混凝土简支板梁桥车轮荷载分布
桥梁工程设计荷载车辆荷载等

新规范 车道荷载的计算图式
PK qK
多车道桥梁的汽车荷载应考虑折减。当桥涵设计
车道数≥2时,汽车荷载产生的效应 应该按表 6.0.6-2规定的多车道横向折减系数进行折减,但折 减后的效应不得小于两条设计车道的荷载效应。
(1) 汽车荷载应分为城-A级和城-B级两个等级。 (2) 城市桥梁汽车荷载的车道荷载规定和公路桥梁汽车 荷载的规定相同,城-A级和公路-I级相同,城-B级和公 路-II级相同。 (3) 汽车荷载应由车道荷载和车辆荷载组成,车道荷载 应由均布荷载和集中荷载组成。桥梁结构整体计算应采 用车道荷载,桥梁结构局部加载、桥台和挡土墙压力等 的计算应采用车辆荷载。车道荷载与车辆荷载的作用不 得叠加。 (4) 车道荷载的均布荷载标准值应满布于使结构产生最 不利效应的同号影响线上;集中荷载标准值应只作用于 相应影响线中一个最大影响线峰值处。
每一车队有一重车,主车数量不限。 三、四行车队时可折减 20% 和 30% ,但不小于 两行车队计算的结果。
履带车纵向可考虑多辆行驶,但两车净距
不小于50m 平板挂车全桥均以通过一辆计算 平板挂车和履带车荷载应靠中以慢速行驶 验算时,不考虑冲击力、人群荷载和其它 非经常作用在桥上的各种外力。
鉴于车辆不可能全部同时刹车 公路《桥规》规定:
1 或 2 车道桥,制动力按一行汽车车队总重量的 10%,但不得小于一辆重车重量的30%。
4车道桥为上述数值的两倍。
铁路《桥规》规定:
制动力按计算长度内列车竖向静活载标准值的15% 计算,牵引力按加载长度等于或小于30m内列车静 活载标准值的30%计算,按控制者设计。 当设计桥墩台时,上述制动力和牵引力按 10% 和 15%计算,按控制者设计。 当制动力与离心力同时计算时,制动力或牵引力按 列车竖向静活载标准值的5%计算。 双线按一线计,多线按两线计。
装配式钢筋混凝土简支T梁桥设计

装配式钢筋混凝土简支T梁桥设计1 基本设计资料1.1跨度和桥面宽度(1)标准跨径:20.90m(2)计算跨径:19.70m(3)主梁全长:20.80m(4)桥面宽度(桥面净空):净7m(行车道)+2×1.5(人行道)。
1.2技术标准设计荷载:公路——Ⅰ级,人行道和栏杆自重线密度按照单侧10KN/m计算,人群荷载为3KN/m。
环境标准:Ⅰ类环境。
设计安全等级:一级。
1.3主要材料混凝土:C25,C35 (容重为24KN/m3和26KN/m3)主筋:Ⅱ级钢筋构造钢筋:Ⅰ级钢筋桥面铺装:上层采用厚0.02m沥青混凝土(容重为23KN/m3);垫层为厚0.06~0.12m的C25混凝土(容重为24KN/m3)人行道:人行道包括栏杆何在集度为10KN/m设计荷载:汽车荷载:车辆荷载和车道荷载;人群荷载:3.0KN/m;1.4结构的基本尺寸:全桥共有5片T 形梁组成,每片T 形梁高1.5m ,宽1.60m ;桥上横坡为双向1.5%坡度,桥面由C25混凝土铺装;设有三根横隔梁。
如图所示:2 行车道板内力计算2.1结构自重及其内力 (1)每延米板上的结构自重g沥青表面处治:)(m /46.023102.0g 1KN =⨯⨯= C25混凝土垫层:)/16.224109.0g 2m KN (=⨯⨯= T 梁翼板自重:)(m /75.325122.01.0g 3KN =⨯⨯+=合计:)(KN/m 6.37g g g g 321=++=(2)每米宽板条的恒载内力 2.2汽车车辆荷载产生的内力将车辆荷载后轮作用于铰缝轴线上,后轮作用力为KN 140p =,轮压分布宽度如图所示。
查表车辆荷载后轮着地长度为m 2.0a 2=,宽度为m 6.0b 2=,则 (1)荷载对于悬臂根部的有效分布宽度(2)由于汽车荷载局部加载在T 梁的翼板上,故冲击系数: 1)计算结构跨中截面的截面惯矩: 求主梁截面的重心位置y : 求截面惯矩:()()()()(cm 69.763837913.49-21501502015020121213-13.4920-160131320-1601212323=⨯⨯+⨯⨯+⨯⨯+⨯⨯=I 2)计算桥的基频:已知:)(m /026.13KN G = )(210/m 1015.3N E ⨯= 则 3)计算冲击系数:(3)作用于每米宽板条上的弯矩为:(4)作用于每米宽板条上的剪力为: 2.3内力组合(1)承载能力极限状态内力组合计算: (2)正常使用极限状态内力组合计算:3主梁的内力计算3.1结构自重效应(永久荷载)计算 (1)计算结构自重集度主梁:)()()(m /03.13262.0-9.1216.01.04.12.0g 1KN =⨯⎥⎦⎤⎢⎣⎡⨯++⨯= 边主梁的横隔梁:)()()(m /59.07.192632.022.0-9.1216.01.0-1g 2KN =⨯⨯⨯⎭⎬⎫⎩⎨⎧⨯⎥⎦⎤⎢⎣⎡+= 中主梁的横隔梁:)(’m /18.159.02g 2KN =⨯= 桥面铺装层:)()(m /67.35/24712.006.02123702.0g 3KN =⎥⎦⎤⎢⎣⎡⨯⨯++⨯⨯= 栏杆和人行道:)(m /45/210g 4KN =⨯=边主梁的合计:)(m /29.21467.359.003.13g KN =+++= 中主梁的合计:)(’m /88.21467.318.103.13g KN =+++=(2)计算永久荷载产生的内力边主梁(中主梁)永久荷载产生的剪力和弯矩计算表: 截面位置x内力 剪力)(KN Q 弯矩)m (⋅KN MX=0X=41X=213.2汽车和人群荷载内力计算(1)计算支点处荷载的横向分布系数0m (杠杆原理法): 支点处荷载横向分布系数计算图如下:1号梁:237.1m 289.02578.02m r 0r q0q =====ηη 2号梁:m 526.02052.012m r 0r q0q ===+==∑ηη 3号梁:m 526.02052.012m r 0r 0===+==∑ηηqq (2)计算跨中截面荷载横向分布系数c m (偏心压力法):此桥跨内设有三道横隔梁,具有可靠的横向联系,且承重结构的宽跨比为: 故可按偏心压力法来计算横向分布系数c m ✍求荷载横向分布影响线竖标。
混凝土简支板梁桥车轮荷载分布

这两个加载情况被称为“中心加载”和“偏心加载”。有肩桥梁除了每车道设计车辆外,还引入故障车辆在边缘附近加载,这个加载情况称为“偏心超载”。无肩和有肩双车道桥梁中心和边缘加载情况分别如图1和图2所示。考虑临界或高估纵向弯矩,将车轮荷载布置在距边缘0.3米(1英尺)处。然而《AASHTO》规定荷载距路边或栏杆0.6米(2英尺),这更符合真实情况。
美国国家公路与运输协会标准规范
混凝土板桥是根据主筋平行于交通方向来设计的。《AASHTO》设计方法最初是从上世纪40年代发展起来的,主要基于Westergaard(1926,1930)和Jensen(1938,1939)的研究工作。对于简支板梁桥,《AASHTO》标准规范建议了三种方法来确定活载HS20的加载弯矩:
当与有限元结果相比较时,本文只考虑《AASHTO》给出的经验公式(1)和(2)。《AASHTO》要求边梁沿着这些板的自由边。边梁活载弯矩指定为0.1 PS(对于一辆HS20车P=72kN或16千磅,S为跨径)。《AASHTO》并未指定边梁的宽度。然而一些交通部门采用边梁450mm(18英寸)。最后,最大的有限元分析活载挠度与《AASHTO》挠度标准(S/800)进行对比。板厚度控制计算根据《AASHTO》第8.9.2条关于活载挠度的规定;对于主筋平行于交通方向板桥,最小厚度1.2(S+10)/30(英尺),相当于国际单位制中1.2(S+3000)/ 30(mm)。
8m钢筋混凝土空心板简支梁桥上部结构计算书完整版

8m钢筋混凝土空心板简支梁桥上部结构计算书7.1 设计基本资料1. 跨度和桥面宽度标准跨径:8m (墩中心距)计算跨径:7.6m桥面宽度:净7m (行车道)+2X1.5m (人行道)2 技术标准2设计荷载:公路-U级,人行道和栏杆自重线密度按照单侧8kN/m计算,人群荷载取3kN/m环境标准:1类环境设计安全等级:二级3 主要材料混凝土:混凝土空心板和铰接缝采用C40混凝土;桥面铺装采用0.04m沥青混凝土,下层为0.06m厚C30混凝土。
沥青混凝土重度按23kN/^计算,混凝土重度按25kN/m i计算。
钢筋:采用R235钢筋、HRB335钢筋2. 构造形式及截面尺寸本桥为c40钢筋混凝土简支板,由8块宽度为1.24m的空心板连接而成。
桥上横坡为双向2%,坡度由下部构造控制空心板截面参数:单块板高为0.4m,宽1.24m,板间留有1.14cm的缝隙用于灌注砂浆C40 混凝土空心板抗压强度标准值f ck 26.8Mpa ,抗压强度设计值f cd 18.4Mpa ,抗拉强度标准值f tk 2.4Mpa ,抗拉强度设计值f td 1.65Mpa ,c40混凝土的弹性模量为E C 3.25 104Mpa7.3空心板截面几何特性计算1•毛截面面积计算如图二所示A S 矩形-(S ] S2 S3S4 )21 2S ,5 5 12.5cm 2S 矩形 124 40 4960cm 252 (5 24.5) 5 147.5cm 2 1 2 53 - 24.5 2 24.5cm 2 32 54 14.5 715.75cm 22解得:A 3202.33cm 22毛截面重心位置全截面对1板高处(即离板上缘20cm 处)的静矩为2S 1板高 2S 2 L 2 S 3 L 3 S 4 L 41 5 3S , L 1 — 5 5 (5 —) 41.67 cm2 329 5 352 L 2 29.5 5 (20 ) 774.375cm21 1 353 L 3 - 2 24.5 ( )(20 10.5 - 24.5) 32.67cm2 3 1 254 L 4 — 7 4.5 ( )(20 6 4.5)代入得S1板高=1595.25cm32由于铰缝左右对称所以铰缝的面积为:2( S 1S 2 S 3 S 4 )S 1板高220.5cm)2=400.5 cm毛截面重心离板高的距离为:=1595.25=0.5 cm (即毛截面重心离板上缘距离为3202.33图2中板截面构造及尺寸(单位: cm )3毛截面惯性矩计算3124 4012124 40 0.52 3242642 2 212 0.5 2 18588.016 2 400.5 (3.983 0.5)铰缝对自身重心轴的惯性矩为:4I i 218588.016 37176.032cm4空心板毛截面对其重心轴的惯性矩为:5 4= 5.6011 10 cm空心板截面的抗扭刚度可简化为如图三所示的箱型截面近似计算所以得到抗扭刚度为:. 4b2h2I T2h 2bt1 t224 (124 16) (40 8)(40 8) 2(124 16)8 166 4=2.2221 10 cm图三抗扭惯性矩简化计算图(单位:cm)7.4主梁内力计算1永久作用效应计算a.空心板自重(一期结构自重)G2:G13202.33 10 425呂16 921G•---' ^=i ;——124=0.8005825kN/m b.桥面系自重(二期结构自重)G2:桥面设计人行道和栏杆自重线密度按照单侧8kN/m计算。
简支梁桥的计算

第二章简支梁桥计算第一节行车道板的计算一、行车道板的类型图2-2-1 梁格构造和行车道板支承方式单向板:把La /Lb≥2的周边支承板看作是短边受荷的单向受力板双向板:把La /Lb≤2的周边支承板看作是双向受力板悬臂板:铰接悬臂板:二、车轮荷载在板上的分布车轮荷载在桥面板上的分布面积:沿纵向沿横向式中:为铺装层的厚度。
作用于桥面板上的局部分布荷载为:式中:—加重车后轴的轴重。
三、板的有效工作宽度行车道板的受力状态弯距图形的换算宽度为:悬臂板受力状态(一)单向板⒈荷载在跨径中间对于单独一个荷载(图2-2-5a):, 但不小于(这里为板的计算跨径。
)荷载有效分布宽度对于几个靠近的相同荷载,如按上式计算所得各相邻荷载的有效分布宽度发生重叠时,应按相邻靠近的荷载一起计算其有效分布宽度:式中:为最外两个荷载的中心距离。
⒉荷载在板的支承处, 但不小于式中:为板的厚度。
⒊荷载靠近板的支承处式中:χ—荷载离支承边缘的距离。
(二)悬臂板《桥规》对悬臂板规定的荷载有效分布宽度为(图2-2-6):式中b’为承重板上荷载压力面外侧边缘至悬臂板根部的距离。
对于分布荷载靠近板边的最不利情况,就等于悬臂板的跨径, 于是:悬臂板的有效分布宽度四、行车道板的内力计算(一)多跨连续单向板的内力当<1/4时(即主梁抗扭能力较大):跨中弯矩支点弯矩当≥1/4时(即主梁抗扭能力较小):跨中弯矩支点弯矩式中:,为1米宽简支板条的跨中活载弯矩(,对于汽车荷载:式中: —加重车后轴的轴重;-- 板的有效工作宽度;—板的计算跨径,当梁肋不宽时(如窄肋T形梁)就取梁肋中距;当主梁肋部宽度较大时(如箱形梁肋),可取梁肋间的净距和板厚,即,但不大于此处为板的净跨径,为梁肋宽度;-- 冲击系数,对于行车道板通常为1.3。
为每米板宽的跨中恒载弯矩,可由下式计算:支点剪力:(一个车轮荷载)其中:矩形部分荷载的合力为(以代入):三角形部分荷载的合力为(以代入):式中:和——对应于有效工作宽度和处的荷载强度;和——对应于荷载合力A1和A2的支点剪力影响线竖标值;——板的净跨径。
装配式钢筋混凝土简支t形梁桥设计

装配式钢筋混凝土简支T形梁桥设计一.基本设计资料(一)跨度和桥面宽度标准跨径:16m(墩中心距)。
计算跨径:15.5m。
主梁全长:15.96m。
桥面宽度(桥面净空):净—9m(行车道)+2 2.0(人行道)。
(二)技术标准设计荷载:公路Ⅱ级,人行道和栏杆自重线密度按照单侧6KN/M计算,人群荷载3KN/。
环境标准:Ⅰ类环境。
设计安全等级:二级。
(三)主要材料1.混凝土:混凝土简支T形梁及横梁采用C50混凝土;桥面铺装上层采用0.05m 的沥青混凝土,下层为厚0.06-0.13m的C30混凝土,沥青混凝土重度按23KN/m3计,混凝土重度按26KN/计。
2.钢材:采用R235钢筋,HRB335钢筋。
(四)构造形式及截面尺寸图1 桥梁横断面和主梁纵断面图(单位:cm)如图1所示,全桥共有6片T形梁组成,单片T形梁为1.4m,宽1.8m;桥上横坡;为双向1.5%,坡度由C30混凝土铺装控制;设有5根横梁。
二.主梁的计算(一)主梁的荷载横向分布系数计算1.跨中荷载横向分布系数如前所述,桥跨内设有五根横隔梁,具有可靠的横向联系,且承重结构的宽跨比为:B/l=13/15.5=0.838>0.5,故按G-M 法计算。
(1)计算主梁的抗弯及抗扭惯性矩I 和 :1)球主梁截面的中心位置x (见图2): 翼缘板厚度按平均厚度计算,其平均板后为h 1=(10+16)cm=13cm则:x=2)抗弯惯性矩I 为I=[+]=9069822对于T 形截面梁,抗扭惯性矩可以近似按下式计算:式中 , ——单个矩形截面的宽度和高度; ——矩形截面抗扭刚度系数;m ——梁截面划分成单个矩形截面的个数。
的计算过程及结果见表1。
表1 计算表即得 单位宽度抗弯及抗扭惯矩:(2) 横梁的抗弯及抗扭惯矩翼缘板有效宽度 的计算,计算图示如图3 所示。
横梁长度取两边主梁的轴线间距,即 l=5b=10mc=(3.85-0.16)/2=1.85m h′=110 b ′=16c/l=1.85/10=0.185根据的比值c/l 查表2,可得翼缘板有效工作宽度。
混凝土简支t型梁桥计算书

一、设计资料1.桥面净空净—8m+2×1.0m人行道2.主梁跨径和全长标准跨径:l=19.50mb计算跨径:l=19.00m=19.46m主梁全长:l全3.设计荷载公路—I级,人群荷载标准值3.5kN/m24.材料钢筋:主钢筋用HRB335,其他用钢筋采用R235;混凝土:C305.计算方法极限状态法。
6.结构尺寸如图1所示,全断面六片主梁,设五根横梁。
二、主梁的计算(一)主梁的荷载横向分布系数1.跨中荷载弯矩横向分布系数(按修正偏心压力法)I(1)计算I和T翼板的换算平均高度1202140100h =+=(mm ) 求主梁截面重心位置 ()()4182001300120200-16002130020013002120120200-1600a x =⨯+⨯⨯⨯+⨯⨯=(mm ) 主梁抗弯惯距()()()4102323mm 10234.7418-21300130020013002001212120-418120200-1600120200-1600121⨯=⎪⎭⎫⎝⎛⨯⨯+⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯+⨯=I 主梁抗扭惯矩查表得对于翼板:1.0075.01600120b t 11<==,31c 1=对于梁肋:)169.0120-1300200b t 22==,297.0c 2=()4933m1i 3i i i mm 10725.32001180297.0120160031t b c ⨯=⨯⨯+⨯⨯==∑=T I(2)计算抗扭修正系数β查表知,当6n =时,028.1=ξ,并取E G 4.0=,得923.06.1600.1910234.710725.34.0028.1112109=⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯+=E E β(3)计算横向影响线竖标值对于1号边梁考虑抗扭修正后的横向影响线竖标值为()()()()()()[]496.06.1-28.0-6.1-8.0-8.0-8.08.06.18.06.128.06.12923.061a a n 12222222n 1i 2i2111=⨯++++++++⨯+⨯⨯+=+=∑=βη163.0-a a a n 1n 1i 2i5151=+=∑=βη 设影响线零点离1号梁轴线的距离为x ,则163.0x-60.15496.0x ⨯= 解得: m 02.6x =(4)计算荷载横向分布系数1号边梁的横向影响线和布载图示如图3所示。
装配式钢筋混凝土简支型梁桥计算

已知
最大影响线纵标η及影响线面积ω0表(p单位kN/m2)表7
项目
影响线
顶点位置
最大影响线
纵标η
ω0
M1/2
1
47.53
M1/4
1
处
35.65
1
支点处
9.75
1/2
1/2
处
1/2
2.438
人群荷载(每延米)P人:P人=3 0.75=2.25kN/m
(3)活载弯矩计算
装配式钢筋混凝土简支T型梁桥计算
一、设计资料
(一)桥面净空
净-9+2 1.5m人行道
(二)主梁跨径和全长
标准跨径:13m
主梁全长:12.96m
计算跨径:12.50m
(三)设计荷载
公路Ⅰ级荷载,人群荷载3.0kN/㎡
(四)材料
钢筋:主筋用HRB335级钢筋,其它用HRB235级钢筋。
混凝土:C50,容重26KN/m3。
-0.236
-0.724
-1.258
-2.018
-1.532
-0.960
-0.466
0.044
0.508
1.616
1.436
1.914
-0.325
-0.247
-0.155
-0.075
0.007
0.082
0.164
0.231
0.308
3.151
2.617
2.013
1.461
0.925
0.438
-0.072
3#梁:
各梁的恒载汇总于表(单位:kN/m)表4
梁号
主梁
横梁
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多车道加载的结果表明,板的受力基本上与宽梁纵向弯矩在整个宽度上的小变化相同。同时也表明,没有必要在规范中制定边梁的相关规定。Shekaret al在1993年进行了大量的实验和调查分析来评估现有的钢筋混凝土板梁桥的承载力。调查的实验阶段对六座板梁桥进行了实地测试。工程师将试验结果用来改进3 d有限元分析模型。测试数据和有限元分析结果相比较能很好的验证混凝土板桥梁能够承担公路荷载。基于780个不变的单元生成的每一个桥的板壳单元的大小大约是0.53 0.53 m(1.75 1.75英尺)。同时也获得了2维和3维分析最大的弯矩的显著差异的原因是如边界等非结构化因素的参与。因此,在分析板梁桥时推荐进行3维有限元分析。Mabsoutet al在2000年对混凝土板梁桥有限元分析结果与《AASHTO》经验公式结果进行了对比。这个研究与《AASHTO》关于板桥的设计十分相关。本文建立在参考报告文献和详细探讨简支,单跨度,直钢筋混凝土板梁桥轮载分布的参数研究结果的基础上。有限元方法用于研究跨度、板宽、各种轮载在桥上分的分布状况有和是否有桥肩的影响。
任何公路桥梁的分析和设计必须考虑车辆荷载和车道荷载。然而,《AASHTO》标准规范对于小跨结构的车辆荷载有管理规定。《AASHTO》指定了公路荷载分布宽度或按照一个经验公式,以将双向弯曲问题简化为梁(单向)弯曲的问题。因此,钢筋混凝土板桥梁通常设计成一系列的长条梁。这种方法不考虑其他承载机制,几何形状的影响,和边界条件。
混凝土简支板梁桥车轮荷载分布
作者:M. Mabsout1; K. Tarhini2; R. Jabakhanji3; and E. Awwad4
摘要:本文介绍了轮荷载在单跨、简支、多车道钢筋混凝土板梁桥上分布的参数研究结果。使用有限元法来研究分析跨度、板宽、是否有板肩和荷载情况对典型桥梁的影响。总共分析研究了112个公路桥梁案例。人们认为承载单向交通的桥梁是独立的结构。对一、二、三、四车道桥梁并结合四个典型跨径进行了有限元分析(FEA)。公路桥梁设计车辆HS20在车道纵向最不利位置上加载。考虑两种车辆横向加载位置:(1)中心加载,设计车辆加载位置在每个车道的中心;(2)偏心加载,设计为将车辆放置在板最边缘并且相邻车辆按最小间距放置。对桥梁进行边缘加载的有限元分析结果表明《美国国家公路与运输协会标准(AASHTO)》的标准规范算法对于跨度小于7.5米(25英尺)的单跨单车道桥梁高估了30%的弯矩,但对于更大跨径桥梁的弯矩与有限元分析结果基本吻合。对于多车道并且跨径小于10.5米(35英尺)的桥梁,《美国国家公路与运输协会标准(AASHTO)》算出的弯矩结果与有限元分析结果相同。然而,随着跨度的增大《AASHTO》的算法将会低估有限元分析弯矩的15%到30%。结果表明,桥梁两边的桥肩会增加板宽从而增加桥梁的承载力。一种特殊加载情况是在桥梁边缘附近停了一辆故障汽车,并且在各车道上还有与其尽可能靠近的其它车辆。在这种特殊荷载情况下,对于跨度低于7.5米(25英尺)的桥梁,《AASHTO》算法给的纵向弯矩结果类似于有限元分析结果;但对于跨度在9到16.5米( 30至55英尺)之间的桥梁,低估了有限元分析结果的20%到40%。新的《AASHTO》中荷载和阻力系数设计(LRFD)桥梁设计规范高估了桥梁正常交通荷载产生的弯矩。然而,LRFD计算方法给出的结果类似于边缘车辆加载情况下的有限元分析结果。此外,有限元分析结果表明,对于跨度介于6到16.5米(20到55英尺)的多车道板桥梁必须考虑边梁。本文对桥梁工程师进行实际的简支、多车道、钢筋混凝土板桥梁设计以及评估现有公路桥梁的承载力将有所帮助。
钢筋混凝土板梁桥将是小跨桥梁的经济可选桥型之一。现浇混凝土桥梁的主要优势是在施工期间能够提供一个平滑的可调整道路标高的平面。通常情况下,在美国公路桥梁的设计必须符合《AASHTO》对公路桥梁的标准规范(1996),或者符合《AASHTO》关于荷载和阻力系数设计(LRFD)的设计规范(《AASHTO》1998)。由于活载情况的不同,每种计算方法将给出不同的结果。
当与有限元结果相比较时,本文只考虑《AASHTO》给出的经验公式(1)和(2)。《AASHTO》要求边梁沿着这些板的自由边。边梁活载弯矩指定为0.1 PS(对于一辆HS20车P=72kN或16千磅,S为跨径)。《AASHTO》并未指定边梁的宽度。然而一些交通部门采用边梁450mm(18英寸)。最后,最大的有限元分析活载挠度与《AASHTO》挠度标准(S/800)进行对比。板厚度控制计算根据《AASHTO》第8.9.2条关于活载挠度的规定;对于主筋平行于交通方向板桥,最小厚度1.2(S+10)/30(英尺),相当于国际单位制中1.2(S+3000)/ 30(mm)。
2.《美国国家公路与运输协会标准规范》中附录A给出了跨度小于90米(300英尺)的每车道活载弯矩。活载每英尺宽度的弯矩通过除以分布宽度的两倍得到,分布宽度E:
(3a)
采用国际单位制时,公式为
(3b)
3.开采单元的分析和设计使用适当的车轮荷载。对于HS20荷载,车轮荷载为18kN(4千磅),72kN(16千磅),72kN(16千磅),轴距为4.2米(14英尺)。适当的车轮荷载除以分布宽度E[公式(3a)或(3b)]。这种方法常用在多跨连续梁桥中,同时也被《美国国家公路与运输协会标准(AASHTO)荷载和阻力系数设计(LRFD)规范》广泛采用。
美国国家公路与运输协会标准规范
混凝土板桥是根据主筋平行于交通方向来设计的。《AASHTO》设计方法最初是从上世纪40年代发展起来的,主要基于Westergaard(1926,1930)和Jensen(1938,1939)的研究工作。对于简支板梁桥,《AASHTO》标准规范建议了三种方法来确定活载HS20的加载弯矩:
有限元分析结果
获得的有限元分析结果和记录依据最大值纵向弯矩,边梁最大弯矩,计算的板最大活载挠度。这些结果首先与《AASHTO》经验方程式(1)和(2)比较,后来与《AASHTO》LRFD规定使用的方程式(4)和(5)比较。
美国国家公路与运输协会标准(《AASHTO》)荷载和阻力系数设计(LRFD)规范
《美国国家公路与运输协会标准(AASHTO)荷载和阻力系数设计(LRFD)规范》第4.6.2.3条,对板桥规定了类似于以前的桥梁设计规范的等效板宽。这个简单的方法是把总静弯矩平均分配到桥梁宽度上,得到单位宽度弯矩来进行设计。弯矩由每个设计车道的结构宽度决定。用来确定每条车道的剪力和弯矩的纵向的等效宽度E采用以下公式计算:
图1无肩双车道横向加载图,(a)为
中心加载,(b)为偏心加载图2标准有肩双车道横向加载图,
(a)为中心加载,(b)为偏心加
载,(c)为偏心超载
桥梁案例分析
在这个调查中共研究了112座单跨度、简支一、二、三、四车道正交的钢筋混凝土板桥案例。对桥梁在自由边缘有无桥肩(肩宽1.2米或4英尺)也进行了调查研究。在实践中:4.2米(14英尺)一个车道,7.2米(24英尺)两个车道,10.8米(36英尺)三车道和14.4米(48英尺)四条车道,发现无肩的桥梁板是最不好的案例。参数研究考虑各种跨径分别为7.2、10.8、13.8和16.2米(24、36、46、54英尺)与之对应的板厚分别为450、530、610和690毫米(18、21、24和27英寸)。
单车道加载宽度
(国际单位)(4a)
或
(英制单位)(4b)
多车道加载宽度
(国际单位)(5a)
或
(英制单位)(5b)
式中
E-式(4a)和(5a)中单位为mm;式(4b)和(5b)中单位为英寸。
L1-真实跨径(mm或英尺)与1800mm(60英尺)中的较小值。
W1-对于多车道桥梁,真实桥宽(mm或英尺)与1800mm(60英尺)中的较小值;对于单车道桥梁,真实桥宽(mm或英尺)与900mm(30英尺)中的较小值。
设计假定车辆是同向行驶的。《AASHTO》标准3.6条(车道)假设车道荷载或一个标准设计车辆荷载分布宽度为3米(10英尺)。因此,在这个研究中,相邻位置车辆恒定中心距为3 m(10英尺)。两种可能的设计车辆横向加载的位置如所示图1所示:(a)为中心加载,认为每个车辆在自己的车道加载;(b)为偏心加载,设计车辆布置在桥梁边缘(左侧)加载,这样最左边的车辆的左轮的中心距左边缘一英尺。进行最不利加载,相邻的卡车之间的距离为1.2米(4英尺)或中心距3 m(10英尺)。
《AASHTOLRFD》第3.6.1.2条规定,活载HL93需要考虑车道荷载与设计车辆荷载HS20的组合或车道荷载串联。设计车道弯矩除以宽度(E)确定单位设计宽度弯矩。《AASHTOLRFD》表A2.5.2.6.3-1提供的最小板厚h=1.2(S+13000)/30,h和S单位为毫米,这与《AASHTO》标准规范方程1.2(S+10)/30(英尺)相类似。
因此,将车轮荷载移至距栏杆(0.3米)0.6米(2英尺),再对桥梁进行分析。距边缘总计0.9米(3英尺)而不是0.3米(1英尺)。对E1(轮载距边缘0.3米)和E3(轮载距边缘0.9米)两种加载情况的结果进行比较。E1条件下加载结果显示更临界,在边梁产生更大的弯矩。由于边载的位置不同,有限元对E1和E3加载条件分析结果显示出5%的差异。
弗雷德里克(1997)提出了一个基于实验和有限元分析研究混凝土板桥的载荷分布的结果。考虑一种典型的跨径8.5米(28英尺),三车道(10.4米宽)简支板桥。设计计算活载弯矩按照《AASHTO》标准规范的规定。有限元分析是使用矩形板弯曲单元(0.85 0.6米)执行计算。在实验室里进行了1:15的实体的模型构建和测试。设计车辆一次性布置在这三个车道的中心。有限元分析结果试验数据相吻合,低于《AASHTO》经验公式的结果。