九年级数学第一学期期中考试题及答案(苏科版)
苏科版九年级上册数学期中考试试卷带答案

苏科版九年级上册数学期中考试试题一、单选题1.方程的解为( )A .x =2B .x 1x 2=0C .x =0D .x 1=2,x 2=0 2.下列方程中,有实数根的是( )A .x 2﹣x+1=0B .x 2﹣2x+3=0C .x 2+x ﹣1=0D .x 2+4=03.以下各组数据中,众数、中位数、平均数都相等的是( )A .4,9,3,3B .12,9,9,6C .9,9,4,4D .8,8,4,54.小明等五位同学以各自的年龄为一组数据,计算出这组数据的方差是0.5,则10年后小明等五位同学年龄的方差( )A .不变B .增大C .减小D .无法确定5.已知圆锥的母线长是5cm ,侧面积是20πcm 2,则这个圆锥底面圆的半径是( ) A .1.5cm B .3cm C .4cm D .6cm6.已知2222(1)(3)8x y x y ++++= ,则 22x y +的值为( )A .-5或1B .1C .5D .5或-17.如图,AB 为O 的直径,C ,D 为O 上两点,若40BCD ∠=︒,则ABD ∠的大小为()A .60°B .55°C .50°D .45° 8.一元二次方程x 2-2x+1=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定9.如图,点A 、B 、C 在⊙O 上,D 是AB 的中点,若100AOB ∠=︒,则BCD ∠的度数是A .20°B .25°C .30°D .35°10.一元二次方程2230x x +-=的二次项系数是( )A .2B .1C .3-D .0二、填空题11.将一元二次方程(2x-1)(x+1)=1化成一般形式ax 2+bx+c=0为__________.12.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是_____分. 13.已知m 是方程2310x x --=的一个根,则代数式2265m m --的值等于____. 14.关于x 的方程()211420m m x x +-++=是一元二次方程,则m 的值为_______. 15.如图,C 是以AB 为直径的⊙O 上一点,已知AB=5,BC=3,则圆心O 到弦BC 的距离是__.16.圆内接四边形ABCD 的内角::2:3:4A B C ∠∠∠=,则D ∠=________度.17.如图,AB 是⊙O 的直径,BD 、CD 分别是过⊙O 上点B 、C 的切线,且⊙BDC=110°.连接AC ,则⊙A=__________°.18.已知Rt⊙ABC 中,⊙C=90°,AC=3,BC=4,以C 为圆心,r 为半径的圆与边AB 有两个交点,则r 的取值范围是___________.19.如图,⊙ABC 中,⊙ACB =90°,AC =BC =4,点P 在以斜边AB 为直径的半圆上,点M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长为 _______ .三、解答题20.解方程:(1)2(2)3(2)x x -=- (2)2410x x -=+.21.判断关于x 的一元二次方程220x mx m -+-=的根的个数.22.如图,学校打算用16m 的篱笆围成一个长方形的生物园饲养小兔,生物园的一面靠墙(如图,墙长9m ),面积是30m 2.求生物园的长和宽.23.如图,已知PA 、PB 切⊙O 于A 、B 两点,PO =4cm ,⊙APB =60°,求阴影部分的周长.24.某中学开展歌咏比赛,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,复赛成绩(满分为100分)如图所示.(1)根据图示填写表格:(2)已知九年级(2)班复赛成绩的方差为160,计算九年级(1)班复赛成绩的方差,并分析哪个班的复赛成绩稳定.25.已知关于x 的一元二次方程(a +c)x 2+2bx +(a -c)=0,其中a ,b ,c 分别为⊙ABC 三边的长.(1)如果x =-1是方程的根,试判断⊙ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断⊙ABC 的形状,并说明理由.26.阅读下面的例题:解方程220x x --=解:当x≥0时,原方程化为x 2-x -2=0,解得:x 1=2,x 2=-1(不合题意,舍去); 当x <0时,原方程化为x 2+ x -2=0,解得:x 1=1,(不合题意,舍去)x 2=-2; ⊙原方程的根是x 1=2,x 2=-2. 请参照例题解方程2110x x ---=.27.如图,在Rt⊙ABC 中,⊙ACB =90°,以AC 为直径的⊙O 与AB 边交于点D ,E 为BC 的中点,连接DE .(1)求证:DE 是⊙O 的切线;(2)若AC =BC ,判断四边形OCED 的形状,并说明理由.28.如图,已知四边形ABCD 内接于圆O ,连接BD ,⊙BAD=105°,⊙DBC=75°.(1)求证:BD=CD ;(2)若圆O 的半径为3,求BC 的长.参考答案1.D2.C3.B4.A5.C6.B7.C8.B9.B10.A11.2x 2+x-2=0【详解】解:()()2111x x -+=,22211x x x +--=,2220x x +-=,故答案为:2220x x +-=.【点睛】题目主要考查将一元二次方程化为一般形式,理解一元二次方程的一般形式是解题关键.12.88【详解】解:⊙笔试按60%、面试按40%计算,⊙总成绩是:90×60%+85×40%=88(分),故答案为:88.13.-3【分析】把x=m 代入方程得出m 2-3m-1=0,求出m 2-3m=1,推出2m 2-6m=2,把上式代入2m 2-6m-5求出即可.【详解】解:⊙实数m 是关于x 的方程x 2-3x-1=0的一根,⊙把x=m 代入得:m 2-3m-1=0,⊙m 2-3m=1,⊙2m 2-6m=2,⊙2m 2-6m-5=2-5=-3,故答案为-3.【点睛】考点: 一元二次方程的解.14.-1【分析】根据一元二次方程的定义(只含有一个未知数且未知数的最高次数是2次的整式方程),求m 的值,注意二次项的系数不为0.【详解】解:⊙21(1)420+-++=m m x x 是一元二次方程,212m ∴+=解得:1m =±10m -≠1m ∴≠,⊙1m =-,故答案为:-1.15.2【分析】过O 点作OD⊙BC ,D 点为垂足,则DB=DC ,所以OD 为⊙BAC 的中位线,即有OD=12AC ;由AB 为⊙O 的直径,得到⊙ACB=90°,由勾股定理可求得AC ,即可得到OD 的长.【详解】过O 点作OD⊙BC ,D 点为垂足,如图,⊙AB 为⊙O 的直径,⊙⊙ACB=90°,⊙AB 2=BC 2+AC 2,即AC=4=, 又⊙OD⊙BC ,⊙DB=DC ,而OA=OB ,⊙OD 为⊙BAC 的中位线,即有OD =12AC , 所以OD=12×4=2,即圆心O 到弦BC 的距离为2,故答案为:2.16.90【分析】设⊙A=2x ,则⊙B=3x ,⊙C=4x ,根据圆内解四边形的性质得⊙A+⊙C=180°,⊙B+⊙D=180°,则2x+4x=180°,解得x=30°,然后计算出⊙B 后利用互补求⊙D 的度数.【详解】解:设⊙A=2x ,则⊙B=3x ,⊙C=4x .⊙四边形ABCD 内接于⊙O ,⊙⊙A+⊙C=180°,⊙B+⊙D=180°,⊙2x+4x=180°,解得:x=30°,⊙⊙D=180°﹣3x=180°﹣90°=90°.故答案为90.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了方程的思想的运用.17.35【分析】连接OC ,由BD ,CD 分别是过⊙O 上点B ,C 的切线,且110BDC ∠=︒,可求得BOC ∠的度数,又由圆周角定理,即可求得结果.【详解】解:连接OC ,⊙BD ,CD 分别是过⊙O 上点B ,C 的切线,⊙OC CD ⊥,OB BD ⊥,⊙90OCD OBD ∠=∠=︒,⊙110BDC ∠=︒,⊙36070BOC OCD BDC OBD ∠=︒-∠-∠-∠=︒,⊙1352A BOC ∠=∠=︒, 故答案为:35.【点睛】题目主要考查了切线的性质及圆周角定理,作出辅助线,综合运用这些性质定理是解题关键.18.1235r <≤ 【分析】要使圆与斜边AB 有两个交点,则应满足直线和圆相交,且半径不大于AC .要保证相交,只需求得相切时,圆心到斜边的距离,即斜边上的高即可.【详解】如图,⊙BC >AC ,⊙以C 为圆心,R 为半径所作的圆与斜边AB 有两个交点,则圆的半径应大于CD ,小于或等于AC ,由勾股定理知,.⊙S⊙ABC =12AC•BC=12CD•AB=12×3×4=12×5•CD , ⊙CD=125, 即R 的取值范围是125<r≤3. 故答案为125<r≤3. 【点睛】本题利用了勾股定理和垂线段最短的定理,以及直角三角形的面积公式求解.特别注意:圆与斜边有两个交点,即两个交点都应在斜边上.19【分析】取AB 的中点O 、AC 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF,如图,利用等腰直角三角形的性质得到,则OC=12,OP=12,再根据等腰三角形的性质得OM⊙PC ,则⊙CMO=90°,于是根据圆周角定理得到点M 在以OC 为直径的圆上,由于点P 在A 点时,M 点在E 点;点P 在B 点时,M点在F 点,则利用四边形CEOF 为正方得到EF=OC=2,所以M 点的路径为以EF 为直径的半圆,然后根据圆的周长公式计算点M 运动的路径长.【详解】取AB 的中点O 、AC 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF ,如图,⊙在等腰Rt⊙ABC 中,AC=BC=4,⊙OC=12OP=12 ⊙M 为PC 的中点,⊙OM⊙PC ,⊙⊙CMO=90°,⊙点M 在以OC 为直径的圆上,点P 点在A 点时,M 点在E 点;点P 点在B 点时,M 点在F 点,易得四边形CEOF 为正方形,,⊙M 点的路径为以EF 为直径的半圆,⊙点M 运动的路径长=12..【点睛】本题考查了轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解题的关键是利用等腰三角形的性质和圆周角定理确定M 点的轨迹为以EF 为直径的半圆.20.(1)x 1=2,x 2=5(2)12x =-22x =-【分析】(1)根据本题特点,选用“因式分解法”来解比较简单;(2)根据本题特点,可选用“配方法”或“公式法”来解.【详解】(1)原方程可化为:(2)(23)0x x ---=,⊙20x -=或230x --=,解得1225x x ==,;(2)移项,得241x x +=,配方得:24414x x ++=+,即2(2)5x +=,⊙2x +=⊙.x 1=−2+√5,x 2=−2−√5.21.方程有两个不相等的实数根【分析】根据一元二次方程根的判别式代入计算即可.【详解】解:220x mx m -+-=,1a =,b m =-,2c m =-,()()2412m m ∆=--⨯⨯-, ()2240m =-+>,所以方程有两个不相等的实数根.【点睛】题目主要考查一元二次方程根的判别式,熟练运用根的判别式判断根的个数是解题关键.22.围成矩形的长为6m ,宽为5m【分析】首先设生物园的宽为xm ,则长为(16-2x )m ,根据题意可得等量关系:长方形的长×宽=面积30m 2,由等量关系列出方程求解即可.【详解】解:设宽为x m ,则长为()162m x -,由题意,得 ()16230x x -=,解得 13x =,25x =.当3x =时,162109x -=>,不合题意,舍去,当5x =时,16269x -=<,符合题意.答:围成矩形的长为6 m 、宽为5m .【点睛】本题主要考查了一元二次方程的实际应用,解题的关键在于能够根据题意列出方程进行求解.23.(43π)cm . 【分析】连接OA 、OB ,阴影部分的周长是PA+PB 的长+圆心角为120°的扇形的弧长来求即可.【详解】解:连接OA 、OB .因为PA 、PB 切⊙O 于A 、B 点,PO=4cm ,⊙APB=60°,所以⊙APO=⊙BPO=30°,⊙AOB=120°,所以AO=2cm ,AP=BP=2,120241803AB ππ⨯⨯==cm , 阴影部分的周长:43π43π(cm ). 答:阴影部分的周长是(43π)cm . 24.(1)九(1)班平均数为85,众数为85,九(2)班中位数为80;(2)70;(3)九年级(1)班复赛成绩的方差为70,九(1)班的方差小,成绩更稳定些.【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数、众数的定义和平均数的求法即可得答案;(2)根据方差公式计算可得九年级(1)班复赛成绩的方差,根据平均数相同,方差越小,成绩越稳定即可得答案.【详解】(1)由图可知:九(1)班5名选手的复赛成绩为:75、80、85、85、100, 九(2)班5名选手的复赛成绩为:70、75、80、100、100,九(1)班的平均数为(75+80+85+85+100)÷5=85,⊙九(1)班的5个成绩中,85出现2次,⊙九(1)的众数为85,⊙九(2)班的5个成绩中,中间的数是80,⊙九(2)班的中位数为80,填表如下:(2)⊙九(1)班平均数为85,⊙九(1)班方差s 12=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70, ⊙九(2)班的方差为160,70<160,⊙九(1)班的成绩更稳定些.【点睛】本题考查平均数、中位数、众数及方差,将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据叫做这组数据的中位数;如果数据个数是偶数,则中间两个数据的平均数称为这组数据的中位数;一组数据中,出现次数最多的数据称为这组数据的众数;方差越大,数据的波动越大;方差越小,数据的波动越小;熟练掌握相关定义及方差公式是解题关键.25.(1)⊙ABC 是等腰三角形,理由见解析;(2)⊙ABC 是直角三角形.理由见解析.【详解】试题分析:(1)由方程解的定义把x=﹣1代入方程得到a ﹣b=0,即a=b ,于是由等腰三角形的判定即可得到⊙ABC 是等腰三角形;(2)由判别式的意义得到⊙=0,整理得222a b c =+,然后由勾股定理的逆定理得到⊙ABC 是直角三角形.试题解析:解:(1)⊙ABC 是等腰三角形.理由如下:⊙x=﹣1是方程的根,⊙(a+c )×1﹣2b+(a ﹣c )=0,⊙a+c ﹣2b+a ﹣c=0,⊙a ﹣b=0,⊙a=b ,⊙⊙ABC 是等腰三角形;(2)⊙ABC 是直角三角形.理由如下:⊙方程有两个相等的实数根,⊙⊙=2(2)4()()0b a c a c -+-=,⊙2224440b a c -+=,⊙222a b c =+,⊙⊙ABC 是直角三角形.考点:1.根的判别式;2.等腰三角形的判定;3.勾股定理的逆定理.26.x 1=1,x 2=﹣2【分析】根据题干中提供的方法,利用绝对值的性质进行分类讨论,解一元二次方程.【详解】解:⊙当x ﹣1≥0即x≥1时,原方程化为()2110x x ---=,()10x x -=,解得:x 1=1,x 2=0(不合题意,舍去);⊙当x ﹣1<0即x <1时,原方程化为()2110x x +--=,()()210x x +-=, 解得:x 1=1(不合题意,舍去),x 2=﹣2,故原方程的根是x 1=1,x 2=﹣2.【点睛】本题考查绝对值的性质和解一元二次方程,解题的关键是模仿题干中给出的方法进行计算求解.27.(1)见解析;(2)正方形,理由见解析【分析】(1)连接OD、CD,结合AC为直径可得到⊙CDB=90°,E为中点,可得到ED =CE,再利用角的和差可求得⊙ODE=90°,可得DE为切线;(2)由条件可得⊙ODA=⊙A=45°,可求得⊙COD=⊙ODE=⊙ACB=90°,且OC=OD,可知四边形ODEC为正方形.【详解】(1)证明:如图,连接OD、CD,⊙OC=OD,⊙⊙OCD=⊙ODC,⊙AC为⊙O的直径,⊙⊙CDB=90°,⊙E为BC的中点,⊙DE=CE,⊙⊙ECD=⊙EDC,⊙⊙OCD+⊙ECD=⊙ODC+⊙EDC=90°,⊙⊙ODE=⊙ACB=90°,即OD⊙DE,又⊙D在圆O上,⊙DE与圆O相切;(2)若AC=BC,四边形ODEC为正方形,理由:⊙AC=BC,⊙ACB=90°,⊙⊙A=45°,⊙OA=OD,⊙⊙ODA=⊙A=45°,⊙⊙COD=⊙A+⊙ODA=90°,⊙四边形ODEC中,⊙COD=⊙ODE=⊙ACB=90°,且OC=OD,⊙四边形ODEC为正方形.【点睛】本题考查了切线的判定、正方形的判定、圆的性质、三角形的外角、直角三角形的性质等知识,解答本题的关键是熟练运用以上知识证明OD⊙DE以及⊙COD=⊙ODE=⊙ACB=90°,OC=OD.28.(1)证明过程见解析;(2)π【分析】(1)直接利用圆周角定理得出⊙DCB的度数,再利用⊙DCB=⊙DBC求出答案;(2)首先求出BC的度数,再利用弧长公式直接求出答案.【详解】(1)⊙四边形ABCD内接于圆O,⊙⊙DCB+⊙BAD=180°,⊙⊙BAD=105°,⊙⊙DCB=180°﹣105°=75°,⊙⊙DBC=75°,⊙⊙DCB=⊙DBC=75°,⊙BD=CD;(2)⊙⊙DCB=⊙DBC=75°,⊙⊙BDC=30°,由圆周角定理,得,BC的度数为:60°,故603BC180180n Rπππ⨯===,答:BC的长为π.。
苏科版九年级上册数学期中考试试卷附答案

苏科版九年级上册数学期中考试试题一、单选题1.下列方程为一元二次方程的是()A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x 2+8x +7=0变形为(x +h)2=k 的形式应为()A .(x +4)2=-7B .(x -4)2=-7C .(x +4)2=9D .(x -4)2=93.⊙O 的半径为1,同一平面内,若点P 与圆心O 的距离为1,则点P 与⊙O 的位置关系是()A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定4.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的A .方差B .众数C .平均数D .中位数5.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x ,则下面所列方程正确的是()A .()2501182=+x B .()250501182=++x C .()()505015012182=++++x x D .()()250501501182=++++x x 6.如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中AB =4,∠AOC =120°,P 为⊙O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为()A .3B .C .D .7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若38P ∠=︒,则B Ð的度数为()A .22°B .24°C .26°D .28°8.如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A .6B .7C .8D .99.若关于x 的一元二次方程()2200ax bx a ++=≠有一根为2019x =,则一元二次方程()()2112a x b x -+-=-必有一根为()A .2018B .2019C .2020D .202110.如图,点A 、B 、C 在⊙O 上,且∠ACB=100o ,则∠α度数为()A .160oB .120oC .100oD .80o二、填空题11.将方程x 2-2=7x 化成x 2+bx +c =0的形式,则b =___.12.一组数据:﹣1,﹣2,0,1,2,则这组数据的极差是______.13.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是____分.14.关于x 的方程x 2+px +q =0的两个根分别为-1、4,则p +q 的值为_____.15.已知三角形三边长为6,8,10,则它的内切圆半径是________.16.若圆锥的底面半径为3cm ,母线长是5cm ,则它的侧面展开图的面积为_______cm 2.17.若关于x 的一元二次方程2840ax x -+=有两个不相等的实数根,则a 的取值范围是_____.18.如图,AB ,AC 分别为⊙O 的内接正六边形,内接正方形的一边,BC 是圆内接n 边形的一边,则n 等于_____.三、解答题19.解下列方程:(1)x 2﹣2x ﹣3=0;(2)x ﹣5=(x ﹣5)2.20.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根21.八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.22.如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格确定该圆弧所在圆的圆心D 点的位置,并写出D 点的坐标为;(2)连接AD 、CD ,⊙D 的半径为,∠ADC 的度数为;(3)若扇形DAC 是一个圆锥的侧面展开图,求该圆锥底面半径.23.如图,AB 为O 的直径,点C D ,在O 上,AC 与OD 交于点E ,AE EC OE ED ==,,连接BC CD ,.求证:(1)AOE CDE ∆≅∆;(2)四边形OBCD 是菱形.24.如图,四边形ABCD 与AEGF 均为矩形,点E 、F 分别在线段AB 、AD 上.若BE =FD =2cm ,矩形AEGF 的周长为20cm .(1)图中阴影部分的面积为cm 2.(2)若空白部分面积与阴影部分面积一样大,求矩形ABCD 边长.25.如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =60BCD ∠=︒,求图中阴影部分的面积.26.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是元;当每个公司租出的汽车为辆时,两公司的月利润相等;(2)求租出汽车多少辆时,两公司月利润差恰为18400元?参考答案1.C2.C3.B4.D5.D6.D7.C8.B9.C10.A11.-7【详解】将方程x2-2=7x化成x2-7x-2=0∴b=-7,故填:-7.【点睛】此题主要考查一元二次方程的一般式,解题的关键是熟知等式的性质.12.4【分析】用这组数据的最大值减去最小值即得结果.【详解】解:这组数据的级差是:2(2)4--=.故答案为4.【点睛】本题考查了极差的定义,属于基础概念题,掌握极差的定义是关键.13.93分【分析】按3:3:4的比例算出本学期数学学期平均成绩即可.【详解】小红一学期的数学平均成绩是9031003343490⨯⨯⨯++++=93(分),故填:93.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14.-7【分析】根据根与系数的关系得到-1+4=−p ,-1×4=q ,然后解方程即可得到p 和q 的值,即可得到结论.【详解】根据题意得-1+4=−p ,-1×4=q ,所以p =−3,q =-4.故p +q =−7,故填:-7.15.2【分析】先根据勾股定理的逆定理判断出△ABC 的形状,设△ABC 内切圆的半径为R ,切点分别为D 、E 、F ,再根据题意画出图形,先根据正方形的判定定理判断出四边形ODCE 是正方形,再根据切线长定理即可得到关于R 的一元一次方程,求出R 的值即可.【详解】如图所示:ABC ∆中,68AB 10AC BC ===,,,2226810+= ,即222AC BC AB +=,ABC ∴∆是直角三角形,设ABC ∆的内切圆半径为R ,切点分别为D ,E ,F ,CD CE = ,BE BF =,AF AD =,OE BC OD AC ⊥⊥ ,,∴四边形ODCE 是正方形,即CD CE R ==AC CD AB BF ∴-=-,即610R BF -=-BC CE BE BF -==,即8R BF-=联立解得:R=2.故答案为2.16.15π【详解】解:底面半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2.故答案为:15π.17.4a <且0a ≠【分析】根据根的判别式即可求出答案,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】解:由题意可知:64160a ∆=->,4a ∴<,0a ≠ ,4a ∴<且0a ≠,故答案为4a <且0a ≠18.12【详解】连接AO ,BO ,CO ,如图所示:∵AB 、AC 分别为⊙O 的内接正六边形、内接正方形的一边,∴∠AOB=3606︒=60°,∠AOC=3604︒=90°,∴∠BOC=30°,∴n=36030︒︒=12,故答案为:12.19.(1)x 1=3,x 2=﹣1;(2)x 1=5,x 2=6.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x 2﹣2x ﹣3=0,(x ﹣3)(x+1)=0,∴x ﹣3=0或x+1=0,∴x 1=3,x 2=﹣1;(2)x ﹣5=(x ﹣5)2,(x ﹣5)﹣(x ﹣5)2=0,(x ﹣5)[1﹣(x ﹣5)]=0,∴x ﹣5=0,1﹣(x ﹣5)=0,∴x 1=5,x 2=6.20.(1)证明见解析;(2)3【分析】(1)利用方程的判别式求解即可;(2)将x=2代入方程求出m=2,得到方程为2430x x -+=,求出方程的解121,3x x ==,由此得到答案.【详解】解:(1)∵[]22(2)4(21)(2)40m m m ∆=-+--=-+>,∴方程恒有两个不相等的实数根;(2)将x=1代入方程,得12210m m --+-=,∴20m -=,解得m=2,∴方程为2430x x -+=,解得121,3x x ==,∴方程的另一个根3.【点睛】此题考查一元二次方程根的判别式,方程的解,解一元二次方程,熟记一元二次方程根的判别式的三种情况、正确解一元二次方程是解题的关键.21.(1)9.5,10;(2)平均成绩9分,方差1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:110×(10×4+8×2+7+9×3)=9,则方差是:110×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+…+(xn−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.(1)圆心D点的位置见解析,(2,0);(2)90°;(3.【分析】(1)利用垂径定理可作AB和BC的垂直平分线,两线的交点即为D点,可得出D 点坐标;(2)在△AOD中AO和OD可由坐标得出,利用勾股定理可求得AD和CD,过C作CE⊥x 轴于点E,则可证得△OAD≌△EDC,可得∠ADO=∠DCE,可得∠ADO+∠CDE=90°,可得到∠ADC的度数;(3)先求得扇形DAC的面积,设圆锥底面半径为r,利用圆锥侧面展开图的面积=πr•AD,可求得r .【详解】解:(1)如图1,分别作AB 、BC 的垂直平分线,两线交于点D,∴D 点的坐标为(2,0),故答案为:(2,0);(2)如图2,连接AD 、CD ,过点C 作CE ⊥x 轴于点E,则OA =4,OD =2,在Rt △AOD 中,可求得AD=即⊙D的半径为且CE =2,DE =4,∴AO =DE ,OD =CE ,在△AOD 和△DEC 中,AOD CED OD AO D CE E ∠∠=⎧⎪⎨⎪⎩==,∴△AOD ≌△DEC (SAS ),∴∠OAD =∠CDE ,∴∠CDE+∠ADO =90°,∴∠ADC =90°,故答案为90°;(3)弧AC 的长=90180π×,设圆锥底面半径为r 则有2πr,解得:r,.【点睛】本题考查了垂径定理,弧长公式,勾股定理以及全等三角形的判定与性质等知识,要能够根据垂径定理作出圆的圆心,根据全等三角形的性质确定角之间的关系,掌握圆锥的底面半径的计算方法.23.(1)见解析;(2)见解析【分析】(1)由已知条件根据全的三角形的判定即可证明;(2)首先根据平行四边形的判定证明四边形OBCD 是平行四边形,然后根据一组邻边相等的平行四边形是菱形即可证明.【详解】解:(1)在AOE 和CDE 中,∵AE CE AEO CED OE DE =⎧⎪∠=∠⎨⎪=⎩,∴()AOE CDE SAS ≅ ;(2)∵AB 为O 的直径,∴AO BO =,∵AOE CDE ≅ ,∴OAC DCA ∠=∠,AO CD =,∴BO ∥CD ,BO CD =,∴四边形OBCD 是平行四边形.∵BO DO =,∴四边形OBCD 是菱形.【点睛】本题考查了全等三角形的判定及性质、菱形的判定、圆的基础知识,掌握全等三角形的判定和特殊平行四边形的判定是解题的关键.24.(1)24;(2)6cm 和8cm .【分析】(1)由面积关系列出关系式可求解;(2)设矩形的AEGF 一边长为xcm ,由矩形的面积公式列出方程并解答.【详解】解:(1)∵矩形AEGF 的周长为20cm ,∴AF+AE=10cm,∵AB=AE+BE,AD=AF+DF,BE=FD=2cm,∴阴影部分的面积=AB×AD﹣AE×AF=(AE+2)(AF+2)﹣AE×AF=24(cm2),故答案为:24;(2)设矩形的AEGF一边长为xcm,得x(10﹣x)=24.解之得x1=4,x2=6.4+2=6或6+2=8.答:矩形的ABCD边长为6cm和8cm.【点睛】本题考查了矩形的性质、一元二次方程的应用,利用面积和差关系列出关系式是解题的关键.25.(1)相切,理由见解析;(2)π【分析】(1)过点B作BF⊥CD,证明△ABD≌△FBD,得到BF=BA,即可证明CD与圆B相切;(2)先证明△BCD是等边三角形,根据三线合一得到∠ABD=30°,求出AD,再利用S△ABD-S扇形ABE求出阴影部分面积.【详解】解:(1)过点B作BF⊥CD,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB,又BD=BD,∠BAD=∠BFD=90°,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与圆B相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=23∴AD=DF=tan 30AB ⋅︒=2,∴阴影部分的面积=S △ABD-S 扇形ABE =(2302312322360π⨯⨯⨯-=23π.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.26.(1)48000;37;(2)当每个公司租出的汽车为45辆时,两公司月利润差恰为18400元.【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x 辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,由(1)可得y 甲和y 乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y 关于x 的表达式,根据题意列出方程,并解答.【详解】解:(1)[(50﹣10)×50+3000]×10﹣200×10=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x 辆,由题意可得:[(50﹣x )×50+3000]x ﹣200x =3500x ﹣1850,解得:x =37或x =﹣1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等.故答案是:48000;37;(2)设每个公司租出的汽车为x 辆,两公司的月利润分别为y 甲,y 乙,则y 甲=[(50﹣x )×50+3000]x ﹣200x ,y 乙=3500x ﹣1850.当甲公司的利润大于乙公司时,0<x <37,y 甲﹣y 乙=18400,即[(50﹣x )×50+3000]x ﹣200x ﹣(3500x ﹣1850)=﹣50x 2+1800x+1850=18400,整理,得x 2﹣36x+331=0此方程无解.故此情况不存在;当乙公司的利润大于甲公司时,37<x≤50,y 乙﹣y 甲=18400,即3500x ﹣1850﹣[(50﹣x )×50+3000]x+200x =50x 2﹣1800x ﹣1850=18400,整理,得(x ﹣45)(x+9)=0,解得x 1=45,x 2=﹣9(舍去)所以当每个公司租出的汽车为45辆时,两公司月利润差恰为18400元.。
苏科版九年级上数学期中试卷一(含答案及解析)

苏科版九年级(上)数学期中试卷一一、选择题(本大题共6 小题,每小题 2 分,共12 分)1.(2分)下列方程中,是关于x的一元二次方程的是()A.x2﹣2x=x2+1B.x2+=1C.(x﹣1)2=2D.2x2+y﹣1=02.(2分)已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=3.(2分)用因式分解法解方程x2+px﹣6=0,若将左边分解后有一个因式是x+3,则p的值是()A.﹣1 B.1 C.﹣5 D.54.(2分)一元二次方程4x2﹣4x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根5.(2分)如图,AB、BC、CD、DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是()A.14 B.12 C.9 D.76.(2分)若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm二、填空题(本大题共10 小题,每小题 2 分,共20 分)7.(2分)将方程x2﹣2=7x化成x2+bx+c=0的形式,则b=.8.(2分)数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90 分、100 分、90 分,则小红一学期的数学平均成绩是分.9.(2分)方程x2﹣1=0的解为.10.(2分)若三角形ABC的两边长分别是方程x2﹣5x+4=0的两个解,则这个等腰三角形的周长是.11.(2分)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.12.(2分)已知扇形的面积为2π,半径为3,则该扇形的弧长为(结果保留π).13.(2分)在一个不透明的袋子中共装有白球、红球和蓝球200个,这些球除颜色外都相同.小明每次从中任意摸出一个球,记下颜色后将球放回并搅匀,通过多次重复试验,算得摸到红球的频率是25%,则估计这只袋子中有红球个.14.(2分)如图,P为⊙O外一点,PA切⊙O于A,若PA=3,∠APO=45°,则⊙O的半径是.15.(2分)⊙O的半径是2,弦AB=2,点C为⊙O上的一点(不与点A、B重合),则∠ACB的度数为.16.(2分)如图,矩形ABCD中,AD=4,AB=2.点E是AB的中点,点F是BC边上的任意一点(不与B、C重合),△EBF沿EF翻折,点B落在B'处,当DB'的长度最小时,BF的长度为.三、解答题(本大题共11 小题,共88 分)17.(6分)解下列方程:(1)x2﹣2x﹣3=0(2)(x+1)(x﹣2)+2(2﹣x)=018.(8分)一组数据:2,6,7,7,8(1)求这组数据的平均数;(2)求这组数据的方差.19.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?20.(8分)如图,已知△ABC内接于⊙O,D是⊙O上一点,连接BD、CD、AC、BD交于点E.(1)请找出图中的相似三角形,并加以证明;(2)若∠D=45°,BC=2,求⊙O 的面积.21.(8分)某校在七年级、八年级开展了阅读文学名著知识竞赛.该校七、八年级各有学生400人,各随机抽取20名学生进行了抽样调查,获得了他们知识竞赛成绩(单位:分),并对数据进行整理、描述和分析.下面给出了部分信息.a.七年级学生知识竞赛成绩的平均数、中位数、众数、优秀率(80 分及以上)如下表所示:年级平均数中位数众数优秀率七年级84.2 77 74 45%b.八年级学生知识竞赛成绩的扇形统计图如图(数据分为5 组,A:50≤x≤59;B:60≤x≤69;C:70≤x≤79;D:80≤x≤89;E:90≤x≤100)c.八年级学生知识竞赛成绩在D 组的是:87 88 88 88 89 89 89 89根据以上信息,回答下列问题:(1)八年级学生知识竞赛成绩的中位数是分;(2)请你估计该校七、八年级所有学生中达到“优秀”的有多少人?(3)下列结论:①八年级成绩的众数是89 分;②八年级成绩的平均数可能为86 分;③八年级成绩的极差可能为50 分.其中所有正确结论的序号是.22.(8分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=40°,BT交⊙O于点C,E是AB上一点,延长CE 交⊙O 于点D.(1)如图1,求∠T 和∠CDB 的度数;(2)如图2,当BE=BC 时,求∠CDO 的度数.23.(8分)已知关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数).(1)若方程有两个不相等的实数根,求m 的取值范围;(2)若m 是整数,且方程有两个不相等的整数根,求m 的值.24.(6分)用两种方法证明“圆的内接四边形对角互补”.已知:如图①,四边形ABCD 内接于⊙O.求证:∠B+∠D=180°.证法1:如图②,作直径DE 交⊙O 于点E,连接AE、CE.∵DE 是⊙O 的直径,∴.∵∠DAE+∠AEC+∠DCE+∠ADC=360°,∴∠AEC+∠ADC=360°﹣∠DAE﹣∠DCE=360°﹣90°﹣90°=180°.∵∠B 和∠AEC 所对的弧是,∴.∴∠B+∠ADC=180°.请把证法1 补充完整,并用不同的方法完成证法2.证法2:25.(8分)如图,在△ABC中,∠ACB=90°,以点B为圆心,BC的长为半径画弧,交线段AB于点D,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E,设BC=a,AC=b.(1)请你判断:线段AD 的长度是方程x2+2ax﹣b2=0 的一个根吗?说明理由;(2)若线段AD=EC,求的值.26.(10分)如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF 并延长交BC 于点H.(1)若连接AO,试判断四边形AECO 的形状,并说明理由;(2)求证:AH 是⊙O 的切线;(3)若AB=6,CH=2,则AH 的长为.27.(10分)如图(1),在△ABC中,如果正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC 上,那么我们称这样的正方形为“三角形内接正方形”小波同学按数学家波利亚在《怎样解题》中的方法进行操作:如图(2),任意画△ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′在BC 边上,N′在△ABC 内,连结BN′并延长交AC 于点N,画NM⊥BC 于点M,NP⊥ NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN,小波把线段BN称为“波利亚线”,请帮助小波解决下列问题:(1)四边形PQMN 是否是△ABC 的内接正方形,请证明你的结论;(2)若△ABC 为等边三角形,边长BC=6,求△ABC 内接正方形的边长;(3)如图(3),若在“波利亚线”BN上截取NE=NM,连结EQ,EM.当时,猜想∠QEM 的度数,并说明你的理由.苏科版九年级(上)数学期中试卷一参考答案与试题解析一、选择题1.【解答】解:A、由已知方程得到1+2x=0,属于一元一次方程,故本选项不符合题意.B、该方程不是整式方程,故本选项不符合题意.C、该方程符合一元二次方程的定义,故本选项符合题意.D、该方程中含有两个未知数,属于二元二次方程,故本选项不符合题意.故选:C.2.【解答】解:A、两边都除以2y,得=,故A 符合题意;B、两边除以不同的整式,故B 不符合题意;C、两边都除以2y,得=,故C 不符合题意;D、两边除以不同的整式,故D 不符合题意;故选:A.3.【解答】解:根据题意知x2+px﹣6=(x+3)(x﹣2),则x2+px﹣6=x2+x﹣6,∴p=1,故选:B.4.【解答】解:∵a=4,b=﹣4,c=1,∴△=b2﹣4ac=(﹣4)2﹣4×4×1=0∴方程有两个相等的实数根故选:B.5.【解答】解:∵AB、BC、CD、DA 都是⊙O 的切线,∴可以假设切点分别为E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故选:D.6.【解答】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm),∴圆锥的底面半径为12π÷2π=6(cm),故选:D.二、填空题7.【解答】解:x2﹣2=7x,整理得x2﹣7x﹣2=0,则b=﹣7,故答案为:﹣7.8.【解答】解:根据题意得:=93(分),答:小红一学期的数学平均成绩是93 分;故答案为:93.9.【解答】解:x2﹣1=0,(x+1)(x﹣1)=0,x﹣1=0,x+1=0,x1=1,x2=﹣1,故答案为:x1=1,x2=﹣1.10.【解答】解:x2﹣5x+4=0,(x﹣1)(x﹣4)=0,所以x1=1,x2=4,当 1 是腰时,三角形的三边分别为1、1、4,不能组成三角形;当4 是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=9.故答案是:9.1.【解答】解:由题意可得,50(1﹣x)2=32,故答案为:50(1﹣x)2=32.12.【解答】解:设扇形的弧长为l,由题意,得l×3=2π,解得l=.故答案为π.13.【解答】解:设袋中有x 个红球.由题意可得:=25%,解得:x=50,故答案为:50.14.【解答】解:连接OA,∵PA 切⊙O 于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.15.【解答】解:如图,连接OA,OB.∵AO=BO=2,AB=2,∴△ABO 是等边三角形,∴∠AOB=60°.若点C 在优弧上,则∠BCA=30°;若点C 在劣弧上,则∠BCA=(360°﹣∠AOB)=150°;综上所述:∠BCA 的度数为30°或150°.故答案为30°或150°.16.【解答】解:如图,连接DE,∵DB′≥DE﹣EB′,DE===,EB′=1,∴DB′≥﹣1,∴当D,B′,E 共线时,DB′的值最小,不妨设此时点B′落在DE 上的点B″处,设BF′=F′ B″=x,∵F′D2=CD2+F′C2=B″D2+B″F′2,∴22+(4﹣x)2=(﹣1)2+x2,解得x=故答案为三、解答题17.【解答】解:(1)(x﹣3)(x+1)=0,x﹣3=0 或x+1=0,所以x1=3,x2=﹣1;(2)(x+1)(x﹣2)﹣2(x﹣2)=0,(x﹣2)(x+1﹣2)=0x﹣2=0 或x+1﹣2=0,所以x1=2,x2=1.18.【解答】解:(1)∵一组数据:2,6,7,7,8,∴这组数的平均数:=6,(2)这组数据的方差=[(2﹣6)2+(6﹣6)2+(7﹣6)2+(7﹣6)2+(8﹣6)2]=4.419.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10 时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm 时,所得长方体盒子的侧面积为200cm2.20.【解答】解:(1)结论:△ABE∽△DCE,证明:在△ABE 和△DCE 中,∵∠A=∠D,∠AEB=∠DEC,∴△ABE∽△DCE.(2)作⊙O 的直径BF,连接CF,∴∠F=∠D=45°,∠BCF=90°.∴△BCF 是等腰直角三角形.∵FC=BC=2,∴BF=2 .∴OB=.∴S⊙O=OB2•π=2π.21.【解答】解:(1)∵A,B,C三个组的人数为20×(10%+10%+15%)=7,D组的人数为8,∴八年级学生知识竞赛成绩的中位数是=88,故答案为:88;(2)400×45%+400×(40%+25%)=180+260=440 人.答:估计该校七、八年级所有学生中达到“优秀”的有440 人;(3)∵①八年级成绩的众数不确定;②八年级成绩的平均数不确定;③八年级成绩的极差可能为50 分;故正确结论的序号是③.故答案为:③.22.【解答】解:(1)如图①,连接AC,∵AT 是⊙O 切线,AB 是⊙O 的直径,∴AT⊥AB,即∠TAB=90°,∵∠ABT=40°,∴∠T=90°﹣∠ABT=50°,由AB 是⊙O 的直径,得∠ACB=90°,∴∠CAB=90°﹣∠ABC=50°,∴∠CDB=∠CAB=50°;(2)如图②,连接AD,在△BCE 中,BE=BC,∠EBC=40°,∴∠BCE=∠BEC=70°,∴∠BAD=∠BCD=70°,∵OA=OD,∴∠ODA=∠OAD=70°,∵∠ADC=∠ABC=40°,∴∠CDO=∠ODA﹣∠ADC=70°﹣40°=30°.23.【解答】解:(1)由题意得:m﹣1≠0且△>0,m﹣1≠0,解得:m≠1,∵△=(m﹣2)2﹣4(m﹣1)×(﹣1)=m2,∴m2>0,∴m≠0,∴m 的取值范围为:m≠0 且m≠1;(2)(m﹣1)x2+(m﹣2)x﹣1=0,解得:x=,∴x1=﹣1,x2=,∵m 为m≠0 且m≠1 的整数,且方程有两个不相等的整数根,∴m=2.24.【解答】解:证法1:如图②,作直径DE 交⊙O 于点E,连接AE、CE.∵DE 是⊙O 的直径,∴∠DAE+∠DCE=180°.∵∠DAE+∠AEC+∠DCE+∠ADC=360°,∴∠AEC+∠ADC=360°﹣∠DAE﹣∠DCE=360°﹣90°﹣90°=180°.∵∠B 和∠AEC 所对的弧是,∴∠AEC=∠B.∴∠B+∠ADC=180°.故答案为:∠DAE=∠DCE=180°,∠AEC=∠B;证法2:如图①,连接OA、OC,∵∠B、∠1 所对的弧是,∠D、∠2 所对的弧是,∴∠B=∠1,∠D=∠2,∵∠1+∠2=360°,∴∠B+∠D=(∠1+∠2)=×360°=180°.25.【解答】解:(1)∵在△ABC中,∠ACB=90°,∴AB2=AC2+BC2,∵BC=a,AC=b.∴AB2=a2+b2,方程x2+2ax﹣b2=0 变形为:x2+2ax+a2=a2+b2,∴(x+a)2=AB2,∵BD=BC=a,∴(x+BD)2=AB2,∴线段AD 的长度是方程x2+2ax﹣b2=0 的一个根;(2)∵AD=EC,∴AC=2AD=2AE=b,∴AD=b,∴AB=a+ b,∵AB2=AC2+BC2,∴(a+ b)2=a2+b2整理得a=b,∴=.26.【解答】(1)解:连接AO,四边形AECO 是平行四边形.∵四边形ABCD 是矩形,∴AB∥CD,AB=CD.∵E 是AB 的中点,∴AE=AB.∵CD 是⊙O 的直径,∴OC=CD.∴AE∥OC,AE=OC.∴四边形AECO 为平行四边形.(2)证明:由(1)得,四边形AECO 为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD 和△AOF 中,AO=AO,∠AOD=∠AOF,OD=OF ∴△AOD≌△AOF(SAS).∴∠ADO=∠AFO.∵四边形ABCD 是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵点F 在⊙O 上,∴AH 是⊙O 的切线.(3)∵CD 为⊙O 的直径,∠ADC=∠BCD=90°,∴AD,BC 为⊙O 的切线,又∵AH 是⊙O 的切线,∴CH=FH,AD=AF,设BH=x,∵CH=2,∴BC=2+x,∴BC=AD=AF=2+x,∴AH=AF+FH=4+x,在Rt△ABH 中,∵AB2+BH2=AH2,∴62+x2=(4+x)2,解得x=.∴.故答案为:.27.【解答】解:(1)四边形PQMN是△ABC的内接正方形,理由是:如图2 中,由画图可知∠QMN=∠PQM=∠MNP=∠BM′N′=90°,∴四边形PNMQ 是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴同理可得:,∴∵M′N′=P′N′,∴MN=PN,∴四边形PQMN 是正方形,即四边形PQMN 是△ABC 的内接正方形;(2)如图1,过A 作AD⊥BC 于D,交PN 于E,设正方形PNMQ 的边长为x,∵△ABC 为等边三角形,边长BC=6,∴高线AD=3,∵四边形PNMQ 是正方形,∴PN∥MQ,∴,即,解得:x=12 ﹣18,答:△ABC 内接正方形的边长是12﹣18;(3)如图3 中,结论:∠QEM=90°.理由:设MN=3k,BM=4k,则BN=5k,BQ=k,BE=2k,∴=,,∴,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.。
苏科版数学九年级上册《期中考试题》附答案

A. B. C. D.
【答案】D
【解析】
【分析】
根据三角函数的定义即可求得结果.
【详解】 .
【点睛】本题主要考查了三角函数的定义,熟练掌握三角函数的定义是解题的关键.
3.已知一斜坡的坡比为 ,坡长为26米,那么坡高为()
A. 米B. 米C. 13米D. 米
(1)证明: 为 的切线;
(2)连接 ,若 ,求 长.
23.如图,在昆明市轨道交通的修建中,规划在A、B两地修建一段地铁,点B在点A的正东方向,由于A、B之间建筑物较多,无法直接测量,现测得古树C在点A的北偏东45°方向上,在点B的北偏西60°方向上,BC=400m,请你求出这段地铁AB的长度.(结果精确到1m,参考数据: , )
24.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量 (千克)与销售单价 (元/千克)之间为一次函数关系,如图所示.
(1)当 时, ;
(2)要使销售利润达到800元,销售单价应定为每千克多少元.
25.如图,点 在数轴上对应的数为26,以原点 为圆心, 为半径作优弧 ,使点 在 右下方,且 ,在优弧 上任取一点 ,且能过 作直线 交数轴于点 ,设 在数轴上对应的数为 ,连接 .
【答案】C
【解析】
【分析】
根据坡比算出坡角,再根据坡角算出坡高即可.
【详解】解:设坡角为
∵坡度
∴ .
∴.坡高=坡长 .
故选:C.
【点睛】本题考查三角函数的应用,关键在于理解题意,利用三角函数求出坡角.
4.若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积为()
A. B. C. D.
苏科版九年级上期中考试数学试卷含答案

第一学期初三年级期中考试数 学 试 卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列运算正确的是(▲)A .632x x x =+B .()623x x = C .xy y x 532=+ D .236x x x =÷231x -x 的取值范围是(▲)A .13x ≥B .13x >C . 13x >- D .13x ≥-3.若最新x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是(▲)A.1k >-B.1k <且0k ≠C. 1k ≥-且0k ≠D. 1k >-且0k ≠ 4.如图,半径为1的⊙O 与正五边形ABCDE 相切于点A 、C ,则劣弧 ⌒AC的长度为(▲) A .35πB .45πC .34πD .23πOABC DE(第4题)5.如图,MN 是圆柱底面的直径,MP 是圆柱的高,在圆柱的侧面上,过点M ,P 有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿MP 剪开,所得的侧面展开图可以是(▲)A B C D6.有两个一元二次方程:M :20ax bx c ++=N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是 (▲)A.如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B.如果6是方程M 的一个根,那么 是方程N 的一个根;C.如果方程M 和方程N 有一个相同的根,那么这个根必是 ;D.如果方程M 有两根符号相异,那么方程N 的两根符号也相异;二、填空题(本大题共8小题,每小题2分,共16分)7.分解因式:2a 2﹣2= ▲.8.近似数8.6×105精确到 ▲ 位.9.正十边形的每个内角为 ▲ 度. 10.若反比例函数xm y 1-=的图象位于第二、四象限内,则m 的取值范围是 ▲ 11.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 ▲ .(第7题)1-=x 6112.如图,AB为⊙O的弦,△ABC的两边BC、AC分别交⊙O于D、E两点,其中∠B=60°,∠EDC=70°,则∠C=▲度.(12题图)(14题图)13.若最新x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣1,x2=2,则b+c的值是▲.14.如图,直线y=x-2与x轴、y轴分别交于M、N两点,现有半径为1的动圆圆心位于原点处,并以每秒1个单位的速度向右作平移运动.已知动圆在移动过程中与直线MN有公共点产生,当第一次出现公共点到最后一次出现公共点,这样一次过程中该动圆一共移动▲秒.三、解答题(本大题共10小题,共84分.)15.解方程:(本题满分16分).(1)x2﹣2x=0;(2)x(x+4)=﹣3(4+x)(3)2x 2-3x+1=0 (4)()()22142x x +=-16.(本题满分6分).先化简,再求值:a a a a 291312+-÷--,其中a 是方程02142=-+x x 的根.17.(本题满分6分)为了解某市今年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A :30分;B :29-27分;C :26-24分;D :23-18分;E :17-0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整;(2)如果把成绩在24分以上(含24分)定为优秀,估计该市今年5000名九年级学生中,体育成绩为优秀的学生人数有多少人?18.(本题满分6分).如图,正方形ABCD中,点E在对角线AC上,连接EB、ED.(1)求证:△BCE≌△DCE;(2)延长BE交AD于点F,若∠DEB=140º,求∠AFE的度数.19.(本题满分6分).如图,反比例函数y =(k 为常数,且k ≠0)经过点A (1,3).(1)求反比例函数的解析式;(2)在x 轴正半轴上有一点B ,若△AOB 的面积为6,求直线AB 的解析式.20.(本题满分6分)已知:如图,点E 是正方形ABCD 中AD 边上的一动点,连结BE ,作∠BEG =∠BEA 交CD 于G ,再以B 为圆心作AC ︵,连结BG . (1)求证:EG 与AC ︵相切 (2)求∠EBG 的度数;GCD E21.(本题满分6分)图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)作出△ABC最新点O的中心对称图形△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.22.(6分)如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?23.(6分)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.24.(本题满分6分).已知:最新x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.25.(8分)某水果超市以8元/千克的单价购进1000千克的苹果,为提高利润和便于销售,将苹果按大小分两种规格出售,计划大、小号苹果都为500千克,大号苹果单价定为16元/千克,小号苹果单价定为10元/千克,若大号苹果比计划每增加1千克,则大苹果单价减少0.03元,小号苹果比计划每减少1千克,则小苹果单价增加0.02元.设大号苹果比计划增加x千克.(1)大号苹果的单价为▲ 元/千克;小号苹果的单价为▲ 元/千克;(用含x的代数式表示)(2)若水果超市售完购进的1000千克苹果,请解决以下问题:①若所获利润为3385元,求x的值.②当x为何值时,所获利润最大?26.(本题满分8分)如图,优弧A B 所在☉O的半径为2,AB=23点P为优弧A B上一点(点P不与A,B重合)将图形沿BP折叠,得到点A的对称点A’(1)点O到弦AB的距离是;当BP经过点O时,∠ABA’= .(2)当BA’与☉O相切时,如图所示,求折痕BP的长;(3)若线段BA’与优弧AB只有一个公共点B,设∠ABP=α,确定α的取值范围。
苏科版九年级上册数学期中考试试卷附答案

苏科版九年级上册数学期中考试试题一、单选题1.若()22230m x x --+=是关于x 的一元二次方程,则m 的取值范围是()A .m>2B .m≠0C .m≤2D .m≠22.用配方法解一元二次方程2870x x -+=,方程可变形为()A .2(4)9x +=B .2(4)9x -=C .2(8)16x -=D .2(8)57x +=3.小红连续5天的体温数据如下(单位相C ︒):36.6,36.2,36.5,36.2,36.3.关于这组数据下列说法正确的是()A .中位数是36.5C ︒B .众数是36.2C ︒C .平均数是36.2C︒D .极差是0.3C︒4.关于x 的一元二次方程220x kx --=(k 为实数)根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定5.若关于x 的方程x 2+3x+a=0有一个根为-1,则另一个根为()A .-2B .2C .4D .-36.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是()A .50(1+x )²=182B .50+50(1+x )+50(1+x )²=182C .50(1+2x )=182D .50+50(1+x )+50(1+2x )²=1827.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若18ADB ∠=︒,则这个正多边形的边数为()A .10B .11C .12D .138.如图,在长为100m ,宽为80m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m 2,则道路的宽应为多少米?设道路的宽为x m ,则可列方程为()A .100×80-100x -80x=7644B .(100-x)(80-x)+x 2=7644C .(100-x)(80-x)=7644D .100x +80x -x 2=76449.我国古代数学著作《九章算术》中记载了弓形面积的计算方法.如图,弓形的弦长AB为,拱高(弧的中点到弦的中点之间的距离)CD 为15cm ,则这个弓形的面积是()cm 2.A .B .C .D .10.如图,在矩形ABCD 中,AB =4,AD =8,点E 、点F 分别在边AD ,BC 上,且EF ⊥AD ,点B 关于EF 的对称点为G 点,连接EG ,若EG 与以CD 为直径的⊙O 恰好相切于点M ,则AE 的长度为()A .3BC .D .6二、填空题11.某中学为了选拔一名运动员参加市运会100米短比赛,有甲、乙两名运动员备选,他们最近测试的10次百米跑平均时间都是12.83秒,他们的方差分别是21.3S=甲(秒2)2 1.7S =乙(秒2),如果要选择一名成绩优秀且稳定的人去参赛,应派______去.12.已知a 是关于x 方程x 2﹣2x ﹣8=0的一个根,则2a 2﹣4a 的值为_______.13.将半径为6cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径为______cm .14.如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.15.设12,x x 是关于x 的方程230x x k -+=的两个根,且122x x =,则k =_______.16.在△ABC 中,∠BAC=60°,∠ABC=45°,AB=2,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值是________.17.如图,P 为⊙O 外一点,PA 切⊙O 于A ,若PA =3,∠APO =45°,则⊙O 的半径是_____.三、解答题18.解下列方程:(1)2(1)40--=x (2)x 2﹣6x ﹣3=0(3)3x (x ﹣1)=2(1﹣x )(4)2x 2﹣5x+3=019.如图,在平面直角坐标系中,M 经过原点,且与x 轴交于点(4,0)A -,与y 轴交于点(0,2)B ,点C 在第二象限M 上,且60AOC ∠=︒,则OC =__.20.因国际马拉松赛事即将在某市举行,某商场预计销售一种印有该市设计的马拉松图标的T 恤,已知这种T 恤的进价为40元一件.经市场调查,当售价为60元时,每天大约可卖出300件;售价每降低1元,每天可多卖出20件.在鼓励大量销售的前提下,商场还想获得每天6080元的利润,问应将这种T 恤的销售单价定为多少元?21.如图,已知圆O 的直径AB 垂直于弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF ⊥AD ,连结AC .(1)△ACD 为等边三角形;(2)请证明:E 是OB 的中点;(3)若AB =8,求CD 的长.22.某篮球队员在篮球联赛中分别与甲队、乙队对阵各四场,下表是他的技术统计.场次对阵甲队对阵乙队得分(分)失误(次)得分(分)失误(次)第一场252273第二场300311第三场273202第四场262264(1)他在对阵甲队和乙队的各四场比赛中,平均每场得分分别是多少?(2)利用方差判断他在对阵哪个队时得分比较稳定;(3)根据上表提供的信息,判断他在对阵哪个队时总体发挥较好,简要说明理由.23.如图,四边形ABCD 内接于O ,AC 为O 的直径,D 为 AC 的中点,过点D 作DE AC ,交BC 的延长线于点E .(1)判断DE 与O 的位置关系,并说明理由;(2)若O 的半径为5,8AB ,求CE 的长.24.如果关于x 的一元二次方程ax 2+bx +c =0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x 2+x =0的两个根是x 1=0,x 2=﹣1,则方程x 2+x =0是“邻根方程”.(1)通过计算,判断方程2x 2﹣+1=0是否是“邻根方程”?(2)已知关于x 的方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求m 的值;25.如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA=∠CBD .(1)求证:CD 2=CA•CB ;(2)求证:CD 是⊙O 的切线;(3)过点B 作⊙O 的切线交CD 的延长线于点E ,若BC=12,tan ∠CDA=23,求BE 的长.26.如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 的长为半径画弧,交线段AB于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,设BC =a ,AC =b .(1)请你判断:线段AD 的长度是方程x 2+2ax ﹣b 2=0的一个根吗?说明理由;(2)若线段AD =EC ,求ab的值.参考答案1.D 【解析】【详解】解:∵()22230m x x --+=是关于x 的一元二次方程,∴20m -≠,∴2m ≠.故选:D 【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程是解题的关键.2.B 【解析】【分析】先将常数项移到等号的右边,在方程两边加上一次项系数一半平方,将方程左边配成一个完全平方式即可.【详解】解:x 2-8x+7=0,x 2-8x=-7,x 2-8x+16=-7+16,(x-4)2=9.故选:B .【点睛】本题考查了运用配方法解一元二次方程,解答时熟练掌握配方法的步骤是关键.3.B 【解析】【分析】根据众数、中位数的概念求得众数和中位数,根据平均数和方差、极差公式计算平均数和极差即可得出答案.【详解】A .将这组数据从小到大的顺序排列:36.2,36.2,36.3,36.5,36.6,则中位数为36.3C ︒,故此选项错误B .36.2出现了两次,故众数是36.2C ︒,故此选项正确;C .平均数为1(36.236.236.336.536.6)36.365++++=(C ︒),故此选项错误;D .极差为36.6-36.2=0.4(C ︒),故此选项错误,故选:B .【点睛】本题主要考查了中位数、众数、平均数和极差,熟练掌握它们的计算方法是解答的关键.4.A 【解析】【分析】根据一元二次方程根的判别式,可判断根的情况.【详解】一元二次方程20(a 0)++=≠ax bx c 中,24b ac -叫做一元二次方程()200++=≠ax bx c a 的根的判别式,通常用“∆”来表示,即2=4∆-b ac ,当0∆>时,方程有2个实数根,当=0∆时,方程有1个实数根(2个相等的实数根),当∆<0时,方程没有实数根.方程220x kx -+=根的判别式()22=-41(2)80k k ∆-⨯⨯-=+>,所以有两个不相等的实数根.【点睛】本题考查根据一元二次方程根的判别式判断根的个数.5.A 【解析】【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a 的值和另一根.【详解】设一元二次方程的另一根为x 1,∵关于x 的方程x 2+3x+a=0有一个根为-1,∴﹣1+x 1=﹣3,解得:x 1=﹣2.故选A .6.B 【解析】【分析】设平均每月的增长率为x ,则二月份生产零件501x +()万个,三月份生产零件()2501x +万个,由此可得出方程.【详解】解:设二、三月份平均每月的增长率为x ,则二月份生产零件501x +()个,三月份生产零件2501x +()个,则得:250501501182x x ++++=()().故答案为:B .【点睛】本题主要考查了求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为21a x b ±=().7.A 【解析】【分析】作正多边形的外接圆,连接AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.【详解】解:如图,作正多边形的外接圆,连接AO,BO,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数为36036°°=10.故选:A.【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.8.C【解析】【分析】可以根据图形平移的规律,把阴影部分的分别平移到最边上,把剩下的面积变成一个新的长方形【详解】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是读懂题意,把道路进行平移后找到等量关系.9.D【解析】【分析】设弧ACB 所在圆的圆心为O ,连接OC 、OA 、OB ,在构造的Rt △OAD 中,利用垂径定理和勾股定理即可求出弧ACB 的半径长,即弓形面积=扇形AOB 面积-△AOB 面积.【详解】解:设弧ACB 所在圆的圆心为O ,连接OC 、OA 、OB ,∵CD ⊥AB ,∴C ,D ,O 三点共线,在Rt △OAD 中,设OA=xcm ,则OD=x-CD=(x-15)cm ,12AD AB ==cm ),∴222OA OD AD =+,即222(15)x x =-+,解得:3x =0,∴OD=15cm ,AO=30,∴∠OAD=30°,∴∠AOD=60°,∴∠AOB=120°,∴2212030300360AOBS cmππ⨯⨯==扇形,21152AOB S =⨯⨯= ,所以所求弓形面积2(300cm π=-,故选:D .【点睛】此题考查弓形面积求解,涉及知识点有垂径定理,扇形面积公式,30°所对直角边等于斜边一半,勾股定理等,通过构造辅助线求出半径长是解此题的关键.10.D 【解析】【分析】设AE =x ,则ED =8﹣x ,易得四边形ABFE 为矩形,则BF =x ,利用对称性质得FG =BF=x,则CG=8﹣2x,再根据切线长定理得到EM=ED=8﹣x,GM=GC=8﹣2x,所以EG =16﹣3x,在Rt△EFG中利用勾股定理得到42+x2=(16﹣3x)2,然后解方程可得到AE的长.【详解】解:设AE=x,则ED=8﹣x,∵EF⊥AD,∴四边形ABFE为矩形,∴BF=x,∵点B关于EF的对称点为G点,∴FG=BF=x,∴CG=8﹣2x,∵∠ADC=∠BCD=90°,∴AD和BC为⊙O的切线,∵EG与以CD为直径的⊙O恰好相切于点M,∴EM=ED=8﹣x,GM=GC=8﹣2x,∴EG=8﹣x+8﹣2x=16﹣3x,在Rt△EFG中,42+x2=(16﹣3x)2,整理得x2﹣12x+30=0,解得x1=6,x2=,即AE的长为6.故选:D.【点睛】本题考查了切线长定理、矩形的性质与判定、勾股定理、以及轴对称的知识.经过圆外一点的切线,这一点和切点之间的线段的长叫做这点到圆的切线长,从圆外一点引圆的两条切线,它们的切线长相等.11.甲【解析】【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵21.3S =甲,2 1.7S =乙,∴S 2甲<S 2乙,∴选择一名成绩优秀且稳定的人去参赛,应派甲去.故答案为:甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.16【解析】【分析】根据一元二次方程的根的定义“使一元二次方程左右两边相等的未知数的值叫一元二次方程的解,也叫一元二次方程的根”得2280a a --=,则228a a -=,再将224a a -提出公因数2,即可得.【详解】解:∵a 是一元二次方程2280x x --=的一个根,∴2280a a --=,∴228a a -=∴22242(2)2816a a a a -=-=⨯=,故答案为:16.【点睛】本题考查了一元二次方程的根和代数式求值,解题的关键是掌握一元二次方程的根的定义.13.2【解析】【分析】根据弧长公式、圆锥的性质分析,即可得到答案.【详解】解:根据题意,得圆锥底面周长12064180ππ︒⨯⨯==︒cm ,∴这个圆锥底面圆的半径422ππ==cm,故答案为:2.【点睛】本题考查了扇形、圆锥的知识;解题的关键是熟练掌握弧长公式、圆锥的性质,从而完成求解.14.25【解析】【分析】连接OC,根据等腰三角形的性质和三角形内角和定理得到∠BOC=100°,求出∠AOC,根据等腰三角形的性质计算.【详解】解:连接OC,∵OC=OB,∴∠OCB=∠OBC=40°,∴∠BOC=180°-40°×2=100°,∴∠AOC=100°+30°=130°,∵OC=OA,∴∠OAC=∠OCA=25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.15.2【解析】【分析】先利用根与系数的关系中两根之和等于3,求出该方程的两个根,再利用两根之积得到k 的值即可.【详解】解:由根与系数的关系可得:123x x +=,12·x x k =,∵122x x =,∴233x =,∴21x =,∴12x =,∴122k =⨯=;故答案为:2.【点睛】本题考查了一元二次方程根与系数之间的关系,解决本题的关键是牢记公式,即对于一元二次方程()200ax bx c a ++=≠,其两根之和为b a-,两根之积为c a .16.2【解析】【分析】过O 点作OH ⊥EF ,垂足为H ,连接OE ,OF ,由圆周角定理可知∠EOH =12∠EOF =∠BAC=60°,即可求出EF =,所以当半径OE 最短时,EF 最短.而由垂线段的性质可知,当AD 为△ABC 的边BC 上的高时,直径AD 最短,所以只要在Rt △ADB 中,解直角三角形求出最短直径AD ,即可得到最短半径OE ,进而求出线段EF 长度的最小值.【详解】解:如图,连接OE ,OF ,过O 点作OH ⊥EF ,垂足为H ,∴12EH EF =,∵OE=OF ,OH ⊥EF ,∠BAC=60°∴1===602EOH FOH EOF BAC =︒∠∠∠∠,∴∠OEH=30°,∴12OH OE =,∴EH =,∴EF =,∴要使EF 要最小,即半径OE 最小,即直径AD 最小,∴由垂线段的性质可知,当AD 为△ABC 的边BC 上的高时,直径AD 最短,∵在Rt △ADB 中,∠ABC =45°,AB =2,∴AD =BD ,222BD AD AB +=,∴224AD =,∴AD BD ==∴22EF AD ==【点睛】本题主要考查了垂径定理,圆周角定理,垂线段最短,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够把求EF 的最小值转化成求直径AD 的最小值.17.3.【解析】【分析】连接OA ,根据切线的性质得出OA ⊥PA ,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,问题得解.【详解】解:连接OA ,∵PA 切⊙O 于点A ,∴OA ⊥PA ,∴∠OAP =90°,∵∠APO =45°,∴OA =PA =3,故答案为:3.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.18.(1)11x =-,23x =(2)13x =+23x =-(3)11x =,223x =-(4)132x =,21x =【解析】【分析】(1)原方程运用因式分解法求解即可;(2)原方程运用配方法求解即可;(3)原方程移项后运用因式分解法求解即可;(4)原方程运用公式法求解即可.(1)2(1)40--=x [(1)2][(1)2]0x x -+--=(1)(3)0x x +-=10x +=,30x -=∴11x =-,23x =(2)x 2﹣6x ﹣3=0263x x -=26912x x -+=2(3)12x -=3x -=±∴13x =+23x =-(3)3x (x ﹣1)=2(1﹣x )3(1)2(1)0x x x -+-=(1)(32)0x x -+=10x -=,320x +=∴11x =,223x =-(4)2x 2﹣5x+3=0在这里2,5,3a b c ==-=2=4252410b ac ∆-=-=>∴514x ±=∴132x =,21x =【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法、公式法解一元二次方程.19.【解析】【分析】连接AC ,CM ,AB ,过点C 作CH ⊥OA 于H ,设OC=a .利用勾股定理构建方程解决问题即可.【详解】解:连接AC ,CM ,AB ,过点C 作CH ⊥OA 于H ,设OC=a .∵∠AOB=90°,∴AB 是直径,∵A (-4,0),B (0,2),∴AB ∴=∵∠AMC=2∠AOC=120°,AC =∴=,在Rt △COH 中,1cos 60,22OH OC a CH a ︒=⋅===,142AH a ∴=-,在Rt △ACH 中,AC 2=AH 2+CH 2,∴22115(4)()22a a =-+,∴或OC >OB ,所以,∴OC=2+,故答案为:.【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.20.应将这种T 恤的销售单价定为56元/件.【解析】【分析】设应将这种T 恤的销售单价定为x 元/件,则每天大约可卖出[300+20(60-x )]件,根据总利润=每件的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:设应将这种T 恤的销售单价定为x 元/件,则每天大约可卖出[300+20(60-x )]件,根据题意得:(x-40)[300+20(60-x )]=6080,整理得:x 2-115x+3304=0,解得:x 1=56,x 2=59.∵鼓励大量销售,∴x=56.答:应将这种T 恤的销售单价定为56元/件.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)见解析(2)见解析(3)【解析】【分析】(1)根据垂直平分线的性质证明AC =AD =CD 即可(2)要证明:E 是OB 的中点,只要求证OE =12OB =12OC ,即证明∠OCE =30°即可;(3)在直角△OCE 中,根据勾股定理就可以解得CE 的长,进而求出CD 的长.(1)证明:连接AC ,如图∵直径AB 垂直于弦CD 于点E ,∴ AC AD,AC =AD ,∵过圆心O 的线CF ⊥AD ,∴AF =DF ,即CF 是AD 的中垂线,∴AC =CD ,∴AC=AD=CD.即:△ACD是等边三角形,(2)△ACD是等边三角形,CF是AD的中垂线,∴FA FD=ACF DCF∴∠=∠=30°,在Rt△COE中,OE=12 OC,∴OE=12 OB,∴点E为OB的中点;(3)解:在Rt△OCE中,AB=8∴OC=12AB=4,又∵BE=OE,∴OE=2,∴CE==∴CD=2CE=【点睛】本题考查了垂径定理、勾股定理、中垂线性质、30°所对的直角边是斜边的一半,等边三角形的判定和性质.解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.22.(1)他对阵甲队的平均每场得分为27分,对阵乙队的平均每场得分为26分;(2)他在对阵甲队时得分比较稳定;(3)他在对阵甲队时总体发挥较好,理由见解析.【解析】【分析】(1)根据平均数的计算公式分别进行计算即可;(2)根据方差公式进行计算,再根据方差的意义即可得出答案;(3)根据失误次数和方差的意义即可得出答案.【详解】(1)解:x 甲=253027264+++=27,x 乙=273120264+++=26.答:他对阵甲队的平均每场得分为27分,对阵乙队的平均每场得分为26分.(2)解:2S 甲=2222(2527)(3027)(2727)(2627)4-+-+-+-=3.5,2S 乙=2222(2726)(3126)(2026)(2626)4-+-+-+-=15.5.由可知22S S <甲乙,他在对阵甲队时得分比较稳定.(3)解:他在对阵甲队时总体发挥较好.理由:由x x >乙甲可知他对阵甲队时平均得分较高;由22S S <甲乙可知,他在对阵甲队时得分比较稳定;计算得他对阵甲队平均失误为1.75次,对阵乙队平均失误为2.5次,由1.75次<2.5次可知他在对阵甲队时失误较少.【点睛】考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.23.(1)详见解析;(2)254CE =.【解析】【分析】(1)连接OC ,由AC 为O 的直径,得到90ADC ∠= ,根据 AD CD =,得到AD CD =,根据平行线的性质得到45CDE DCA ∠=∠=o ,求得90ODE ∠= ,于是得到结论;(2)根据勾股定理得到AD CD ==90ABC ∠= ,求得6BC =,根据相似三角形的性质即可得到结论.【详解】(1)DE 与O 相切,理由如下:如图,连接OD ,∵AC 为O 的直径,∴90ADC ∠= ,∵D 为 AC 的中点,∴ AD CD =,∴AD CD =,∴45ACD ∠= ,∵O 是AC 的中点,∴45ODC ∠=o ,∵DE AC ,∴45CDE DCA ∠=∠=o ,∴90ODE ∠= ,∴DE 与O 相切;(2)∵O 的半径为5,∴10AC =,∴52AD CD ==∵AC 为O 的直径,∴90ABC ∠= ,∵8AB =,∴6BC =,∵BAD DCE ∠=∠,45ABD CDE ∠=∠=o ,∴ABD CDE ∆∆:,∴ABADCD CE =,252CE =,∴254CE =.【点睛】本题考查直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.24.(1)2x 2﹣+1=0是“邻根方程”;(2)m =0或−2【解析】【分析】(1)根据解一元二次方程的方法解出已知方程的解,再比较两根的差是否为1,从而确定方程是否为“邻根方程”;(2)先解方程求得其根,再根据新定义列出m 的方程,注意有两种情况【详解】解:(1)2x 2﹣+1=0,∵21a b c ==-=,,∴(22=442=4b ac -=--⨯ ,∴x =,∵1=+122,∴2x 2﹣+1=0是“邻根方程”;(2)解方程得:(x−m )(x +1)=0,∴x =m 或x =−1,∵方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,∴m =−1+1或m =−1−1,∴m =0或−2.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法以及正确理解“邻根方程”的定义,本题属于中等题型.25.(1)见解析;(2)见解析;(3)BE 的长为5.【解析】【分析】(1)通过相似三角形(△ADC∽△DBC)的对应边成比例来证得结论.(2)如图,连接OD.欲证明CD是⊙O的切线,只需证明CD⊥OA即可.(3)通过相似三角形△EBC∽△ODC的对应边成比例列出关于BE的方程,通过解方程来求线段BE的长度即可.【详解】解:(1)证明:∵∠CDA=∠CBD,∠C=∠C,∴△ADC∽△DBC,∴AC DCDC BC,即CD2=CA•CB.(2)证明:如图,连接OD,∵AB是⊙O的直径,∴∠ADB=90°.∴∠1+∠3=90°.∵OA=OD,∴∠2=∠3.∴∠1+∠2=90°.又∵∠CDA=∠CBD,即∠4=∠1,∴∠4+∠2=90°,即∠CDO=90°.∴OD⊥OA.又∵OA是⊙O的半径,∴CD是⊙O的切线.(3)如图,连接OE,∵EB、CD均为⊙O的切线,∴ED=EB,OE⊥DB.∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°.∴∠ABD=∠OEB .∴∠CDA=∠OEB .∵tan ∠CDA=23,∴OB 2tan OEB BE 3∠==.∵Rt △CDO ∽Rt △CBE ,∴CD OD OB 2CB BE BE 3===.∵BC=12,∴CD=8.在Rt △CBE 中,设BE=x ,∴(x+8)2=x 2+122,解得x=5.∴BE 的长为5.考点:切线的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理.26.(1)线段AD 的长度是方程x 2+2ax ﹣b 2=0的一个根,理由详见解析;(2)34.【解析】【分析】(1)方程变形即可得到22222x ax a a b ++=+,根据勾股定理得到22()x a AB +=,由BD BC a ==,即可得到结论;(2)由题意得,12AD b =,根据勾股定理列出2221()2a b a b +=+,整理得到34a b =,即可求得34a b =.【详解】解:(1)∵在△ABC 中,∠ACB =90°,∴AB 2=AC 2+BC 2,∵BC =a ,AC =b .∴AB 2=a 2+b 2,方程x 2+2ax ﹣b 2=0变形为:x 2+2ax+a 2=a 2+b 2,∴(x+a )2=AB 2,∵BD =BC =a ,∴(x+BD )2=AB 2,∵(AD+BD )2=AB 2,∴线段AD 的长度是方程x 2+2ax ﹣b 2=0的一个根;(2)∵AD =EC ,∴AC =2AD =2AE =b ,12AD b ∴=,12AB a b ∴=+,222AB AC BC =+ ,2221()2a b a b ∴+=+整理得34a b =,∴34ab =.【点睛】本题考查了解一元二次方程的应用,根据题意列出一元二次方程并利用配方法得到22()x BD AB +=是解题的关键.。
【苏科版】九年级数学上期中试卷含答案

一、选择题1.电脑福利彩票中有两种方式“22选5”和“29选7”,若选中号码全部正确则获一等奖,你认为获一等奖机会大的是( )A .“22选5”B .“29选7”C .一样大D .不能确定 2.如图,4×2的正方形的网格中,在A ,B ,C ,D 四个点中任选三个点,能够组成等腰三角形的概率为( )A .1B .12C .13D .143.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是( )A .29B .13C .59D .234.小冬和小松正在玩“掷骰子,走方格”的游戏.游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停.(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束.下图是该游戏的部分方格: 大本营 1对自己说“加油!” 2 后退一格 3 前进三格 4 原地不动 5 对你的小伙伴说“你好!” 6 背一首古诗例如:小冬现在的位置在大本营,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”.小冬此次“掷骰子,走方格”结束,最终停在了方格1.如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是( ) A .16 B .13 C .12 D .235.一元二次方程x 2+4x=3配方后化为( )A .(x+2)2=3B .(x+2)2=7C .(x-2)2=7D .(x+2)2=-1 6.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如果方程220x x --=的两个根为α,β,那么22αβαβ+-的值为( ) A .7 B .6 C .2- D .08.下列说法不正确的是( )A .打开电视剧,电视里播放《小猪佩奇》是偶然事件B .了解一批灯泡的使用寿命,适合抽样调查C .一元二次方程2210x x -+=只有一个根D .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定 9.在一个四边形ABCD 中依次连接各边的中点得到的四边形是矩形,则对角线AC 与BD 需要满足的条件是( )A .垂直B .相等C .垂直且相等D .不再需要条件 10.正方形具有而矩形没有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对角线相等D .对边相等 11.如图,在四边形ABCD 中,BD 平分ABC ∠,//AD BC ,90C ∠=︒,5AB =,4CD =,则四边形ABCD 的周长是( ).A .18B .20C .22D .2412.如图,矩形ABCD 的两条对角线的一个交角为60︒,两条对角线的长度之和为24cm ,则这个矩形的一条短边的长为( )A .6cmB .12cmC .24cmD .48cm二、填空题13.已知数据:125π4,0,其中无理数出现的频率为_____. 14.从2,3,4,5中任意选两个数,记作a 和b ,那么点(),a b 在函数12y x=图象上的概率是____________.15.设m 、n 分别为一元二次方程2370x x +-=的两个实数根,则2mn m n --=______.16.若关于x 的一元二次方程()22367120m x x m m -++-+=有一个根是0,那么m 的值为______.17.已知方程2560x kx ++=的一个根是2,则它的另一个根是________.18.如图,两个长宽分别为7cm 、3cm 的矩形如图叠放在一起,则图中阴影部分的面积是________.19.如图,在矩形ABCD 中,4AB =,6BC =,E 是边AD 上的一个动点,将ABE △沿BE 对折成BFE △,则线段DF 长度的最小值为_______.20.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上,BE 与CF 交于点G .若BC =4,DE =AF =1,则GF 的长为_____.三、解答题21.在一个不透明的布袋里装有3个大小、质地均相同的乒乓球,球上分别标有数字为1、2、3(1)随机从布袋中一次摸出两个乒乓球,写出两个乒乓球上的数字都是奇数的概率是_________;(2)随机从布袋中摸出一个乒乓球,记下数字后放回布袋里,再随机从布袋中摸出一个乒乓球,请用列表或画树状图的方法求出两个乒乓球上的数字之和不小于4的概率. 22.解方程:220x x +=.23.宋代数学家杨辉所著《杨辉算法》中有一题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”译文为:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?24.一个不透明的口袋里装有分别标有汉字“武”、“汉”、“加”、“油”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一球,球上的汉字刚好是“武”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图的方法,求出甲取出的两个球上的汉字恰能组成“武汉”或“加油”的概率P1.25.如图,在四边形ABCD中,E、F分别是AD,BC的中点,G,H分别是BD、AC的中点,依次连接E,G,F,H.(1)求证:四边形EGFH是平行四边形;(2)当AB=CD时,EF与GH有怎样的位置关系?请说明理由;(3)若AB=CD,∠ABD=20°,∠BDC=70°,则∠GEF= °.BE=,连接26.如图,点E为边长为3的正方形ABCD的边CB延长线上一点,1△绕着正方形的顶点A旋转得到ADF.AE,将ABE(1)写出上述旋转的旋转方向和旋转角度数:(2)连接EF,求AEF的面积:(3)如图中,ADG可以看作由BAE△先绕着正方形的顶点B顺时针旋转90︒,再沿着BA方向平移3个单位的二次基本运动所成,那么ADG是否还可以看作由BAE△只通过一次旋转运动而成呢?如果可以,请写出(同时在图中画出)旋转中心、旋转方向和旋转角度数,如果不能,则说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】从22个号码中选5个号码能组成数的个数有22×21×20×19×18=3160080,选出的这5个号码能组成数的个数为5×4×3×2×1=120,这5个号码全部选中的概率为120÷3160080=3.8×10−5;从29个号码中选7个号码能组成数的个数为29×28×27×26×25×24×23= 7866331200,这7个号码能组成数的个数为7×6×5×4×3×2×1=5040,这7个号码全部选中的概率为5040÷7866331200=6×10−8,因为3.8×10−5>6×10−8,所以,获一等奖机会大的是22选5.故选A.2.B解析:B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:△ABC、△ABD、△ACD、△BCD,共4个三角形;其中是等腰三角形的有:△ACD、△BCD,共2个;∴能够组成等腰三角形的概率为:2142P==;故选:B.【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.3.B解析:B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果,∴两张牌的牌面数字之和等于4的概率为39=13,【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.4.B解析:B【分析】根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答即可.【详解】掷一次骰子最终停在方格6的情况有①直接掷6;②掷3后前进三格到6;所以掷一次骰子最终停在方格6的概率是21 63 ,故选B.【点睛】此题考查几何概率,关键是根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答.5.B解析:B【分析】在方程的两边同时加上一次项系数一半的平方,化成完全平方的形式即可得出答案.【详解】解:x2+4x=3,x2+4x+4=7,(x+2)2=7,故选:B.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键;配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.6.A解析:A【分析】根据新定义运算法则以及利用△>0可判断方程根的情况.【详解】解:由题意可知:1☆x=x2-x-1=0,∴△=1-4×1×(-1)=5>0,∴有两个不相等的实数根故选:A.本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型. 7.A解析:A【分析】将α代入方程220x x --=,即可得22αα=+,即可推出22()22αβαβαβαβ+-=+-+,再由韦达定理即可求出结果.【详解】将α代入方程220x x --=得:220αα--=,即22αα=+∴2222()22αβαβαβαβαβαβ+-=++-=+-+.∵α、β是方程的两个根, ∴111αβ-+=-=,221αβ-==-. ∴()2212(2)27αβαβ+--=-⨯-+=. 故选:A .【点睛】本题考查一元二次方程根与系数的关系以及代数式求值.熟知韦达定理公式是解答本题的关键.8.C解析:C【分析】根据必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差依次判断即可.【详解】解:A. 打开电视剧,电视里播放《小猪佩奇》是偶然事件,正确,不符合题意;B. 了解一批灯泡的使用寿命,适合抽样调查,正确,不符合题意;C. 一元二次方程2210x x -+=中,24440b ac ∆=-=-=,有两个相等的实数根,故原说法错误,符合题意;D. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定,正确,不符合题意; 故选:C .【点睛】本题考查必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差,注意当0∆=时,一元二次方程有两个相等的实数根.9.A解析:A【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC 平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【详解】解:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:A.【点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.10.B解析:B【分析】首先要知道正方形和矩形的性质,正方形是四边相等的矩形,正方形对角线平分对角,且对角线互相垂直.【详解】解:A 、正方形和矩形对角线都互相平分,故A 不符合题意,B 、正方形对角线平分对角,而矩形对角线不平分对角,故B 符合题意,C 、正方形和矩形对角线都相等,故C 不符合题意,D 、正方形和矩形的对边都相等,故D 不符合题意.故选:B .【点睛】本题主要考查正方形对角线相互垂直平分相等的性质和长方形对角线平分相等性质的比较.11.C解析:C【分析】过点A 做AE BC ⊥交BC 于点E ,根据角平分线和平行线性质,推导得5AD AB ==;通过判定四边形AECD 为矩形,得5EC AD ==,4AE CD ==;再根据勾股定理计算,得BE ,从而得到四边形ABCD 的周长.【详解】如图,过点A 做AE BC ⊥交BC 于点E∵BD 平分ABC ∠∴ABD CBD ∠=∠∵//AD BC∴ADB CBD ∠=∠∴ABD ADB ∠=∠∴5AD AB ==∵AE BC ⊥,90C ∠=︒∴//AE DC∴四边形AECD 为矩形∴5EC AD ==,4AE CD ==又∵AE BC ⊥,即90AEB =︒∠ ∴223BE AB AE =-=∴四边形ABCD 的周长22AB BE EC CD AD =++++=故选:C .【点睛】本题考查了平行线、角平分线、等腰三角形、矩形、勾股定理的知识;解题的关键是熟练掌握平行线、角平分线、矩形、勾股定理、等腰三角形的性质,从而完成求解.12.A解析:A【分析】根据矩形的性质求出OA=OB,AC=BD,求出AC的长,求出OA和OB的长,推出等边三角形OAB,求出AB=OA,代入求出即可.【详解】解:∵四边形ABCD是矩形,∴OA=OC=12AC,OD=OB=12BD,AC=BD,∴OA=OB,∵AC+BD=24,∴AC=BD=12cm,∴OA=OB=6cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=6cm,故选:A.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出等边三角形OAB和求出OA的长.二、填空题13.【分析】把每个数据进行化简对最简结果进行有理数无理数的甄别后根据频率意义计算即可【详解】∵=2∴0是有理数π是无理数∴无理数出现的频率为故答案为:【点睛】本题考查了频率的意义熟练掌握频率的数学意义是解析:25.【分析】把每个数据进行化简,对最简结果进行有理数,无理数的甄别,后根据频率意义计算即可.【详解】∵=2,∴12,0π是无理数,∴无理数出现的频率为25.故答案为:25.【点睛】本题考查了频率的意义,熟练掌握频率的数学意义是解题的关键.14.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与点(ab )在函数图象上的情况再利用概率公式即可求得答案【详解】解:画树状图得:∵共有12种等可能的结果点(ab )在函数图象上的有(34 解析:16【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(a ,b )在函数12y x=图象上的情况,再利用概率公式即可求得答案. 【详解】解:画树状图得:∵共有12种等可能的结果,点(a ,b )在函数12y x =图象上的有(3,4),(4,3); ∴点(a ,b )在函数12y x =图象上的概率是:21126=. 故答案为:16. 【点睛】 此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15.-11【分析】根据一元二次方程根与系数的关系即可得出m+n=-3mn=-7将其代入中即可求出结论【详解】解:∵mn 分别为一元二次方程的两个实数根∴m+n=-3mn=-7则故答案为:-11【点睛】本题解析:-11【分析】根据一元二次方程根与系数的关系即可得出m+n=-3,mn=-7,将其代入22()mn m n mn m n --=-+中即可求出结论.【详解】解:∵m ,n 分别为一元二次方程2370x x +-=的两个实数根,∴m+n=-3,mn=-7,则22()2(7)(3)14311mn m n mn m n =--=-+⨯---=-+=-.故答案为:-11.【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出m+n=-2,mn=-1是解题的关键.16.4【分析】先把x=0代入(m-3)x2+6x+m2-7m+12=0得m2-7m+12=0再解关于m的方程然后根据一元二次方程的定义确定满足条件的m的值【详解】解:把x=0代入(m-3)x2+6x+m解析:4【分析】先把x=0代入(m-3)x2+6x+m2-7m+12=0得m2-7m+12=0,再解关于m的方程,然后根据一元二次方程的定义确定满足条件的m的值.【详解】解:把x=0代入(m-3)x2+6x+m2-7m+12=0得m2-7m+12=0,解得m1=4,m2=3,∵m-3≠0,即:m≠3∴m的值为4.故答案为:4.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了一元二次方程的定义.17.【分析】设方程的另一个根为根据根与系数的关系得到然后解一次方程即可【详解】解:设另一个根为∴∴∴另一个根为故答案为:【点睛】本题考查了根与系数的关系:若是一元二次方程ax2+bx+c=0(a≠0)的解析:3 5【分析】设方程的另一个根为1x,根据根与系数的关系得到1625x=,然后解一次方程即可.【详解】解:设另一个根为1x,∴1625x=,∴13 5x=,∴另一个根为35.故答案为:35.【点睛】本题考查了根与系数的关系:若12x x ,是一元二次方程ax 2+bx +c =0(a ≠0)的两根时1212b a c x x x x a-+=,=. 18.【分析】由两个长宽分别为的矩形如图叠放在一起可证得阴影部分是菱形然后设则利用勾股定理可得方程:则可求得的长继而求得答案【详解】解:如图:根据题意得:四边形是平行四边形两个矩形等高即四边形是菱形设则在 解析:2877cm . 【分析】由两个长宽分别为7cm 、3cm 的矩形如图叠放在一起,可证得阴影部分是菱形,然后设BF xcm =,则 DFxcm ,7()AF AD DF x cm ,利用勾股定理可得方程: 2223(7)x x ,则可求得BE 的长,继而求得答案.【详解】解:如图:根据题意得://AD BC ,//BF DE ,∴四边形ABCD 是平行四边形,两个矩形等高,即DH AB =,BEDF S BE AB BF DH ,BE BF ∴=, ∴四边形BEDF 是菱形,BF DF ∴=,设BF xcm =,则DFxcm ,7()AF AD DF x cm , 在Rt ABF ∆中,222AB AF BF +=, 2223(7)x x , 解得:297x, 297BE cm , 2877BEDF S BE ABcm 菱形. 故答案为:2877cm .【点睛】本题考查了菱形的判定与性质以及勾股定理等知识.掌握方程思想的应用是解此题的关键.19.【分析】连接DFBD由DF>BD-BF知点F落在BD上时DF取得最小值且最小值为BD-BF的长再根据矩形和折叠的性质分别求得BDBF的长即可【详解】如图连接DFBD由图可知DF>BD-BF当点F落在解析:2134-【分析】连接DF、BD,由DF>BD-BF知点F落在BD上时,DF取得最小值,且最小值为BD-BF的长,再根据矩形和折叠的性质分别求得BD、BF的长即可.【详解】如图,连接DF、BD,由图可知,DF>BD-BF,当点F落在BD上时,DF取得最小值,且最小值为BD-BF的长,∵四边形ABCD是矩形,∴AB=CD=4、BC=6,∴2222=6+4=213BC CD+由折叠性质知AB=BF=4,∴线段DF长度的最小值为BD-BF134=,故答案为:134..【点睛】本题主要考查矩形和翻折变换的性质,解题的关键是根据三角形两边之差小于第三边得出DF长度取得最小值时点F的位置.20.6【分析】先证明△CDF≌△BCE得到∠BGC=90°利用面积法求出求出CF=5即可求出GF【详解】解:∵四边形ABCD为正方形BC=4∴∠CDF=∠BCE=90°AD=DC=BC=4又∵DE=AF解析:6【分析】先证明△CDF≌△BCE,得到∠BGC=90°,利用面积法求出125CG=,求出CF=5,即可求出GF.【详解】解:∵四边形ABCD为正方形,BC=4,∴∠CDF =∠BCE =90°,AD =DC =BC =4,又∵DE =AF =1,∴CE =DF =3,∴在△CDF 和△BCE 中,CD BC CDF BCE DF CE =⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△BCE (SAS ),∴∠DCF =∠CBE ,∵∠DCF +∠BCF =90°,∴∠CBE +∠BCF =90°,∴∠BGC =90°,∵在Rt △BCE 中,BC =4,CE =3,∴5BE ==,∴BE •CG =BC •CE , ∴431255BC CE CG BE ⨯===, ∵△CDF ≌△BCE (SAS ),∴CF =BE =5,∴GF =CF ﹣CG =5﹣125=2.6. 故答案为:2.6.【点睛】本题考查了正方形的性质,勾股定理等知识,证明△CDF ≌△BCE 是解题关键. 三、解答题21.(1)13;(2)23 【分析】(1)用列举法展示所有可能的结果数,然后根据概率公式求解;(2)画树状图展示所有9种等可能的结果数,再找出两个兵乒球上的数字之和不小于4的结果数,然后根据概率公式求解.【详解】 (1)可能出现的结果有:()12,,()13,,()23,,共3种, 两个数字都是奇数的只有()13,一种,∴两个乒乓球上的数字都是奇数的概率是13,故答案为:13; (1)画树状图如下:一共有9种可能的结果,其中大于或等于4的有6种,∴两个乒乓球上的数字之和不小于4的概率为:6293=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 22.120,2x x ==-【分析】方法一:根据提取公因式求解即可;方法二:根据配方法求解即可;【详解】解:方法一:原方程可化为(2)0x x +=.120,2x x ∴==-.方法二:配方,得22101x x ++=+,即2(1)1x +=.直接开平方,得11x +=±, 120,2x x ∴==-.【点睛】本题主要考查了一元二次方程的求解,准确计算是解题的关键.23.长比宽多12步.【分析】选择合适的未知数,利用矩形这个桥梁构造一元二次方程求解即可.【详解】解:设矩形的长为x 步,则宽为60x -()步, 根据题意,得(60)864x x -=.解得 136x =,224x =(舍去)∴当36x=时,6024x-=,362412-=.答:长比宽多12步.【点睛】本题考查了一元二次方程与几何图形的关系,熟练运用一元二次方程解决几何图形的面积是解题的关键.24.(1)14;(2)图表见解析,概率为13【分析】(1)直接利用概率公式求解即可;(2)画树状图(用A、B、C、D分别表示标有汉字“武”、“汉”、“加”、“油”的四个小球)展示所有12种等可能的结果数,再找出取出的两个球上的汉字恰能组成“武汉”或“加油”的结果数,然后根据概率公式求解.【详解】解:(1)若从中任取一球,球上的汉字刚好是“武”的概率P=14;(2)画树状图为:(用A、B、C、D分别表示标有汉字“武”、“汉”、“加”、“油”的四个小球),共有12种等可能的结果数,其中取出的两个球上的汉字恰能组成“武汉”或“加油”的结果数为4,所以甲取出的两个球上的汉字恰能组成“武汉”或“加油”的概率P=41 123=.【点睛】本题考查了概率的计算问题,掌握概率的计算公式及利用树状图画出所有等可能的结果是解题的关键.25.(1)见解析;(2)GH⊥EF,见解析;(3)25【分析】(1)首先运用三角形中位线定理可得到EG∥AB,EG=12AB,HF∥AB,EG=12AB,即可得到四边形EGFH是平行四边形;(2)再运用三角形中位线定理证明邻边相等,从而证明平行四边形EGFH是菱形,即可证明GH⊥EF;(3)由EH∥CD,得到∠BDC=∠BPH=70°,由EG∥AB,得到∠EGD=∠ABD=20°,再利用三角形的外角性质和菱形的性质即可求解.【详解】证明:(1)∵E 、G 分别是AD 、BD 的中点,∴EG ∥AB ,且12GE AB =, 同理可证:HF ∥AB ,且12HF AB =, ∴EG ∥HF ,且EG=HF ,∴四边形EGFH 是平行四边形;(2)GH ⊥EF ,理由如下:∵G 、F 分别是BD 、BC 的中点 ,∴12GF CD =, 由(1)知12GE AB =, 又∵AB=CD ,∴GE=GF ,又∵四边形EGFH 是平行四边形,∴四边形EGFH 是菱形,∴GH ⊥EF ;(3)∵E 、H 分别是AD 、AC 的中点 ,∴EH ∥CD ,∴∠BDC=∠BPH=70°,∵EG ∥AB ,∴∠EGD=∠ABD=20°,∴∠GEP=∠BPH-∠EGD=50°,∵四边形EGFH 是菱形,∴∠GEF=∠HEF=12∠GEP =25°. 故答案为:25.【点睛】本题考查了中点四边形,菱形的判定和性质,三角形中位线的性质,熟练掌握三角形中位线的判定和性质是解题的关键.26.(1)旋转方向:逆时针旋转,旋转角:90°;(2)5;(3)可以,图见解析,BAE△绕点O顺时针旋转90°得到ADG【分析】(1)根据图形和正方形的性质即可得出结论;(2)根据正方形的性质和旋转的性质可得AD=DC=BC=3,DF=BE=1,从而求出EC和CF,最后利用AEFS=S梯形AECD-S△ADF-S△ECF即可求出结论;(3)根据旋转中心、旋转方向和旋转角的定义即可得出结论.【详解】解:(1)由图易知:由ABE△到ADF的旋转方向为逆时针旋转,∵四边形ABCD为正方形∴∠BAD=90°即旋转角为90°综上:旋转方向:逆时针旋转,旋转角:90°;(2)∵正方形ABCD的边长为3,1BE=∴AD=DC=BC=3,DF=BE=1∴EC=BE+BC=4,CF=DC-DF=2∴AEFS=S梯形AECD-S△ADF-S△ECF=12DC(AD+EC)-12AD·DF-12EC·CF=12×3×(3+4)-12×3×1-12×4×2=10.5 1.54--=5;(3)可以,∵在BAE△和ADG中,点A的对应点是点D,点B的对应点是点A,点E的对称点是点G∴作线段AD的对称轴和线段BA的对称轴交于点O,根据旋转中心的定义,由BAE△到ADG,点O即为旋转中心,由图易知旋转方向为顺时针旋转连接OA、OB,则∠BOA=90°即旋转角为90°综上:BAE△绕点O顺时针旋转90°得到ADG.【点睛】此题考查的是图形的旋转,掌握旋转的性质、旋转中心、旋转方向和旋转角的定义是解题关键.。
苏科版九年级数学上学期期中检测卷及答案

苏科版九年级数学上学期期中检测卷及答案时间:90分钟满分:130分一、选择题(每小题3分,共30分) 1.抛物线y=3(x-2)2+5的顶点坐标是( ) A.(-2,5) B.(-2,-5) C.(2,5) D.(2,-5) 2.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC 和△AB 1C 1相似的是( )A.AB AB 1=AC AC 1B.AB AB 1=BC B 1C 1C.∠B=∠C 1D.∠C=∠C 13.已知点C 是线段AB 的黄金分割点,且AC>BC ,AB=2,则AC 为( ) A.√5-1 B.3-√5 C.√5-12D.0.6184.一次函数y=ax+b (a ≠0)与二次函数y=ax 2+2x+b (a ≠0)在同一直角坐标系中的图像可能是( )A B C D5.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB=9,BD=3,则CF 等于( )A.1B.2C.3D.46.二次函数y 1=ax 2+bx+c 与一次函数y 2=mx+n 的图像如图所示,则满足ax 2+bx+c>mx+n 的x 的取值范围是( )A.-3<x<0B.x<-3或x>0C.x<-3D.0<x<37.如图,A ,B 两地之间有一个池塘,要测量A ,B 两地之间的距离,选择直线AB 外的一点O ,连接AO 并延长到点C ,使得OC=12AO ,连接BO 并延长到点D ,使得OD=12BO.测得C ,D 间的距离为30米,则A ,B 两地之间的距离为 ( )A.30米B.45米C.60米D.90米8.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F.已知△AEF 的面积为1,则平行四边形ABCD 的面积是 ( )A.24B.18C.12D.99.四位同学在研究函数y=x 2+bx+c (b ,c 是常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程x 2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4.已知这四位同学中只有一位同学发现的结论是错误的,则该同学是 ( ) A.甲 B.乙 C.丙 D.丁10.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=12,点D 在边BC 上,点E 在线段AD 上,EF ⊥AC 于点F ,EG ⊥EF ,交AB 于点G ,若EF=EG ,则CD 的长为 ( )A.3.6B.4C.4.8D.5 二、填空题(每小题3分,共24分)11.如果函数y=(m-2)x 2+2x+3(m 为常数)是二次函数,那么m 的取值范围是 .12.若a b =34,且a+b=14,则2a-b 的值是 .13.将二次函数y=-2x 2+1的图像绕点(0,2)顺时针旋转180°,得到的图像所对应的函数表达式为 .14.如图,正方形OEFG 和正方形ABCD 是位似图形.若点A 的坐标为(2,2),位似中心的坐标是(-4,0),则点F 的坐标为 .15.某天,小青想利用影子测量校园内一根旗杆的高度.如图,在同一时刻,小青的影长为2米,旗杆的影长为20米.若小青的身高为1.60米,则旗杆的高度为 米.16.如图,在△ABC 中,AB=AC ,BC=6,E 为AC 边上的点,AE=2EC ,点D 在BC 边上且满足BD=DE ,设BD=y ,S △ABC =x ,则y 与x 的函数关系式为 .17.如图,AB 为☉O 的直径,C 为☉O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB=6,AD=5,则AE 的长为 .第17题图第18题图18.二次函数y=ax 2+bx+c (a ≠0)的部分图像如图所示,图像过点(-1,0),对称轴为直线x=2.给出下列结论:①4a+b=0;②9a+c>3b ;③8a+7b+2c>0;④若点A (-3,y 1),B (-12,y 2),C (72,y 3)在该函数图像上,则y 1<y 3<y 2;⑤若方程a (x+1)(x-5)=-3的两根为x 1和x 2,且x 1<x 2,则x 1<-1<5<x 2.其中正确的结论是 .(填正确结论的序号) 三、解答题(共76分)19.(6分)如图,在▱ABCD 中,E 是BC 延长线上的一点,AE 与CD 交于点F.求证:△ADF ∽△EBA.20.(7分)如图,一个人拿着一把长为12 cm 的刻度尺站在离电线杆20 m 的地方.他把手臂向前伸直,尺子竖直,尺子两端恰好遮住电线杆.已知臂长约为40 cm,求电线杆的高度.21.(8分)已知抛物线y=-12x 2+bx+c 经过点(1,0),(0,32).(1)求该抛物线的函数表达式;(2)将抛物线y=-12x 2+bx+c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.22.(8分)如图,在边长均为1的小正方形网格中,△ABC 与△A'B'C'是以点O 为位似中心的位似图形,它们的顶点都在小正方形的格点上.(1)画出位似中心点O ;(2)求出△ABC 与△A'B'C'的相似比;(3)以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的相似比等于1.5∶1; (4)求出△A 1B 1C 1与△ABC 的面积比.23.(8分)在平面直角坐标系xOy 中,二次函数y=mx 2-(2m+1)x+m-4的图像与x 轴有两个公共点. (1)求m 的取值范围;(2)若m 取满足条件的最小的整数,写出这个二次函数的表达式;(3)在(2)的条件下,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,在如图所示的坐标系中,画出函数图像,并结合函数图像直接写出实数a 的取值范围.24.(8分)有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示.已知OA=8米,距离O点2米处的BC高为94米.(1)求该抛物线的表达式;(2)若借助横梁DE(DE∥OA)建一个门,要求门的高度为1.5米,求横梁DE的长度是多少米.25.(9分)如图,已知G,H分别是▱ABCD对边AD,BC上的点,直线GH分别交BA和DC的延长线于点E,F.(1)当S△CFHS四边形CDGH =18时,求CHDG的值;(2)连接BD交EF于点M,求证:MG·ME=MF·MH.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3 600元,试确定该漆器笔筒销售单价的范围.27.(12分)如图,已知抛物线经过A (-2,0),B (-3,3)及原点O ,顶点为C. (1)求抛物线的函数表达式;(2)设点D 在抛物线上,点E 在抛物线的对称轴上,且以AO 为边的四边形AODE 是平行四边形,求点D 的坐标; (3)P 是抛物线上第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以P ,M ,A 为顶点的三角形与△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 C B A D B A C AB B 11.m ≠2 12.4 13.y=2x 2+3 14.(43,43) 15.16 16.y=1810x 2+5217.145 18.①③⑤1.C2.B 【解析】 由∠1=∠2,可得∠B 1AC 1=∠BAC.添加AB AB 1=ACAC 1,可利用两边及其夹角法判定两三角形相似,故选项A 不符合题意;添加AB AB 1=BCB1C 1,不能判定两三角形相似,故选项B 符合题意;添加∠B=∠C 1,可利用两角法判定两三角形相似,故选项C 不符合题意;添加∠C=∠C 1,可利用两角法判定两三角形相似,故选项D 不符合题意.故选B . 3.A 【解析】 ∵点C 是线段AB 的黄金分割点,且AC>BC ,∴AC=√5-12AB ,而AB=2,∴AC=√5-1.故选A .4.D 【解析】 A 项,由抛物线可知,a>0,b>0,由直线可知,a<0,b>0,故A 选项错误;B 项,由抛物线可知,a<0,b>0,由直线可知,a<0,b<0,故B 选项错误;C 项,由抛物线可知,a<0,b>0,由直线可知,a>0,b<0,故C 选项错误;D 项,由抛物线可知,a>0,b>0,由直线可知,a>0,b>0,且交y 轴于同一点,故D 选项正确.故选D . 5.B 【解析】 ∵△ABC 和△ADE 均为等边三角形,∴∠B=∠ADE=60°,∴∠BAD+∠ADB=120°,∠ADB+∠FDC=120°,∴∠BAD=∠FDC ,又∵∠B=∠C=60°,∴△ABD ∽△DCF ,∴AB BD =CD CF ,即93=9−3CF ,∴CF=2.故选B .6.A 【解析】 由题图可知,当-3<x<0时,二次函数的图像在一次函数的图像上方,所以满足ax 2+bx+c>mx+n 的x 的取值范围是-3<x<0.故选A .7.C 【解析】 在△AOB 和△COD 中,OC OA =OD OB =12,且∠AOB=∠COD ,∴△AOB ∽△COD ,∴ABCD =2,又∵CD=30米,∴AB=60米.故选C .8.A 【解析】 ∵四边形ABCD 是平行四边形,∴OA=OC ,AD ∥BC.∵点E 是OA 的中点,∴AE=OE ,∴CE=3AE.∵AD ∥BC ,∴△AEF ∽△CEB ,∴S △AEF S △CEB=(13)2=19,∴S △CEB =9×1=9.∵CE=3AE ,∴S △AEB =13S △CEB =3,∴S △ABC =3+9=12,∴平行四边形ABCD 的面积=2S △ABC =24.故选A .9.B 【解析】 假设甲和丙的结论正确,则{-b2=1,4c -b 24=3,解得{b =−2,c =4,∴抛物线的表达式为y=x 2-2x+4.当x=-1时,y=(-1)2-2×(-1)+4=7,∴乙的结论不正确;当x=2时,y=22-2×2+4=4,∴丁的结论正确.∵四位同学中只有一位同学发现的结论是错误的,∴假设成立.故选B .10.B 【解析】 如图,过点D 作DH ∥CA ,交AB 于点H.∵EF ⊥AC ,∠ACB=90°,∴CD ∥EF.∵EG ⊥EF ,∴EG ∥AC ,∴EG ∥DH.易证△AEF ∽△ADC ,△AEG ∽△ADH ,∴EF DC =AE AD =EGDH .又∵EF=EG ,∴CD=DH.设CD=DH=x ,则BD=12-x.由DH ∥CA ,易证△BDH ∽△BCA ,∴DH CA =BD BC ,即x 6=12−x12,解得x=4,故CD=4.11.m ≠2 【解析】 ∵函数y=(m-2)x 2+2x+3(m为常数)是二次函数,∴m-2≠0,解得m ≠2.12.4 【解析】 由a b =34得3b=4a ,所以b=43a ,故a+b=a+43a=14,解得a=6,所以b=8.所以2a-b=2×6-8=4.13.y=2x 2+3 【解析】 ∵抛物线y=-2x 2+1的顶点坐标为(0,1),∴绕点(0,2)顺时针旋转180°后所得抛物线的顶点坐标为(0,3),且抛物线开口向上,∴所得到的图像对应的函数表达式为y=2x 2+3.14.(43,43) 【解析】 如图,连接DF ,并延长交x 轴于点P ,点P 即位似中心.∵四边形ABCD 为正方形,点A 的坐标为(2,2),∴AB=BC=CD=AD=2,OB=2,∴OC=4.∵EF ∥DC ,∴△PFE ∽△PDC ,∴PE PC =EFDC ,∴4+EO 4+4=EF2,又∵EO=EF ,∴EF=43,∴点F 的坐标是(43,43).15.16 【解析】∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OB ,∴∠CDA=∠OBA ,∴△AOB ∽△ECD ,∴CE DE =OAAB ,即1.62=OA 20,∴OA=16米.16.y=1810x 2+52【解析】 如图,过A 作AH ⊥BC ,过E 作EP ⊥BC ,则AH ∥EP ,∴CC CC =CC CC =CC CC =13.∵AB=AC ,AH ⊥BC ,∴BH=CH=12BC=3,∴PC=1,BP=5,PE=13AH ,∴DP=5-y.∵BD=DE=y ,∴在Rt △EDP 中,y 2=(5-y )2+PE 2.∵x=6AH÷2=3AH ,∴AH=C3,∴PE=C9,∴y 2=(5-y )2+(19x )2,∴y=1810x 2+52.17.145 【解析】 如图,连接BD ,CD.∵AB 为☉O 的直径,∴∠ADB=90°,∴BD=√CC 2-CC 2=√62-52=√11.∵弦AD 平分∠BAC ,∴CD=BD=√11,∴∠CBD=∠DAB.在△ABD 和△BED 中,∠BAD=∠EBD ,∠ADB=∠BDE ,∴△ABD ∽△BED ,∴CC CC =CCCC ,即11=√115,解得DE=115,∴AE=AD-DE=145.18.①③⑤ 【解析】 如图,补全题中函数图像.∵x=-C2C =2,∴4a+b=0,故①正确.由函数图像可知,当x=-3时,y<0,即9a-3b+c<0,∴9a+c<3b ,故②错误.∵抛物线与x 轴的一个交点坐标为(-1,0),∴a-b+c=0,又∵b=-4a ,∴a+4a+c=0,即c=-5a ,∴8a+7b+2c=8a-28a-10a=-30a ,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,故③正确.∵抛物线的对称轴为直线x=2,C (72,y 3),∴C 点关于对称轴的对称点为(12,y 3),当x<2时,y 随x 的增大而增大,∵-3<-12<12,∴y 1<y 2<y 3,故④错误.方程a (x+1)(x-5)=0的两根为x=-1或x=5,作x 轴的平行线y=-3,直线y=-3与抛物线的交点的横坐标为方程的两根,依据函数图像可知,x 1<-1<5<x 2,故⑤正确.综上,正确的结论为①③⑤.19.【解析】 ∵四边形ABCD 是平行四边形, ∴∠B=∠D ,AB ∥CD ,∴∠DFA=∠BAE ,∴△ADF ∽△EBA.20.【解析】 如图,过点A 作AN ⊥EF 于N ,交BC 于M.∵BC ∥EF ,∴AM ⊥BC 于M ,△ABC ∽△AEF ,∴CC CC =CCCC . ∵AM=0.4 m,AN=20 m,BC=0.12 m,∴EF=0.12×200.4=6(m). 答:电线杆的高度为6 m .21.【解析】 (1)把(1,0),(0,32)代入抛物线的表达式得{-12+C +C =0,C =32,解得{C =−1,C =32. 则抛物线的函数表达式为y=-12x 2-x+32. (2)抛物线的函数表达式为y=-12x 2-x+32=-12(x+1)2+2,将抛物线向右平移1个单位长度,向下平移2个单位长度,新抛物线的顶点坐标为(0,0),函数表达式变为y=-12x 2.(答案不唯一)22.【解析】 (1)如图,点O 为所作位似中心. (2)因为OA ∶OA'=6∶12=1∶2,所以△ABC 与△A'B'C'的相似比为12. (3)如图,△A 1B 1C 1为所作三角形.(4)△A 1B 1C 1与△ABC 的面积比为1.52∶12=2.25∶1.23.【解析】 (1)∵二次函数y=mx 2-(2m+1)x+m-4的图像与x 轴有两个公共点,∴{C ≠0,[-(2C +1)]2-4C (C -4)>0,解得m>-120且m ≠0,∴m 的取值范围为m>-120且m ≠0.(2)由题意得m=1,∴二次函数的表达式为y=x 2-3x-3. (3)图像如图所示.∵抛物线的对称轴为直线x=32,当x<32时,y 随x 的增大而减小,∴a<1时,y 1>y 2, 根据对称性知,Q (1,y 2)关于对称轴的对称点为(2,y 2),观察图像可知,当a>2时,y 1>y 2, 综上所述,当a<1或a>2时,y 1>y 2.24.【解析】 (1)由题意可得,抛物线经过(8,0),(2,94), 根据题意,得{64C +8C =0,4C +2C =94,解得{C =−316,C =32, 故该抛物线的表达式为y=-316x 2+32x. (2)由题意可得,当y=1.5时,1.5=-316x 2+32x ,解得x 1=4+2√2,x 2=4-2√2,故DE=x 1-x 2=4+2√2-(4-2√2)=4√2(米). 故横梁DE 的长度是4√2 米.25.【解析】 (1)∵C △CCC C 四边形CCCC=18,∴C △CCC C△CCC=19.∵在▱ABCD 中,AD ∥BC , ∴△CFH ∽△DFG. ∴C △CCC C △CCC=(CC CC )2=19,∴CC CC =13.(2)∵在▱ABCD 中,AD ∥BC , ∴CC CC =CC CC .∵在▱ABCD 中,AB ∥CD , ∴CC CC =CC CC ,∴CC CC =CC CC , ∴MG ·ME=MF ·MH.26.【解析】 (1)设y 与x 之间的函数关系式为y=kx+b (k ≠0),由题意得{40C +C =300,55C +C =150,解得{C =−10,C =700.故y 与x 之间的函数关系式为y=-10x+700. (2)由题意,得-10x+700≥240, 解得x ≤46.设利润为w 元,则w=(x-30)·y=(x-30)(-10x+700), w=-10x 2+1 000x-21 000=-10(x-50)2+4 000, ∵-10<0,∴x<50时,w 随x 的增大而增大,∴x=46时,w 最大值=-10×(46-50)2+4 000=3 840.答:当销售单价为46元时,每天获取的利润最大,最大利润是3 840 元. (3)设z 为剩余利润,则z=w-150=-10x 2+1 000x-21 000-150=3 600, 整理,得-10(x-50)2=-250, x-50=±5,∴x 1=55,x 2=45,如图所示,由图像得,当45≤x ≤55时,捐款后每天剩余利润不低于3 600元.27.【解析】 (1)设抛物线的函数表达式为y=ax 2+bx+c (a ≠0), 将点A (-2,0),B (-3,3),O (0,0)代入, 得{4C -2C +C =0,9C -3C +C =3,C =0,解得{C =1,C =2,C =0. 故抛物线的函数表达式为y=x 2+2x.(2)当AO 为平行四边形的边时,DE ∥AO ,DE=AO ,由A (-2,0)知,DE=AO=2, 由四边形AODE 可知点D 在对称轴直线x=-1的右侧, 则点D 的横坐标为1,代入抛物线表达式得y=1+2=3. ∴点D 的坐标为(1,3). (3)存在.如图,∵B (-3,3),C (-1,-1),根据勾股定理得BO 2=18,CO 2=2,BC 2=20, ∵BO 2+CO 2=BC 2,∴△BOC 是直角三角形.假设存在点P ,使以P ,M ,A 为顶点的三角形与△BOC 相似, 设P (x ,y ),由题意知x>0,y>0,且y=x 2+2x ,①若△AMP ∽△BOC ,则CC CC =CCCC, 即√18=2√2,得x 1=13,x 2=-2(舍去).当x=13时,y=79,故P (13,79),②若△PMA ∽△BOC ,则CC CC =CCCC ,即√2=2√18,得x 1=3,x 2=-2(舍去).当x=3时,y=15,故P (3,15).故符合条件的点P 有两个,分别是(13,79),(3,15).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大丰市2008--2009 学年度第一学期期中考试九 年 级 数 学 试 卷一、你一定能选对!(每小题3分,共30分。
在每小题给出的四个选项中,只有1项是符合题目要求的,请将正确答案的序号写在答题纸的表格中) 1.在y =x 的取值范围是A. x≥1B. x>1C. x>0D. x≠12.是同类二次根式的是A.B.C.D. 3. 2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是A. 1110437.0⨯ B. 10104.4⨯ C. 101037.4⨯ D. 9107.43⨯4.小明把如图所示的扑克牌放在一张桌子上, 请一位同学避开他任意将其中一张牌倒过来, 然后小明很快辨认了被倒过来的那张扑克牌是 A.方块5B.梅花6C.红桃7D.黑桃85.如图,数轴上表示1、2 的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 所表示的数是A.2-1 B.1-2 C.2-2D. 2-26.下列运算中,错误的是 A .632=⨯B .2221=C .252322=+D .32)32(2-=-7.已知样本0、2、x 、4的极差是6,则样本的平均数为A .3B .1C .4 或2D .3或1颠倒前 颠倒后BOA 1 A 2 A 3 A · · · · 8.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形 ②相似三角形的周长比等于它们的相似比 ③菱形的面积等于两条对角线的积④三角形的三个内角中至少有一内角不小于600其中不正确的命题的个数是 A.1个 B.2个 C.3个 D.4个 9.下列说法正确的是A.为了检验一批零件的质量,从中抽取10件,在这个问题中,10是抽取的样本B.如果x 1、x 2、.….x n 的平均数是x ,那么(x 1-x )+(x 1-x )+…+(x n -x )=0C.8、9、10、11、11这组数的众数是2D.一组数据的标准差是这组数据的方差的平方10.如图是一回形图,其回形通道的宽和OB 的长均为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为7), 从A 1点到A 2点的回形线为第2圈,…,依此类推.则第10圈的长为 A.71 B.72 C.79 D.87 二、能填得又快又准吗?(每题3分,计24分)11.等腰三角形一边长为8,一边长为4,则它的周长为。
12.如图:一个顶角为40°的等腰三角形纸片剪去顶角后得到一 个四边形,则∠1+∠2=____________.13.若2(1)0,x x y ++=+=则__________。
14.如图,在△ABC 中,AB=BC ,边BC 的垂直平分线分别交AB 、BC 于点E 、D ,若BC=10,AC=6,则△ACE 的周长是15.在综合实践课上,五名同学做手工的数量(单位:件)分别是:5,7,3,6,4;则这组数据的标准差为 _____________16.如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点,E 是 AB 边上一动点,则EC+ED 的最小值是 。
17.10在两个连续整数a 和b 之间,则以a 、b 为边长的直角三角形斜边 上的中线长为___________________。
18.观察下列各式:,413412,312311=+=+514513=+……请你将猜想到的规律用含自然数n (n≥1)的等式表示出来为 _______________。
40º21E D B AAEDC B三、做一做,你肯定能行!(计96分) 19.计算:(每小题5分,计15分) ①101231)2-⎛⎫⨯+-+ ⎪⎝⎭②34482714122--+③ 2)23()3418)(2348(--+-20.化简求值:(每小题6分,计12分)①已知x =13+,求x +1-x 2x -1 的值 ②)2(2122的小数部分是其中x xx -+21.(6分)如图,方格纸中有三个点A ,B ,C ,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形; (2)在图乙中作出的四边形是轴对称图形但不是中心对称图形; (3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.22.(6分)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N 。
试判断AE 与CG 之间的关系?并说明理由。
23.(6分)(1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC.(第21题丙图)(第21题乙图)(第21题甲图)NM GFED CB A求:∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转(△OAB和△OCD 不能重叠),求:∠AEB的大小.24.(8分)如图在梯形ABCD中,两对角线AC、BD互相垂直于O点,且AC=6、BD=8,试求梯形ABCD 的中位线MN及高h的长?25.(9分)为了让广大青少年学生走向操场,走进自然,走到阳光下,积极参加体育锻炼。
我国启动了“全国亿万学生阳光体育运动”。
短跑运动,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组。
在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题。
(1)请根据图中信息,补齐下面的表格;(2)分别计算他们的平均数、极差和方差填入下表格,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?26.(10分)如图,(1)图中将两个等宽矩形重叠一起,则重叠四边形ABCD是什么特殊四边形?请说明理由。
(2)若(1)中是两个全等的矩形,矩形的长为8cm,宽为4cm,重叠一起时不完全重合,试求重叠四边形ABCD的最小面积和最大面积,并请对面积最大时的情况画出示意图。
CEDBA图1O AECB1 2 3 4 5 次小明ONMDCBADAO图2D27.(10分)(1)已知:如图,在正方形ABCD 中,E 是BC 的中点,F 为DC 上一点,且∠1=∠2,求证:AF=BC+FC ;(2) 已知:如图,把三角尺的直角顶点落在矩形ABCD 的对角线交点P 处,若旋转三角尺时,它的两条直角边与矩形的两边BC 、CD 分别相交于M 、N ,试证:MN 2=BM 2+DN 2。
28.(14分)已知:如图,在直线l 上摆放有△ABC 和直角梯形DEFG ,且CD =6㎝;在△ABC 中:∠ACB =90O ,∠A =300,AB =4㎝;在直角梯形DEFG 中:EF//DG ,∠DGF =90O ,DG =6㎝,DE =4㎝,∠EDG =600。
解答下列问题:(1)旋转:将△ABC 绕点C 顺时针方向旋转900,请你在图中作出旋转后的对应图形△A 1B 1C ,并求出AB 1的长度;(2)翻折:将△A 1B 1C 沿过点B 1且与直线l 垂直的直线翻折,得到翻折后的对应图形△A 2B 1C 1,试判定四边形A 2B 1DE 的形状?并说明理由;21 FEC DBA NMPDCB A(3)平移:将△A 2B 1C 1沿直线l 向右平移至△A 3B 2C 2,若设平移的距离为x ,△A 3B 2C 2与直角梯形重叠部分的面积为y ,当y 等于△ABC 面积的一半时,x 的值是多少?友情提示:请同学做完试卷后, 再仔细检查一下,也许你会做得更好,祝你成功!九年级数学参考答案一、选择题(每小题3分,共30分) ABCACDDBBC二、填空:(每小题3分,共24分)20,2200 ,1或-3,16,2,5,2或2.5,21)1(21++=++n n n n 三、解答题:19、①原式=13222++⨯-------------3分 =2---------------------------------5分②原式=3323439434--+-----------3分=-392-----------5分③原式=)625()2334)(2334(--+--------3分=25+62--------------------------------------5分20.①原式=-11-x --------------------------4分; AC D G当13+=x 时;原式331131-=-+-=---------------6分。
②原式=│x1-x │----------------------------4分 当x=12-时,原式=2;----------------------6分21.略(画法对各2分,共6分) 22. 证明:AE=CG 且AE ⊥CG四边形ABCD 和四边形DEFG 都是正方形,,90,AD CD DE DG ADC EDG ∴==∠=∠=,ADE CDG ADE CDG ∴∠=∠∴△≌△,AE CG ∴=------------3分由,又CND ANM DCG DAE CDG ADE ∠=∠∠=∠∴∆≅∆,, 可得∠AMN=90AE ⊥CG ----------------------------------6分23.(1)∠AEB=600 (得3分) (2)不变,∠AEB=600(得3分) 24.(4分+4分)中位线MN=5得 4分,高h=4.8得4分 25.(1)小明13.2 , 小亮13.4 各1分,(2)平均数对1分,极差对2分,方差对2分,建议合理2分26. (1)菱形,证明略4分(2)当菱形ABCD 为正方形时,s 最小=16cm 2 2分当菱形ABCD 如图时,s 最大= 20cm 2 4分27.(1)方法一:思路,取AF 的中点G 并连接EG 得EG 为梯形ABCF 的中位线,再证三角形为等腰三角形,可证。
或 方法二:思路,作EM ⊥AF 于M ,连接EF ,用三角形ABE 全等于三角形AME ;再用三角形EMF 全等于三角形ECF ,可证。
(得5分)(2)思路:延长MP 交AD 于Q ,连接QN ,可证PQ=PM ,BM=DQ ,再证MN=NQ ,在三角形NDQ 中用勾股定理可得。
(得5分)28.解:(1)在△ABC 中由已知得:BC =2,AC =32,∴AB 1=AC+C B 1=AC+CB=322+.……………………………………2分 (2)四边形A 2B 1DE 为平行四边形.理由如下:∵∠EDG =60°,∠A 2B 1C 1=∠A 1B 1C =∠ABC =60°,∴A 2B 1∥DE 又A 2B 1=A 1B 1=AB =4,DE =4,∴A 2B 1=DE,故结论成立.………………4分 (3)由题意可知: S △ABC =3232221=⨯⨯, ① 当20<≤x 或10≥x 时,y=0此时重叠部分的面积不会等于△ABC 的面积的一半……………6分②当42<≤x 时,直角边B 2C 2与等腰梯形的下底边DG 重叠的长度为DC 2=C 1C 2-DC 1=(x-2)㎝,则y=()()()222323221-=--x x x ,DABC当y=21S △ABC = 3时,即 ()32232=-x , 解得22-=x (舍)或22+=x .∴当22+=x 时,重叠部分的面积等于△ABC 的面积的一半. ……………9分 ③当84<≤x 时,△A 3B 2C 2完全与等腰梯形重叠,即32=y ……………11分 ④当108<≤x 时,B 2G=B 2C 2-GC 2=2-(x -8)=10-x则y=()()()210231031021x x x -=-⋅-, 当y= 21S △ABC = 3时,即 ()310232=-x ,解得210-=x ,或210+=x (舍去).∴当210+=x 时,重叠部分的面积等于△ABC 的面积的一半.………13分由以上讨论知,当22+=x 或210+=x 时, 重叠部分的面积等于△ABC 的面积的一半. ………14分。