用最小,即y 最小 问题转化为:当r 为何值时,y 取得最小值.3.建联系,找解题突破口 分析函数特点:含分式函数――――――――――――――――→可利用导数研究函数的最值 y ′=-160πr 2-16πr +8πcr =8πc -2r 2⎝ ⎛⎭⎪⎫r 3-20c -2,0<r ≤2――――――――――→求导数为零的点当r = 320c -2时,y ′=0(]02,的关系,求极值 分320c -2≥2和0< 320c -2<2两种情况讨论,并求得结论. [准确规范答题](1)设容器的容积为V ,由题意知 V =4πr 33+πr 2l ,又V =80π3,⇨(1分)所以4πr 33+πr 2l =80π3,解得l =803r 2-4r3,⇨(2分)由于l ≥2r因此0<r ≤2.⇨(3分) 所以圆柱的侧面积为2πrl =2πr ⎝ ⎛⎭⎪⎫803r 2-4r 3=160π3r -8πr 23,两端两个半球的表面积之和为4πr 2,所以建造费用y =160πr-8πr 2+4πcr 2,定义域为(0,2].⇨(4分)(2)由(1),得y ′=-160πr2-16πr +8πcr =8πc -2r 2·⎝ ⎛⎭⎪⎫r 3-20c -2,0<r ≤2,⇨(5分)由于c >3,所以c -2>0.当r 3-20c -2=0时,r = 320c -2.令320c -2=m ,则m >0. 所以y ′=8πc -2r2(r -m )(r 2+rm +m 2).⇨(7分) ①当0<m <2,即c >92时,当r =m 时,y ′=0; 当r ∈(0,m )时,y ′<0; 当r ∈(m,2)时,y ′>0,所以r =m 是函数y 的极小值点,也是最小值点.⇨(9分) ②当m ≥2,即3<c ≤92时,当r ∈(0,2)时,y ′<0,函数单调递减, 所以r =2是函数y 的最小值点.⇨(11分)综上,当3<c ≤92时,建造费用最小时r =2;当c >92时,建造费最小时r =320c -2.⇨(12分) [答题模板速成]解决函数实际应用问题的一般步骤:⇒⇒⇒⇒⇒一、选择题(本大题共6小题,每小题5分,共30分)1.如图是张大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系图,若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )解析:选C 由于中间一段时间,张大爷离家的距离不变,故应选C.2.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A .45.606万元B .45.6万元C .45.56万元D .45.51万元解析:选B 设该公司在甲地销售x 辆,则在乙地销售(15-x )辆,利润为L (x )=5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30=-0.15⎝⎛⎭⎪⎫x -153152+0.15×1532225+30,由于x 为整数,所以当x =10时,L (x )取最大值L (10)=45.6,即能获得的最大利润为45.6万元.3.某地2011年底人口为500万,人均住房面积为6 m 2,如果该城市人口平均每年增长率为1%.问为使2021年底该城市人均住房面积增加到7 m 2,平均每年新增住房面积至少为(1.0110≈1.104 6)( )A .90万m 2B .87万m 2C .85万m 2D .80万m 2解析:选B 由题意500×1+1%10×7-500×610≈86.6(万m 2)≈87(万m 2).4.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:①买一副球拍赠送一个羽毛球;②按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是( )A .不能确定B .①②同样省钱C .②省钱D .①省钱解析:选D 方法①用款为4×20+26×5=80+130=210(元) 方法②用款为(4×20+30×5)×92%=211.6(元) 因为210<211.6,故方法①省钱.5.如图所示,点P 在边长为1的正方形的边上运动,设M 是CD 边的中点,则当点P 沿着A -B -C -M 运动时,以点P 经过的路程x 为自变量,将三角形APM 的面积y 看作路程x 的函数,则其函数图象大致是()解析:选A 当0≤x ≤1时,y =12·x ·1=12x ;当1<x ≤2时,y =1-12(x -1)-14(2-x )-14=-14x +34;当2<x ≤2.5时,y =12⎝ ⎛⎭⎪⎫52-x ×1=54-12x .则y =⎩⎪⎨⎪⎧12x ,0≤x ≤1,-14x +34,1<x ≤2,-12x +54,2<x ≤2.5.根据函数可以画出其大致图象,故选A.6.(2013·武汉模拟)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x 的范围为( )A .[2,4]B .[3,4]C .[2,5]D .[3,5]解析:选B 根据题意知,93=12(AD +BC )h ,其中AD =BC +2·x 2=BC +x ,h =32x ,∴93=12(2BC +x )32x ,得BC =18x -x2,由⎩⎪⎨⎪⎧h =32x ≥3,BC =18x -x2>0,得2≤x <6.由y =BC +2x =18x +3x2≤10.5得3≤x ≤4.∵[3,4]⊆[2,6),∴腰长x 的范围是[3,4]. 二、填空题(本大题共3小题,每小题5分,共15分)7.一高为H ,满缸水量为V 的鱼缸截面如图所示,其底部破了一个小洞 ,满缸水从洞中流出.若鱼缸水深为h 时的水的体积为v ,则函数v =f (h )的大致图象可能是图中的________.解析:当h =0时,v =0可排除①、③;由于鱼缸中间粗两头细,∴当h 在H2附近时,体积变化较快;h 小于H 2时,增加越来越快;h 大于H2时,增加越来越慢.答案:②8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),则围成场地的最大面积为________(围墙厚度不计).解析:设矩形的宽为x m , 则矩形的长为200-4x m(0<x <50), 面积S =x (200-4x )=-4(x -25)2+2 500. 故当x =25时,S 取得最大值2 500 (m 2). 答案:2 500 m 29.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定: ①如一次购物不超过200元,不予以折扣;②如一次购物超过200元,但不超过500元,按标价予以九折优惠;③如一次购物超过500元的,其中500元给予九折优惠,超过500元的给予八五折优惠; 某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款________元.解析:由题意知付款432元,实际标价为432×109=480元,如果一次购买标价176+480=656元的商品应付款500×0.9+156×0.85=582.6元.答案:582.6三、解答题(本大题共3小题,每小题12分,共36分)10.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)每吨平均成本为yx(万元).则y x =x 5+8 000x -48≥2 x 5·8 000x-48=32, 当且仅当x 5=8 000x,即x =200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元. (2)设年获得总利润为R (x )万元, 则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680(0≤x ≤210).∵R (x )在[0,210]上是增函数, ∴x =210时,R (x )有最大值为R (210)=-15(210-220)2+1 680=1 660(万元).∴年产量为210吨时,可获得最大利润1 660万元.11.据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h )内沙尘暴所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场沙尘暴是否会侵袭到N 城.如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知:当t =4时,v =3×4=12, ∴s =12×4×12=24.(2)当0≤t ≤10时,s =12·t ·3t =32t 2;当10<t ≤20时,s =12×10×30+30(t -10)=30t -150;当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550.综上可知,s =⎩⎪⎨⎪⎧32t 2, t ∈[0,10],30t -150, t ∈10,20],-t 2+70t -550, t ∈20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650,t ∈(10,20]时,s max =30×20-150=450<650,∴当t ∈(20,35]时,令-t 2+70t -550=650, 解得t 1=30,t 2=40. ∵20<t ≤35,∴t =30,即沙尘暴发生30 h 后将侵袭到N 城.12.某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产100件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为500件,产品销售数量为t 件时,销售所得的收入为⎝⎛⎭⎪⎫0.05t -120 000t 2万元. (1)该公司这种产品的年生产量为x 件,生产并销售这种产品所得到的利润关于当年产量x 的函数为f (x ),求f (x );(2)当该公司的年产量为多少件时,当年所获得的利润最大?解:(1)当0<x ≤500时,f (x )=0.05x -120 000x 2-⎝ ⎛⎭⎪⎫0.25×x 100+0.5=-x 220 000+19400x -12,当x >500时,f (x )=0.05×500-120 000×5002-⎝ ⎛⎭⎪⎫0.25×x 100+0.5=12-1400x ,故f (x )=⎩⎪⎨⎪⎧-120 000x 2+19400x -12,0<x ≤500,12-1400x ,x >500.(2)当0<x ≤500时,f (x )=-x 220 000+19400x -12=-120 000(x -475)2+34532, 故当x =475时,f (x )max =34532.当x >500时,f (x )=12-1400x <12-54=34432<34532, 故当该公司的年产量为475件时,当年获得的利润最大.1.A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)由y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝ ⎛⎭⎪⎫x -10032+50 0003,得x =1003时,y min =50 0003, 即核电站建在距A 城1003km 处,能使供电总费用y 最少.2.目前某县有100万人,经过x 年后为y 万人.如果年平均增长率是1.2%,请回答下列问题:(1)写出y 关于x 的函数解析式;(2)计算10年后该县的人口总数(精确到0.1万人);(3)计算大约多少年后该县的人口总数将达到120万(精确到1年). 解:(1)当x =1时,y =100+100×1.2%=100(1+1.2%); 当x =2时,y =100(1+1.2%)+100(1+1.2%)×1.2%=100(1+1.2%)2;当x =3时,y =100(1+1.2%)2+100(1+1.2%)2×1.2%=100(1+1.2%)3;…故y 关于x 的函数解析式为y =100(1+1.2%)x (x ∈N *). (2)当x =10时,y =100×(1+1.2%)10=100×1.01210≈112.7. 故10年后该县约有112.7万人.(3)设x 年后该县的人口总数为120万,即100×(1+1.2%)x=120,解得x =log 1.012120100≈15.3故大约16年后该县的人口总数将达到120万.3.某上市股票在30天内每股的交易价格P (元)与时间t (天)组成有序数对(t ,P ),点(t ,P )落在下图中的两条线段上,该股票在30天内的日交易量Q (万股)与时间t (天)的部分数据如下表所示:(1)(天)所满足的函数关系式;(2)根据表中数据确定日交易量Q (万股)与时间t (天)的一次函数关系式;(3)在(2)的结论下,用y 表示该股票日交易额(万元),写出y 关于t 的函数关系式,并求在这30天中第几天日交易额最大,最大值是多少?解:(1)P =⎩⎪⎨⎪⎧15t +2,0<t ≤20,-110t +8,20<t ≤30(t ∈N *).(2)设Q =at +b (a ,b 为常数),把(4,36),(10,30)代入,得⎩⎪⎨⎪⎧4a +b =36,10a +b =30,解得a=-1,b =40.所以日交易量Q (万股)与时间t (天)的一次函数关系式为Q =-t +40,0<t ≤30,t ∈N *.(3)由(1)(2)可得y =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫15t +2×40-t ,0<t ≤20,⎝ ⎛⎭⎪⎫-110t +8×40-t ,20<t ≤30,即y =⎩⎪⎨⎪⎧-15t -152+125,0<t ≤20,110t -602-40,20<t ≤3(t ∈N *).当0<t ≤20时,y 有最大值y max =125万元,此时t =15;当20<t ≤30时,y 随t 的增大而减小,y max <110(20-60)2-40=120万元.所以,在30天中的第15天,日交易额取得最大值125万元.。
高考数学一轮复习第二篇第10节导数的概念与计算课件理新人教A版

返回导航
解:(1)∵y=x12+x5x+2 sin x=x-32+x3+sixn2 x, ∴y′=(x-32)′+(x3)′+(x-2sin x)′ =-32x-52+3x2-2x-3sin x+x-2cos x; (2)因为 y=sin 2x(-cos 2x)=-12sin x, 所以 y′=(-12sin x)′=-12(sin x)′=-12cos x.
第二篇 函数、导数及其应用 (必修1、选修2-2)
第 10 节 导数的概念与计算
最新考纲 1.了解导数概念的实际背景. 2.通过函数图象直观理解导数的几何意义. 3.能根据导数的定义求函数 y=C(C 为常数),y=x,y=1x,y=x2,y=x3, y= x的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的 导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如 y=f(ax +b)的复合函数)的导数.
返回导航
【教材导读】 曲线 y=f(x)“在点 P(x0,y0)处的切线”与“过点 P(x0,y0)的切线”有何不 同? 提示:(1)曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点,切线斜 率为 k=f′(x0)的切线,是唯一的一条切线. (2)曲线 y=f(x)过点 P(x0,y0)的切线,是指切线经过 P 点.点 P 可以 是切点,也可以不是切点,而且这样的直线可能有多条.
返回导航
【即时训练】 求下列函数的导数: (1)y=( x+1) 1x-1; (2)y=xsin2x+π2cos2x+π2; (3)y=ee2xx++ee--x2x.
返回导航
解:(1)因为 y= x·1x- x+ 1x-1
=-x12+x-12,
所以 y′=-(x12)′+(x-12)′=-12x-12-12x-32
2014高考数学一轮汇总训练《数学归纳法》理 新人教A版

第七节数学归纳法[备考方向要明了][归纳·知识整合]1.数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.[探究] 1.数学归纳法证题的基本原理是什么?提示:数学归纳法是一种只适用于与正整数有关的命题的证明方法,它的表述严格而且规范,两个步骤缺一不可.第一步是递推的基础,第二步是递推的依据,第二步中,归纳假设起着“已知条件”的作用,在第二步的证明中一定要运用它,否则就不是数学归纳法.第二步的关键是“一凑假设,二凑结论”.2.用数学归纳法证明问题应该注意什么?提示:(1)第一步验证n=n0时命题成立,这里的n0并不一定是1,它是使命题成立的最小正整数.(2)第二步证明的关键是合理运用归纳假设,特别要弄清由k到k+1时命题的变化情况.(3)由假设n=k时命题成立,证明n=k+1命题也成立时,要充分利用归纳假设,即要恰当地“凑”出目标.2.数学归纳法的框图表示[自测·牛刀小试]1.在应用数学归纳法证明凸n 边形的对角线为n n -32条时,第一步检验n 等于( )A .1B .2C .3D .0解析:选C ∵n ≥3,∴第一步应检验n =3. 2.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1 B .(k +1)2C.k +14+k +122D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2解析:选D ∵当n =k 时,左侧=1+2+3+…+k 2,当n =k +1时, 左侧=1+2+3+…+k 2+(k 2+1)+…+(k +1)2, ∴当n =k +1时,左端应在n =k 的基础上加上 (k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.3.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1解析:选B 当n =k (k ∈N *)时, 左式为(k +1)(k +2)…(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1),则左边应增乘的式子是2k +12k +2k +1=2(2k +1).4.(教材习题改编)用数学归纳法证明1+12+13+…+12n -1<n (n ∈N ,且n >1),第一步要证的不等式是________.解析:当n =2时,左边=1+12+122-1=1+12+13,右边=2,故填1+12+13<2.答案:1+12+13<25.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+________. 解析:由凸k 边形变为凸k +1边形时,增加了一个三角形. 答案:π[例1] n ∈N *,求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .[自主解答] (1)当n =1时,左边=1-12=12,右边=11+1=12.左边=右边. (2)假设n =k 时等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k ,则当n =k +1时,⎝ ⎛⎭⎪⎫1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2. 即当n =k +1时,等式也成立.综合(1),(2)可知,对一切n ∈N *,等式成立. ——————————————————— 用数学归纳法证明等式应注意的问题(1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值n 0的值.(2)由n =k 到n =k +1时,除考虑等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.1.求证:12+22+…+n 2=n n +12n +16.证明:(1)当n =1时,左边=1,右边=1·1+12+16=1,左边=右边,等式成立;(2)假设n =k (k ∈N *,且k ≥1)时,等式成立, 即12+22+…+k 2=k k +12k +16,则当n =k +1时,12+22+…+k 2+(k +1)2=k k +12k +16+(k +1)2=k +1[k +1+1][2k +1+1]6,所以当n =k +1时,等式仍然成立. 由(1)、(2)可知,对于∀n ∈N *等式恒成立.[例2] 已知数列{a n },a n ≥0,a 1=0,a 2n +1+a n +1-1=a 2n . 求证:当n ∈N *时,a n <a n +1.[自主解答] (1)当n =1时,因为a 2是方程a 22+a 2-1=0的正根,所以a 1<a 2. (2)假设当n =k (k ∈N *,k ≥1)时,0≤a k <a k +1, 则由a 2k +1-a 2k=(a 2k +2+a k +2-1)-(a 2k +1+a k +1-1) =(a k +2-a k +1)(a k +2+a k +1+1)>0, 得a k +1<a k +2,即当n =k +1时,a n <a n +1也成立.根据(1)和(2),可知a n <a n +1对任何n ∈N *都成立.把题设条件中的“a n ≥0”改为“当n ≥2时,a n <-1”,其余条件不变,求证:当n ∈N *时,a n +1<a n .证明:(1)当n =1时, ∵a 2是a 22+a 2-1=0的负根, ∴a 1>a 2.(2)假设当n =k (k ∈N *,k ≥1)时,a k +1<a k ,∵a 2k +1-a 2k =(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0, ∴a 2k +1-a 2k >0,又∵a k +2+a k +1+1<-1+(-1)+1=-1, ∴a k +2-a k +1<0,∴a k +2<a k +1, 即当n =k +1时,命题成立.由(1)(2)可知,当n ∈N *时,a n +1<a n .——————————————————— 应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.2.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. 解:(1)由题意,S n =b n+r , 当n ≥2时,S n -1=bn -1+r . 所以a n =S n -S n -1=b n -1(b -1).由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列. 又a 1=b +r ,a 2=b (b -1), 故a 2a 1=b ,即b b -1b +r=b ,解得r =-1.(2)证明:由(1)知a n =2n -1,因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式=2,左式>右式,所以结论成立.②假设n =k (k ≥1,k ∈N *)时结论成立,即2+12·4+14·…·2k +12k>k +1,则当n =k +1时, 2+12·4+14·…·2k +12k ·2k +32k +1>k +1·2k +32k +1=2k +32k +1, 要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2,即证2k +32≥k +1k +2,由均值不等式2k +32=k +1+k +22≥k +1k +2成立,故2k +32k +1≥k +2成立,所以,当n =k +1时,结论成立. 由①②可知,n ∈N *时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[例3] 已知f (n )=1+123+133+143+…+1n3,g (n )=32-12n2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小关系; (2)猜想f (n )与g (n )的大小关系,并给出证明.[自主解答] (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1); 当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明.①当n =1,2,3时,不等式显然成立,②假设当n =k (k ≥3)时不等式成立,即1+12+13+14+…+1k <32-12k .那么,当n =k +1时,f (k +1)=f (k )+1k +13<32-12k 2+1k +13.因为12k +12-⎣⎢⎡⎦⎥⎤12k 2-1k +13=k +32k +13-12k 2=-3k -12k +13k2<0, 所以f (k +1)<32-12k +12=g (k +1).由①②可知,对一切n ∈N *,都 有f (n )≤g (n )成立. ——————————————————— 归纳—猜想—证明类问题的解题步骤(1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.3.设数列{a n }满足a n +1=a 2n -na n +1,n =1,2,3,….(1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式; (2)当a 1≥3时,证明对所有的n ≥1,有a n ≥n +2. 解:(1)由a 1=2,得a 2=a 21-a 1+1=3, 由a 2=3,得a 3=a 22-2a 2+1=4, 由a 3=4,得a 4=a 23-3a 3+1=5,由此猜想a n 的一个通项公式:a n =n +1(n ≥1). (2)证明:用数学归纳法证明:①当n =1时,a 1≥3=1+2,不等式成立. ②假设当n =k 时不等式成立,即a k ≥k +2,那么,a k +1=a k (a k -k )+1≥(k +2)(k +2-k )+1≥k +3, 也就是说,当n =k +1时,a k +1≥(k +1)+2. 根据①和②,对于所有n ≥1,都有a n ≥n +2.1种方法——寻找递推关系的方法(1)在第一步验证时,不妨多计算几项,并争取正确写出来,这样对发现递推关系是有帮助的.(2)探求数列通项公式要善于观察式子或命题的变化规律,观察n 处在哪个位置. (3)在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项,除此之外,多了哪些项,少了哪些项都要分析清楚.4个注意点——应用数学归纳法应注意的问题(1)数学归纳法是证明与正整数有关的命题的常用方法,特别是数列中等式、不等式的证明,在高考试题中经常出现.(2)数学归纳法证题的关键是第二步,证题时应注意:①必须利用归纳假设作基础;②证明中可利用综合法、分析法、反证法等方法;③解题时要搞清从n =k 到n =k +1增加了哪些项或减少了哪些项.(3)数学归纳法证题时,第一个值n 0不一定为1,如证明多边形内角和定理(n -2)π时,初始值n 0=3.(4)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.易误警示——应用数学归纳法解决证明问题的易误点[典例] (2013·九江模拟)设数列{a n }的前n 项和为S n ,并且满足2S n =a 2n +n ,a n >0(n ∈N *).(1)猜想{a n }的通项公式,并用数学归纳法加以证明.(2)设x >0,y >0,且x +y =1,证明:a n x +1+a n y +1≤2n +2. [解] (1)分别令n =1,2,3,得⎩⎪⎨⎪⎧2a 1=a 21+1,2a 1+a 2=a 22+2,2a 1+a 2+a 3=a 23+3.∵a n >0,∴a 1=1,a 2=2,a 3=3. 猜想:a n =n . 由2S n =a 2n +n ,①可知,当n ≥2时,2S n -1=a 2n -1+(n -1).② ①-②,得2a n =a 2n -a 2n -1+1, 即a 2n =2a n +a 2n -1-1.(ⅰ)当n =2时,a 22=2a 2+12-1, ∵a 2>0,∴a 2=2.(ⅱ)假设当n =k (k ≥2)时,a k =k ,那么当n =k +1时,a 2k +1=2a k +1+a 2k -1=2a k +1+k 2-1⇒[a k +1-(k +1)][a k +1+(k -1)]=0, ∵a k +1>0,k ≥2,∴a k +1+(k -1)>0, ∴a k +1=k +1.即当n =k +1时也成立. ∴a n =n (n ≥2).显然n =1时,也成立,故对于一切n ∈N *,均有a n =n . (2)要证nx +1+ny +1≤2n +2,只要证nx +1+2nx +1ny +1+ny +1≤2(n +2).即n (x +y )+2+2n 2xy +n x +y +1≤2(n +2),将x +y =1代入,得2n 2xy +n +1≤n +2, 即只要证4(n 2xy +n +1)≤(n +2)2, 即4xy ≤1.∵x >0,y >0,且x +y =1,∴xy ≤x +y 2=12, 即xy ≤14,故4xy ≤1成立,所以原不等式成立.[易误辨析]1.在解答本题时有以下易误点(1)在代入n =1,2,3时,不能准确求得a 1,a 2,a 3,从而猜想不出a n .(2)证明不等式时,不会应用x +y =1这一条件代换,导致无法证明不等式成立. 2.解决数学归纳法中“归纳—猜想—证明”及不等式证明问题时,还有以下几点容易造成失分(1)归纳整理不到位得不出正确结果,从而给猜想造成困难.(2)证明n =k 到n =k +1这一步时,忽略了利用假设条件去证明,造成不是纯正的数学归纳法.(3)不等式证明的过程中,不能正确合理地运用分析法、综合法来求证.另外需要熟练掌握数学归纳法中几种常见的推证技巧,只有这样,才能快速正确地解决问题.[变式训练] 若不等式1n +1+1n +2+…+13n +1>a 24对一切正整数n 都成立,求正整数a 的最大值,并证明结论.解:当n =1时,11+1+11+2+13+1>a 24,即2624>a24,所以a <26. 而a 是正整数,所以取a =25,下面用数学归纳法证明 1n +1+1n +2+…+13n +1>2524. (1)当n =1时,已证得不等式成立. (2)假设当n =k (k ∈N *)时,不等式成立, 即1k +1+1k +2+…+13k +1>2524. 则当n =k +1时, 有1k +1+1+1k +1+2+…+13k +1+1=1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+⎣⎢⎡⎦⎥⎤13k +2+13k +4-23k +1. 因为13k +2+13k +4-23k +1=6k +13k +23k +4-23k +1=18k +12-29k 2+18k +83k +23k +43k +3=23k +23k +43k +3>0,所以当n =k +1时不等式也成立. 由(1)(2)知,对一切正整数n ,都有1n +1+1n +2+…+13n +1>2524, 所以a 的最大值等于25.一、选择题(本大题共6小题,每小题5分,共30分)1.如果命题P (n )对n =k 成立,则它对n =k +2也成立,若P (n )对n =2也成立,则下列结论正确的是( )A .P (n )对所有正整数n 都成立B .P (n )对所有正偶数n 都成立C .P (n )对所有正奇数n 都成立D .P (n )对所有自然数n 都成立解析:选B 由题意n =k 时成立,则n =k +2时也成立,又n =2时成立,则P (n )对所有正偶数都成立.2.用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1)”,在验证n =1时,左端计算所得的项为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3解析:选C ∵等式的左端为1+a +a 2+…+a n +1,∴当n =1时,左端=1+a +a 2.3.利用数学归纳法证明不等式1+12+13+…+12n -1<f (n )(n ≥2,n ∈N *)的过程,由n=k 到n =k +1时,左边增加了( )A .1项B .k 项C .2k -1项D .2k项解析:选D 1+12+13+…+12k +1-1-⎝ ⎛⎭⎪⎫1+12+13+…+12k -1=12k +12k +1+…+12k +1-1,共增加了2k项.4.用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”的第二步是( ) A .假设n =2k +1时正确,再推n =2k +3时正确(其中k ∈N *) B .假设n =2k -1时正确,再推n =2k +1时正确(其中k ∈N *) C .假设n =k 时正确,再推n =k +1时正确(其中k ∈N *) D .假设n ≤k (k ≥1)时正确,再推n =k +2时正确(其中k ∈N *) 解析:选B ∵n 为正奇数,∴n =2k -1(k ∈N *).5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( ) A.1n -1n +1B.12n 2n +1C.12n -12n +1D.12n +12n +2解析:选C 由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =12n -12n +1.6.设函数f (n )=(2n +9)·3n +1+9,当n ∈N *时,f (n )能被m (m ∈N *)整除,猜想m 的最大值为( )A .9B .18C .27D .36解析:选D f (n +1)-f (n )=(2n +11)·3n +2-(2n +9)·3n +1=4(n +6)·3n +1,当n =1时,f (2)-f (1)=4×7×9为最小值,据此可猜想D 正确. 二、填空题(本大题共3小题,每小题5分,共15分)7.用数学归纳法证明“2n >n 2+1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取________.解析:当n =1时,21=2,12+1=2;当n =2时,22=4,22+1=5;当n =3时,23=8,32+1=10;当n =4时,24=16,42+1=17;当n =5时,25=32,52+1=26,满足2n >n 2+1.故n 0应取5. 答案:58.对大于或等于2的自然数 m 的n 次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19. 根据上述分解规律,若n 2=1+3+5+…+19, m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.解析:∵依题意得 n 2=10×1+192=100, ∴n =10. 易知 m 3=21m +m m -12×2,整理得(m -5)(m +4)=0,又 m ∈N *,所以 m =5, 所以m +n =15. 答案:159.若数列{a n }的通项公式a n =1n +12,记c n =2(1-a 1)(1-a 2)…(1-a n ),试通过计算c 1,c 2,c 3的值,推测c n =________.解析:c 1=2(1-a 1)=2×⎝ ⎛⎭⎪⎫1-14=32,c 2=2(1-a 1)(1-a 2)=2×⎝⎛⎭⎪⎫1-14×⎝ ⎛⎭⎪⎫1-19=43,c 3=2(1-a 1)(1-a 2)(1-a 3)=2×⎝⎛⎭⎪⎫1-14×⎝⎛⎭⎪⎫1-19×⎝⎛⎭⎪⎫1-116=54,故由归纳推理得c n =n +2n +1. 答案:n +2n +1三、解答题(本大题共3小题,每小题12分,共36分) 10.用数学归纳法证明:12+32+52+…+(2n -1)2= 13n (4n 2-1).证明:(1)当n =1时,左边=12=1,右边=13×1×(4-1)=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即12+32+52+…+(2k -1)2=13k (4k 2-1).则当n =k +1时,12+32+52+…+(2k -1)2+(2k +1)2=13k (4k 2-1)+(2k +1)2=13k (4k2-1)+4k 2+4k +1=13k [4(k +1)2-1]-13k ·4(2k +1)+4k 2+4k +1 =13k [4(k +1)2-1]+13(12k 2+12k +3-8k 2-4k ) =13k [4(k +1)2-1]+13[4(k +1)2-1] =13(k +1)[4(k +1)2-1]. 即当n =k +1时等式也成立.由(1),(2)可知,对一切n ∈N *,等式都成立.11.设0<a <1,定义a 1=1+a ,a n +1=1a n +a ,求证:对任意n ∈N *,有1<a n <11-a .证明:(1)当n =1时,a 1=1+a >1,又a 1=1+a <11-a ,显然命题成立.(2)假设n =k (k ∈N *)时,命题成立,即1<a k <11-a. 即当n =k +1时,由递推公式,知a k +1=1a k+a ,由假设可得(1-a )+a <1a k +a <1+a <11-a .于是当n =k +1时,命题也成立,即1<a k +1<11-a. 由(1)(2)可知,对任意n ∈N *,有1<a n <11-a .12.已知数列{a n },其中a 2=6且a n +1+a n -1a n +1-a n +1=n .(1)求a 1,a 3,a 4;(2)求数列{a n }的通项公式; (3)设数列{b n }为等差数列,其中b n =a nn +c且c 为不等于零的常数,若S n =b 1+b 2+…+b n ,求1S 1+1S 2+…+1S n.解:(1)∵a 2=6,a 2+a 1-1a 2-a 1+1=1,a 3+a 2-1a 3-a 2+1=2,a 4+a 3-1a 4-a 3+1=3,解得a 1=1,a 3=15,a 4=28.(2)由上面的a 1,a 2,a 3,a 4的值可以猜想a n =n (2n -1). 下面用数学归纳法加以证明:①当n =1时,a 1=1×(2-1)=1,结论成立. ②假设当n =k 时,结论正确,即a k =k (2k -1), 则当n =k +1时,有a k +1+a k -1a k +1-a k +1=k ,∴(k -1)a k +1=(k +1)a k -(k +1)=(k +1)·k (2k -1)-(k +1)=(k +1)(2k 2-k -1) =(k +1)(2k +1)(k -1)(k -1≠0). ∴a k +1=(k +1)[2(k +1)-1]. 即当n =k +1时,结论也成立.由①②可知,{a n }的通项公式a n =n (2n -1). (3)∵{b n }是等差数列,∴2b 2=b 1+b 3, 即2a 22+c =a 11+c +a 33+c. ∵a 1=1,a 2=6,a 3=15且c ≠0, 由上式解得c =-12,∴b n =a n n -12=n 2n -1122n -1=2n .故S n =b 1+b 2+…+b n =n (n +1). ∴1S 1+1S 2+…+1S n =11×2+12×3+…+1n n +1 =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1.1.已知△ABC 的三边长都是有理数. (1)求证:cos A 是有理数;(2)求证:对任意正整数n ,cos nA 是有理数.证明:(1)由AB 、BC 、AC 为有理数及余弦定理知cos A =AB 2+AC 2-BC 22AB ·AC是有理数.(2)用数学归纳法证明cos nA 和sin A ·sin nA 都是有理数.①当n =1时,由(1)知cos A 是有理数,从而有sin A ·sin A =1-cos 2A 也是有理数. ②假设当n =k (k ∈N *)时,cos kA 和sin A ·sin kA 都是有理数. 当n =k +1时,由cos(k +1)A =cos A ·cos kA -sin A ·sin kA ,sin A ·sin(k +1)A =sin A ·(sin A ·cos kA +cos A ·sin kA ) =(sin A ·sin A )·cos kA +(sin A ·sin kA )·cos A ,由①和归纳假设,知cos(k +1)A 和sin A ·sin(k +1)A 都是有理数. 即当n =k +1时,结论成立.综合①②可知,对任意正整数n ,cos nA 是有理数.2.用数学归纳法证明11×3+13×5+…+12n -12n +1=n 2n +1(n ∈N *).证明:(1)当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边.所以n =1时等式成立. (2)假设n =k 时等式成立,即有11×3+13×5+…+12k -12k +1=k 2k +1.则当n =k +1时,11×3+13×5+…+12k -12k +1+12k +12k +3=k 2k +1+12k +12k +3 =2k 2+3k +12k +12k +3=k +12k +12k +12k +3 =k +12k +3=k +12k +1+1. 这就是说,n =k +1时等式也成立. 由(1)(2)可知,等式对一切n ∈N *都成立.3.已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.解:(1)∵当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0.∴a 1=3-1或a 1=-3-1(舍去).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3或a 2=-5-3(舍去). 同理可得a 3=7- 5.由a 1,a 2,a 3,猜想a n =2n +1-2n -1(n ∈N *).(2)证明:①由(1)的计算过程知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1. 那么由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式并整理得a 2k +1+22k +1a k +1-2=0,解得a k +1=2k +3-2k +1, 或a k +1=-2k +3-2k +1(舍去). 即当n =k +1时,通项公式也成立. 由①和②,可知对所有n ∈N *,a n =2n +1-2n -1都成立.4.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).证明:(1)当n =2时,1+12=54<2-12=32,命题成立.(2)假设n =k 时命题成立,即 1+122+132+…+1k 2<2-1k. 当n =k +1时,1+122+132+…+1k 2+1k +12<2-1k +1k +12<2-1k +1k k +1=2-1k +1k -1k +1=2-1k +1命题成立. 由(1),(2)知原不等式在n ∈N *,n ≥2时均成立.两类不等式恒成立问题的求解策略不等式恒成立问题是数学试题中的重要题型,涉及数学中各部分知识,但主要是函数中的不等式恒成立问题和数列中的不等式恒成立问题,涉及题型一般有两类:一是已知不等式恒成立,求参数的取值范围,解决这类问题的基本方法是相同的,首选方法是利用分离参数转化为求新函数、新数列的最值问题,如果不能分离参数或者分离参数比较复杂时,一般选择函数的方法,通常利用函数的最值解决;二是证明不等式恒成立,在函数中一般选择以算代证,即通过求函数的最值证明不等式.在数列中,很多时候可以与放缩法结合起来,对所证不等式的一侧进行适当放大或缩小,下面分别举例说明.一、函数中的不等式恒成立问题函数是不等式恒成立问题的主要载体,通常通过不等式恒成立问题考查等价转化思想、函数的最值或值域,对涉及已知函数在给定区间上恒成立,求参数的取值范围、证明不等式等问题,大多数题目可以利用分离参数的方法,将问题转化为求函数的最值或值域问题.[例1] 已知两个函数f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k为实数.(1)若对任意的x∈[-3,3],都有f(x)≤g(x)成立,求k的取值范围;(2)若对任意的x1、x2∈[-3,3],都有f(x1)≤g(x2),求k的取值范围.[解] (1)令F(x)=g(x)-f(x)=2x3-3x2-12x+k.问题转化为F(x)≥0在x∈[-3,3]时恒成立,故解[F(x)]min≥0即可.∵F′(x)=6x2-6x-12=6(x2-x-2),故由F′(x)=0,得x=2或x=-1.∵F(-3)=k-45,F(3)=k-9,F(-1)=k+7,F(2)=k-20,∴[F(x)]min=k-45.由k-45≥0,解得k≥45.故实数k的取值范围是[45,+∞).(2)由题意可知当x∈[-3,3]时,都有[f(x)]max≤[g(x)]min.由f′(x)=16x+16=0,得x=-1.∵f(-3)=24-k,f(-1)=-8-k,f(3)=120-k,∴[f(x)]max=-k+120.由g ′(x )=6x 2+10x +4=0,得x =-1或x =-23.∵g (-3)=-21,g (3)=111,g (-1)=-1,g ⎝ ⎛⎭⎪⎫-23=-2827,∴[g (x )]min =-21.则120-k ≤-21,解得k ≥141. ∴实数k 的取值范围是[141,+∞).[点评] 将恒成立问题转化为求函数的最值问题来处理,一般有下面两种类型: (1)若所给函数能直接求出最值,则有:①f (x )>0恒成立⇔[f (x )]min >0;②f (x )≤0恒成立⇔[f (x )]max ≤0.(2)若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围,则有(下面的a 为参数):①f (x )<g (a )恒成立⇔g (a )>[f (x )]max ; ②f (x )>g (a )恒成立⇔g (a )<[f (x )]min .[例2] 已知函数f (x )=a ln x +x 2,(a 为实常数). (1)若a =-2,求函数f (x )的单调区间;(2)若对∀x ∈[1,e],使得f (x )≤(a +2)x 恒成立,求实数a 的取值范围. [解] (1)函数f (x )的定义域为(0,+∞),当a =-2时,f (x )=x 2-2ln x ,所以f ′(x )=2x 2-1x.令f ′(x )=2x 2-1x>0,得x <-1或x >1.且定义域为(0,+∞),所以函数f (x )的单调增区间是(1,+∞).令f ′(x )=2x 2-1x<0,得-1<x <1,且定义域为(0,+∞),所以函数f (x )的单调减区间是(0,1).(2)不等式f (x )≤(a +2)x ,可化为a (x -ln x )≥x 2-2x . 因为x ∈[1,e],所以ln x ≤1≤x 且等号不能同时取, 所以ln x <x ,即x -ln x >0.因而a ≥x 2-2xx -ln x (x ∈[1,e]).令g (x )=x 2-2xx -ln x(x ∈[1,e]),又g ′(x )=x -1x +2-2ln x x -ln x 2, 当x ∈[1,e]时,x -1≥0,ln x ≤1,x +2-2ln x >0,从而g ′(x )≥0(当且仅当x =1时取等号). 所以g (x )在[1,e]上为增函数. 故[g (x )]max =g (e)=e 2-2ee -1.所以a 的取值范围是⎣⎢⎡⎭⎪⎫e 2-2e e -1,+∞.[点评] 利用不等式与函数和方程之间的联系,将问题转化成一次函数或二次函数(二次方程)的问题研究,一般有下面几种类型:1.一次函数型问题:利用一次函数的图象特点求解. 对于一次函数f (x )=kx +b (k ≠0),x ∈[m ,n ],有(1)f (x )≥0恒成立⇔⎩⎪⎨⎪⎧f m ≥0,f n ≥0.(2)f (x )<0恒成立⇔⎩⎪⎨⎪⎧f m <0,f n <0.2.二次函数型问题:结合抛物线的形状考虑对称轴、顶点、区间端点等,列出相关的不等式,求出参数的解,下面是两种基本类型:对于二次函数f (x )=ax 2+bx +c (a ≠0,x ∈R ),有:(1)f (x )>0对x ∈R 恒成立⇔⎩⎪⎨⎪⎧ a >0,Δ<0,(2)f (x )<0对x ∈R 恒成立⇔⎩⎪⎨⎪⎧a <0,Δ<0.二、数列中的不等式恒成立问题数列是一种特殊的函数,所以解决数列中的不等式恒成立问题与函数中不等式恒成立问题的解法相同,基本方法也是利用分离参数转化为求新数列的最值问题,数列中的最值问题一般是应用数列的单调性求解;而数列中的不等式恒成立的证明,则很多时候可以与放缩法联系起来.[例3] 在数列{a n }中,a 1=1,a n +1=ca n +c n +1·(2n +1)(n ∈N *),其中实数c ≠0.(1)求{a n }的通项公式;(2)若对一切k ∈N *有a 2k >a 2k -1,求c 的取值范围.[解] (1)由a 1=1,a 2=ca 1+c 2·3=3c 2+c =(22-1)c 2+c ,a 3=ca 2+c 3·5=8c 3+c 2=(32-1)c 3+c 2, a 4=ca 3+c 4·7=15c 4+c 3=(42-1)c 4+c 3,归纳猜想a n =(n 2-1)c n +cn -1,n ∈N *.下面用数学归纳法证明: 当n =1时,等式成立;假设当n =k 时,等式成立,即a k =(k 2-1)c k +c k -1,则当n =k +1时,a k +1=ca k +c k +1(2k +1)=c [(k 2-1)c k +c k -1]+c k +1·(2k +1)=(k 2+2k )c k +1+c k =[(k +1)2-1]·ck +1+c k,综上,a n =(n 2-1)c n +c n -1对任何n ∈N *都成立.(2)由a 2k >a 2k -1,得 [(2k )2-1]c 2k+c 2k -1>[(2k -1)2-1]c2k -1+c2k -2,因c2k -2>0,所以4(c 2-c )k 2+4ck -c 2+c -1>0对k ∈N *恒成立.记f (x )=4(c 2-c )x 2+4cx -c 2+c -1,下面分三种情况讨论:①当c 2-c =0,即c =0或c =1时,代入验证可知只有c =1满足要求.②当c 2-c <0时,即0<c <1,抛物线y =f (x )开口向下,因此当正整数k 充分大时,f (k )<0,不符合题意,此时无解.③当c 2-c >0,即c <0或c >1时,抛物线y =f (x )开口向上,易知Δ>0,其对称轴x =121-c 必在直线x =1的左边.因此,f (x )在[1,+∞)上是增函数.所以要使f (k )>0对k ∈N *恒成立,只需f (1)>0即可. 由f (1)=3c 2+c -1>0,解得c <-1-136或c >-1+136.结合c <0或c >1,得c <-1+136或c >1.结合以上三种情况,c 的取值范围为⎝⎛⎭⎪⎫-∞,-1+136∪[1,+∞).[点评] 本题中关于k 的不等式,不能通过分离参数将k 与c 分离,这时的一般解法是直接利用函数知识求函数最值,只是这时的函数定义域不是连续区间,这也是数列与函数的区别.由此可见,数列中的不等式恒成立与函数中不等式恒成立的解法基本相同,不同之处就是定义域不同.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一节变化率与导数、导数的计算[备考方向要明了][归纳·知识整合]1.导数的概念(1)函数y=f(x)在x=x0处的导数:称函数y=f(x)在x=x0处的瞬时变化率lim Δx→0f x0+Δx-f x0Δx=limΔx→0ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f x0+Δx-f x0Δx.(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x -x0).(3)函数f(x)的导函数:称函数f ′(x )=lim Δx →0f x +Δx -f x Δx为f (x )的导函数.[探究] 1.f ′(x )与f ′(x 0)有何区别与联系?提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0x 0,y 0)的切线,两种说法有区别吗?提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗?提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f xg x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0). 4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[自测·牛刀小试]1.(教材习题改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为( )A .0B .3C .4D .-73解析:选B ∵f (x )=13x 3+2x +1,∴f ′(x )=x 2+2.∴f ′(-1)=3.2.曲线y =2x -x 3在x =-1处的切线方程为( ) A .x +y +2=0 B .x +y -2=0 C .x -y +2=0D .x -y -2=0解析:选A ∵f (x )=2x -x 3,∴f ′(x )=2-3x 2. ∴f ′(-1)=2-3=-1. 又f (-1)=-2+1=-1,∴切线方程为y +1=-(x +1),即x +y +2=0. 3.y =x 2cos x 的导数是( ) A .y ′=2x cos x +x 2sin x B .y ′=2x cos x -x 2sin x C .y =2x cos x D .y ′=-x 2sin x解析:选B y ′=2x cos x -x 2sin x . 4.(教材习题改编)曲线y =sin xx在点M (π,0)处的切线方程是________.解析:∵f (x )=sin x x ,∴f ′(x )=x ·cos x -sin xx2, ∴f ′(π)=-ππ2=-1π.∴切线方程为y =-1π(x -π),即x +πy -π=0.答案:x +πy -π=05.(教材习题改编)如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________.解析:由题意知f ′(5)=-1,f (5)=-5+8=3,∴f (5)+f ′(5)=3-1=2. 答案:2[例1] 求下列函数的导数(1)y =(1-x )⎝⎛⎭⎪⎫1+1x ;(2)y =ln xx;(3)y =tan x ; (4)y =3x e x-2x+e.[自主解答] (1)∵y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x-x =x 12--x 12,∴y ′=(x 12-)′-(x 12)′=-12x 32--12x 12-.(2)y ′=⎝ ⎛⎭⎪⎫ln x x ′=ln x ′x -x ′ln x x 2=1x·x -ln xx 2=1-ln xx2. (3)y ′=⎝ ⎛⎭⎪⎫sin x cos x ′=sin x ′cos x -sin x cos x ′cos 2x =cos x cos x -sin x -sin x cos 2x =1cos 2x. (4)y ′=(3x e x)′-(2x)′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x-2xln 2=(ln 3+1)·(3e)x-2xln 2.若将本例(3)中“tan x ”改为“sin x 2⎝⎛⎭⎪⎫1-2cos 2x 4”如何求解?解:∵y =sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=-sin x 2cos x 2=-12sin x∴y ′=-12cos x .———————————————————求函数的导数的方法(1)求导之前,应先利用代数、三角恒等式等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但可在求导前利用代数或三角恒等变形将其化简为整式形式,然后进行求导,这样可以避免使用商的求导法则,减少运算量.1.求下列函数的导数(1)y =x +x 5+sin xx 2;(2)y =(x +1)(x +2)(x +3);(3)y =11-x +11+x ;(4)y =cos 2x sin x +cos x .解:(1)∵y =x 12+x 5+sin xx 2=x32-+x 3+sin x x2,∴y ′=(x32-)′+(x 3)′+(x -2sin x )′=-32x 52-+3x 2-2x -3sin x +x -2c os x .(2)y =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.(3)∵y =11-x +11+x =21-x ,∴y ′=⎝ ⎛⎭⎪⎫21-x ′=-21-x ′1-x 2=21-x 2.(4)y =cos 2xsin x +cos x=cos x -sin x ,∴y ′=-sin x -cos x . [例2] 求下列复合函数的导数: (1)y =(2x -3)5;(2)y =3-x ; (3)y =sin 2⎝⎛⎭⎪⎫2x +π3;(4)y =ln(2x +5). [自主解答] (1)设u =2x -3,则y =(2x -3)5由y =u 5与u =2x -3复合而成,∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′ =5u 4·2=10u 4=10(2x -3)4.(2)设u =3-x ,则y =3-x 由y =u 12与u =3-x 复合而成. ∴y ′=f ′(u )·u ′(x )=(u 12)′(3-x )′ =12u -12(-1)=-12u 12- =-123-x =3-x 2x -6.(3)设y =u 2,u =sin v ,v =2x +π3,则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2 =4sin ⎝ ⎛⎭⎪⎫2x +π3·cos ⎝ ⎛⎭⎪⎫2x +π3 =2sin ⎝⎛⎭⎪⎫4x +2π3. (4)设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x , ∴y ′=12x +5·(2x +5)′=22x +5.———————————————————复合函数求导应注意三点一要分清中间变量与复合关系;二是复合函数求导法则,像链条一样,必须一环一环套下去,而不能丢掉其中的任一环;三是必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其复合关系.2.求下列复合函数的导数:(1)y =(1+sin x )2;(2)y =ln x 2+1;(3)y =11-3x 4;(4)y =x 1+x 2.解:(1)y ′=2(1+sin x )·(1+sin x )′ =2(1+sin x )·cos x . (2)y ′=(ln x 2+1)′ =1x 2+1·( x 2+1)′ =1x 2+1·12(x 2+1)12 ·(x 2+1)′=xx 2+1.(3)设u =1-3x ,y =u -4.则y x ′=y u ′·u x ′=-4u -5·(-3) =121-3x 5.(4)y ′=(x 1+x 2)′=x ′·1+x 2+x () 1+x 2′=1+x 2+x 21+x2=1+2x21+x2.[例3] (1)(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.(2)已知曲线y =13x 3+43.①求曲线在点P (2,4)处的切线方程; ②求斜率为4的曲线的切线方程. [自主解答] (1)y =x 22,y ′=x ,∴y ′|x =4=4,y ′|x =-2=-2.点P 的坐标为(4,8),点Q 的坐标为(-2,2), ∴在点P 处的切线方程为y -8=4(x -4),即y =4x -8.在点Q 处的切线方程为y -2=-2(x +2),即y =-2x -2.解⎩⎪⎨⎪⎧y =4x -8,y =-2x -2,得A (1,-4),则A 点的纵坐标为-4.(2)①∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.②设切点为(x 0,y 0),则切线的斜率k =x 20=4,x 0=±2.切点为(2,4)或⎝ ⎛⎭⎪⎫-2,-43, ∴切线方程为y -4=4(x -2)或y +43=4(x +2),即4x -y -4=0或12x -3y +20=0. [答案] (1)-4若将本例(2)①中“在点P (2,4)”改为“过点P (2,4)”如何求解? 解:设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43, 则切线的斜率k =y ′|x =x 0=x 20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P 2,4在切线上,∴4=2x 20-23x 30+\f(4,3),即x 30-3x 20+4=0.∴x 30+x 20-4x 20+4=0. ∴x 20x 0+1-4x 0+1x 0-1=0.∴x 0+1x 0-22=0.解得x 0=-1或x 0=2.故所求的切线方程为4x -y -4=0或x -y +2=0.———————————————————1.求曲线切线方程的步骤(1)求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;(2)由点斜式方程求得切线方程为y -y 0=f ′(x 0)·(x -x 0). 2.求曲线的切线方程需注意两点(1)当曲线y =f (x )在点P (x 0,f (x 0))处的切线平行于y 轴(此时导数不存在)时,切线方程为x =x 0;(2)当切点坐标不知道时,应首先设出切点坐标,再求解.3.已知函数f (x )=2 x +1(x >-1),曲线y =f (x )在点P (x 0,f (x 0))处的切线l 分别交x 轴和y 轴于A ,B 两点,O 为坐标原点.(1)求x 0=1时,切线l 的方程;(2)若P 点为⎝ ⎛⎭⎪⎫-23,233,求△AOB 的面积.解:(1)f ′(x )=1x +1,则f ′(x 0)=1x 0+1, 则曲线y =f (x )在点P (x 0,f (x 0))的切线方程为y -f (x 0)=1x 0+1(x -x 0),即y =x x 0+1+x 0+2x 0+1. 所以当x 0=1时,切线l 的方程为x -2y +3=0. (2)当x =0时,y =x 0+2x 0+1; 当y =0时,x =-x 0-2. S △AOB =12⎪⎪⎪⎪⎪⎪x 0+2x 0+1·x 0+2=x 0+222 x 0+1, ∴S △AOB =⎝ ⎛⎭⎪⎫-23+222-23+1=839.[例4] 已知a 为常数,若曲线y =ax 2+3x -ln x 存在与直线x +y -1=0垂直的切线,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-12,+∞ B.⎝⎛⎦⎥⎤-∞,-12C.[)-1,+∞D.(]-∞,-1[自主解答] 由题意知曲线上存在某点的导数为1, 所以y ′=2ax +3-1x=1有正根,即2ax 2+2x -1=0有正根. 当a ≥0时,显然满足题意;当a <0时,需满足Δ≥0,解得-12≤a <0.综上,a ≥-12.[答案] A ——————————————————— 导数几何意义应用的三个方面导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.4.若函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6+θ(0<θ<π),且f (x )+f ′(x )是奇函数,则θ=________.解析:∵f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6+θ, ∴f ′(x )=3cos ⎝ ⎛⎭⎪⎫3x +π6+θ. 于是y =f ′(x )+f (x )=sin ⎝ ⎛⎭⎪⎫3x +π6+θ+3cos ⎝ ⎛⎭⎪⎫3x +π6+θ=2sin ⎝ ⎛⎭⎪⎫3x +π6+θ+π3=2sin ⎝ ⎛⎭⎪⎫3x +θ+π2=2cos(3x +θ),由于y =f (x )+f ′(x )=2cos(3x +θ)是奇函数, ∴θ=k π+π2(k ∈Z ).又0<θ<π,∴θ=π2.答案:π21个区别——“过某点”与“在某点”的区别曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.4个防范——导数运算及切线的理解应注意的问题(1)利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. (2)利用导数公式求导数时,只要根据几种基本函数的定义,判断原函数是哪类基本函数,再套用相应的导数公式求解,切不可因判断函数类型失误而出错.(3)直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.(4)曲线未必在其切线的同侧,如曲线y =x 3在其过(0,0)点的切线y =0的两侧.易误警示——导数几何意义应用的易误点[典例] (2013·杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[解析] 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A.[答案] A [易误辨析]1.如果审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点,则易误选B.2.解决与导数的几何意义有关的问题时, 应重点注意以下几点: (1)首先确定已知点是否为曲线的切点是解题的关键;(2)基本初等函数的导数和导数运算法则是正确解决此类问题的保证; (3)熟练掌握直线的方程与斜率的求解是正确解决此类问题的前提. [变式训练]1.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( ) A .-12B.12 C .-22D.22解析:选By ′=cos x sin x +cos x -cos x -sin x sin xsin x +cos x 2=1sin x +cos x 2,故y ′⎪⎪⎪4x π==12.∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12. 2.已知函数f (x )=x 3+f ′⎝ ⎛⎭⎪⎫23x 2-x ,则函数f (x )的图象在点⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫23处的切线方程是________.解析:由f (x )=x 3+f ′⎝ ⎛⎭⎪⎫23x 2-x ,可得f ′(x )=3x 2+2f ′⎝ ⎛⎭⎪⎫23x -1,∴f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2f ′⎝ ⎛⎭⎪⎫23×23-1,解得f ′⎝ ⎛⎭⎪⎫23=-1,即f (x )=x 3-x 2-x .则f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫233-⎝ ⎛⎭⎪⎫232-23=-2227,故函数f (x )的图象在⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫23处的切线方程是 y +2227=-⎝⎛⎭⎪⎫x -23,即27x +27y +4=0.答案:27x +27y +4=0一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·永康模拟)函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )解析:选D 据函数的图象易知,x <0时恒有f ′(x )>0,当x >0时,恒有f ′(x )<0.2.若函数f (x )=cos x +2xf ′⎝ ⎛⎭⎪⎫π6,则f ⎝ ⎛⎭⎪⎫-π3与f ⎝ ⎛⎭⎪⎫π3的大小关系是( )A .f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3B .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π3 C .f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫π3 D .不确定解析:选C 依题意得f ′(x )=-sin x +2f ′⎝ ⎛⎭⎪⎫π6, ∴f ′⎝ ⎛⎭⎪⎫π6=-sin π6+2f ′⎝ ⎛⎭⎪⎫π6, f ′⎝ ⎛⎭⎪⎫π6=12,f ′(x )=-sin x +1,∵当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f ′(x )>0, ∴f (x )=cos x +x 是⎝ ⎛⎭⎪⎫-π2,π2上的增函数,注意到-π3<π3,于是有f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫π3. 3.已知t 为实数,f (x )=(x 2-4)(x -t )且f ′(-1)=0,则t 等于( ) A .0 B .-1 C.12D .2解析:选C f ′(x )=3x 2-2tx -4,f ′(-1)=3+2t -4=0,t =12.4.曲线y =x e x+2x -1在点(0,-1)处的切线方程为( ) A .y =3x -1 B .y =-3x -1 C .y =3x +1D .y =-2x -1解析:选A 依题意得y ′=(x +1)e x+2,则曲线y =x e x+2x -1在点(0,-1)处的切线的斜率为y ′|x =0,故曲线y =x e x+2x -1在点(0,-1)处的切线方程为y +1=3x ,即y=3x -1.5.(2013·大庆模拟)已知直线y =kx 与曲线y =ln x 有公共点,则k 的最大值为( ) A .1 B.1e C.2eD.2e解析:选B 从函数图象知在直线y =kx 与曲线y =ln x 相切时,k 取最大值.y ′=(lnx )′=1x =k ,x =1k (k ≠0),切线方程为y -ln 1k =k ⎝ ⎛⎭⎪⎫x -1k ,又切线过原点(0,0),代入方程解得ln k =-1,k =1e.6.设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2.下面的不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x解析:选A 由已知,令x =0得2f (0)>0,排除B 、D 两项;令f (x )=x 2+14,则2x 2+12+x ⎝⎛⎭⎪⎫x 2+14′=4x 2+12>x 2,但x 2+14>x 对x =12不成立,排除C 项.二、填空题(本大题共3小题,每小题5分,共15分) 7.已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析:f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2. ∴f ′(x )=2x -4.∴f ′(0)=-4. 答案:-48.已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y =f (x )在点P 处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.答案:x -y -2=09.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析:曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解. 又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1x=0有正实数解.∴5ax 5=-1有正实数解.∴a <0. 故实数a 的取值范围是(-∞,0).答案:(-∞,0)三、解答题(本大题共3小题,每小题12分,共36分) 10.已知函数f (x )=ax -6x 2+b的图象在点(-1,f (-1))处的切线方程为x +2y +5=0,求y =f (x )的解析式.解:由已知得,-1+2f (-1)+5=0, ∴f (-1)=-2,即切点为(-1,-2). 又f ′(x )=ax -6′x 2+b -ax -6x 2+b ′x 2+b 2=-ax 2+12x +ab x 2+b 2, ∴⎩⎪⎨⎪⎧-a -61+b =-2,-a -12+ab 1+b 2=-12,解得⎩⎪⎨⎪⎧a =2,b =3.∴f (x )=2x -6x 2+3.11.如右图所示,已知A (-1,2)为抛物线C :y =2x 2上的点,直线l 1过点A ,且与抛物线C 相切,直线l 2:x =a (a <-1)交抛物线C 于点B ,交直线l 1于点D .(1)求直线l 1的方程; (2)求△ABD 的面积S 1.解:(1)由条件知点A (-1,2)为直线l 1与抛物线C 的切点. ∵y ′=4x ,∴直线l 1的斜率k =-4. 所以直线l 1的方程为y -2=-4(x +1), 即4x +y +2=0.(2)点A 的坐标为(-1,2),由条件可求得点B 的坐标为(a,2a 2), 点D 的坐标为(a ,-4a -2),∴△ABD 的面积为S 1=12×|2a 2-(-4a -2)|×|-1-a |=|(a +1)3|=-(a +1)3.12.如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(k =2,…,n ); (2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |. 解:(1)设点P k -1的坐标是(x k -1,0), ∵y =e x,∴y ′=e x,∴Q k -1(x k -1,e x k -1),在点Q k -1(x k -1,e x k -1)处的切线方程是y -e x k -1=e x k -1(x -x k -1),令y =0,则x k =x k -1-1(k =2,…,n ).(2)∵x 1=0,x k -x k -1=-1, ∴x k =-(k -1), ∴|P k Q k |=e x k =e-(k -1),于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n | =1+e -1+e -2+…+e -(n -1)=1-e -n1-e -1=e -e 1-ne -1, 即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-ne -1.1.设函数f (x )在x 0处可导,则lim Δx →0 f x 0-Δx -f x 0Δx等于( )A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)解析:选B lim Δx →0 f x 0-Δx -f x 0Δx=-lim Δx →0f [x 0+-Δx ]-f x 0-Δx =-f ′(x 0).2.求下列各函数的导数: (1)(x )′=12x 12;(2)(a x)′=a 2ln x ;(3)(x cos x )′=cos x +x sin x ; (4)⎝⎛⎭⎪⎫x x +1′=1x +1,其中正确的有( ) A .0个 B .1个 C .2个D .3个解析:选B 根据函数的求导公式知只有(1)正确.3.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.解析:∵y ′=2x ,∴点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x 轴的交点为(a k +1,0),∴a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12.∴a 3=4,a 5=1.∴a 1+a 3+a 5=21.答案:214.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +b x2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2知曲线在点P (x 0,y 0)处的切线方程为y-y 0=⎝⎛⎭⎪⎫1+3x20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0.从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.。