九年级上册数学相似三角形练习题

合集下载

九年级数学相似三角形典型例题

九年级数学相似三角形典型例题

九年级数学相似三角形典型例题一、利用相似三角形的判定定理证明相似例1:已知:在△ABC和△DEF中,∠A = ∠D = 60°,AB = 4,AC = 8,DE = 2,DF = 4。

求证:△ABC∽△DEF。

解析:1. 我们看相似三角形的判定定理。

对于两个三角形,如果它们的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

2. 在本题中:计算公式,公式。

并且已知∠A = ∠D = 60°。

因为公式且∠A = ∠D,所以根据相似三角形判定定理中的“两边对应成比例且夹角相等的两个三角形相似”,可以得出△ABC∽△DEF。

二、相似三角形性质的应用(求边长)例2:已知△ABC∽△A'B'C',相似比为公式,若AB = 6,则A'B'的长为多少?解析:1. 因为相似三角形对应边成比例。

设A'B' = 公式。

已知相似比公式。

2. 又已知公式,AB = 6,所以公式。

通过交叉相乘可得:公式。

即公式,解得公式,所以A'B'的长为9。

三、利用相似三角形解决实际问题(测量高度)例3:在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,求这棵大树的高度。

解析:1. 因为在同一时刻,太阳光下不同物体的高度和影长成正比。

设大树的高度为公式米。

可以得到两个相似三角形,一个是由小强及其影子构成,另一个是由大树及其影子构成。

2. 根据相似三角形的性质,对应边成比例。

则公式。

交叉相乘可得:公式。

计算得公式,解得公式米。

所以这棵大树的高度是9.6米。

浙教版九年级上册数学第4章 相似三角形含答案(查漏补缺)

浙教版九年级上册数学第4章 相似三角形含答案(查漏补缺)

浙教版九年级上册数学第4章相似三角形含答案一、单选题(共15题,共计45分)1、如图所示是一个直角三角形的苗圃,由一个正方形花坛和两块直角三角形的草皮组成.如果两个直角三角形的两条斜边长分别为4米和6米,则草皮的总面积为()平方米.A.3B.9C.12D.242、如图,在中,,以其三边为边向外作正方形,过点作于点,再过点作分别交边,于点,.若,,则的长为A.14B.15C.D.3、如图,已知△ADE与△ABC的相似比为1:2,则△ADE与△ABC的面积比为()A.1:2B.1:4C.2:1D.4:14、如图,在△ABC中,D是BC的中点,DE⊥BC交AC与E,已知AD=AB,连接BE交AD于F,下列结论:①BE=CE;②∠CAD=∠ABE;③AF=DF;④S△ABF =3S△DEF;⑤△DEF∽△DAE,其中正确的有()个.A.5B.4C.3D.25、如图①,在边长为的正方形中,点以每秒的速度从点出发,沿的路径运动,到点停止.过点作,与边(或边)交于点,的长度与点的运动时间(秒)的函数图象如图②所示.当点运动秒时,的长是().A. B. C. D.6、如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④CH2=HO•HD中,正确的有()个.A.1B.2C.3D.47、如图,在△ABC 中,点E 是线段AC 上一点,AE∶CE=1∶2,过点C 作CD∥AB 交BE 的延长线于点D,若△ABE 的面积等于 4,则△BCD 的面积等于()A.8B.16C.24D.328、如图,△ABC与△DEF是位似图形,点A(﹣1,2)和点D(2,﹣4)是对应点,则△ABC内的点P(m,n)的对应点P′的坐标为()A.(2m,2n)B.(﹣2m,﹣2n)C.(2m,﹣2n)D.(﹣2m,2n)9、如图,已知AB∥CD,AD与BC相交于点O,AO:DO=1:2,那么下列式子正确的是()A.BO:BC=1:2B.CD:AB=2:1C.CO:BC=1:2 D.AD:DO=3:110、如图,在▱ABCD中,E是AB的中点,EC交BD于点F,那么EF与CF的比是()A.1:2B.1:3C.2:1D.3:111、已知三个数为3,4,12,若再添加一个数,使这四个数能组成一个比例,那么这个数可以是()A.1B.2C.3D.412、如下图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB 与△CDE对应边的比为k,则位似中心的坐标和k的值分别为()A. B. C. D.13、△ABC与△DEF满足下列条件,其中能使△ABC∽△DEF的是( )A.AB=1,BC=1.5,AC=2,DE=8,EF=12,DF=16B.AB=,BC=,AC=,DE=,EF=3,DF=3 C.AB=3,BC=4,AC=6,DE =6,EF=8,DF=16 D.AB=3,BC=4,AC=5,DE=,EF=2,DF=14、如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A. B. C. D.215、如图,在矩形ABCD中,AB=12,P是AB上一点,将△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE 交PC于点F,则下列结论,其中正确的结论有()①BP=BF;②若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE•EF=108.A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、已知Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB中点,点E是直线AC上一点,若以C、D、E为顶点的三角形与△ABC相似,则AE的长度为________.17、若,则________.18、如图,已知△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC,将△ABC绕着点A旋转后,点B、C的对应点分别记为B1、C1,如果点B1,落在射线BD上,那么CC1的长度为 ________ .19、如图,在矩形中,,E是CD延长线上一点,连接BE交AD于点F,连接CF,若与的面积相等,则DE长为________.20、如图,直线AA1∥BB1∥CC1,如果, AA1=2,CC1=6,那么线段BB1的长是________ .21、如图,在▱ABCD中,AB=10,AD=6,点E是AD的中点,在AB上取一点F,使△CBF与△CDE相似,则BF的长是________.22、如图,AG:GD=4∶1, BD :DC=2∶3,则AE∶EC的值为________.23、如图,在中,点E在边AD上,AE:AD=2:3,BE与AC交于点F.若AC=20,则AF的长为________.24、已知在△ABC和△DEF中,,且△DEF与△ABC的周长之差为,则△ABC的周长为________.25、如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM= AB.若四边形ABCD的面积为,则四边形AMCD的面积是________.三、解答题(共5题,共计25分)26、22.若==≠0,求的值.27、如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3.(1)求EC的值;(2)求证:AD•AG=AF•AB.28、某校九(2)班学生在一次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量,下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm;乙组:如图2,测得学校旗杆的影长为900 cm;丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200 cm,影长为156 cm.请你根据以上信息,解答下列问题:(1)计算学校旗杆的高度.(2)如图3,设太阳光线NH与⊙O相切于点M,请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长,需要时可采用等式1562+2082=2602)29、理解与应用小明在学习相似三角形时,在北京市义务教育课程改革实验教材第17册书,第37页遇到这样一道题:如图1,在△ABC中,P是边AB上的一点,联结CP.要使△ACP∽△ABC,还需要补充的一个条件是____________,或_________.请回答:(1)小明补充的条件是____________________,或_________________.(2)请你参考上面的图形和结论,探究、解答下面的问题:如图2,在△ABC中,∠A=60°,AC2= AB2+AB.BC.求∠B的度数.30、如图,已知P是正△ABC外接圆的上的任一点,AP交BC于D.求证:PA2=AC2+PB•PC.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、B5、B6、D7、C8、B9、B10、A11、A12、C13、A14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。

初三数学_相似三角形练习题

初三数学_相似三角形练习题

初三数学_相似三⾓形练习题相似三⾓形练习题1.如图所⽰,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC ABCD BC=;④2AC AD AB =.其中单独能够判定ABC ACD △∽△的个数为() A .1 B .2 C .3 D .42.如图,已知AB CD EF ∥∥,那么下列结论正确的是() A .AD BCDF CE= B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF=3.如图,已知等边三⾓形ABC 的边长为2,DE 是它的中位线,则下⾯四个结论:(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的⾯积与△CAB 的⾯积之⽐为 1:4.其中正确的有:()A .0个B .1个C .2个D .3个4.若△ABC ∽△DEF,△ABC 与△DEF 的相似⽐为1∶2,则△ABC 与△DEF 的周长⽐为()A .1∶4B .1∶2C .2∶1D .1∶25.如果⼀个直⾓三⾓形的两条边长分别是6和8,另⼀个与它相似的直⾓三⾓形边长分别是3和4及x ,那么x 的值()A .只有1个B .可以有2个C .有2个以上但有限D .有⽆数个 6.如图,菱形ABCD 中,对⾓线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是()A .△AOM 和△AON 都是等边三⾓形B .四边形MBON 和四边形MODN 都是菱形DBCA N M OC .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形 7.如图,在55 ⽅格纸中,将图①中的三⾓形甲平移到图②中所⽰的位置,与三⾓形⼄拼成⼀个矩形,那么,下⾯的平移⽅法中,正确的是()A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格 8.在中华经典美⽂阅读中,⼩明同学发现⾃⼰的⼀本书的宽与长之⽐为黄⾦⽐。

浙教版九年级上册数学第4章 相似三角形含答案(配有卷)

浙教版九年级上册数学第4章 相似三角形含答案(配有卷)

浙教版九年级上册数学第4章相似三角形含答案一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC 上,得到折痕AE,那么BE的长度为()A. B. C. D.2、如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交 CE于点G,连结BE. 下列结论中:① CE=BD;② △ADC是等腰直角三角形;③ ∠ADB=∠AEB;④ CD·AE=EF·CG;一定正确的结论有( )A.1个B.2个C.3个D.4个3、如图,在正方形中,的顶点,分别在,边上,高与正方形的边长相等,连接分别交,于点,,下列说法:① ;②连接,,则为直角三角形;③ ;④若,,则的长为,其中正确结论的个数是()A.4B.3C.2D.14、如图,在中,,则DF的长为()A.4B.C.D.35、如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG 分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A. B. C. D.6、如图,l1∥l2∥l3,直线a,b与l1, l2, l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.67、如图,已知l1∥l2∥l3,直线AC分别交l1、l2、l3于点A,B,C,直线DF分别交l1、l2、l3于D,E,F,DE=4,EF=6,AB=5,则BC的长为()A. B. C. D.8、如图,直线l1∥l2∥l3 ,直线AC分别交l1 , l2 , l3于点A,B,C;直线DF分别交l1 , l2 , l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A. B.2 C. D.9、如图,在菱形ABCD中,AC=8,BD=6,DE⊥AB,垂足为E,DE与AC交于点F,则sin∠DFC的值为()A. B. C. D.10、两相似三角形的周长之比为1:4,那么他们的对应边上的高的比为()A.1∶4B.1∶2C.2∶1D. ∶211、如图,在△ABC中,∠C=90°,过重心G作AC、BC的垂线,垂足分别为D、E,则四边形GDCE的面积与△ABC的面积之比为( )A. B. C. D.12、如图,在正方形ABCD的外侧,作等边△ADE,BE、CE分别交AD于G、H,设△CDH、△GHE的面积分别为S1、S2,则()A.3S1=2S2B.2S1=3S2C.2S1= S2D. S1=2S213、如图,一组互相平行的直线a,b,c分别与直线l1, 12交于点A,B,C,D,E,F,直线11, l2交于点O,则下列各式不正确的是()A. B. C. D.14、如图,在平面直角坐标系中,矩形OABC的顶点A,B在反比例函数的图像上,纵坐标分别为1和3,则k的值为()A. B. C.2 D.315、如图,⊙O的直径为6,在⊙O上位于直径AB的异侧有定点C和动点P.已知BC:CA=4:3,P在半圆上运动,CP⊥CD交PB的延长线于D点.当点P运动到什么位置时,△PCD的面积最大为()A.36B.24C.18D.12二、填空题(共10题,共计30分)16、如图,在正方形ABCD中,E是边BC的中点,连接AE,作EF⊥AE交正方形的外角平分线于点F,连接AF,交CD于点H,连接EH.若AB=4,则EH的长为________.17、如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为2,则平行四边形ABCD的面积是________.18、如图,a∥b∥c,直线m分别交直线a、b、c于点A、B、C,直线n分别交直线a、b、c于点D、E、F.若AB=2,CB=4,DE=3,则EF=________.19、如图所示,已知点E,F分别是△ABC的边AC,AB的中点,BE,CF相交于点G,FG=1,则CF的长为________.20、若a:b:c=3:2:5,则=________.21、如图,在平面直角坐标系中,△OAB与△OCD是以原点O为位似中心的位似图形,且位似比为1:3,已知点A的坐标为(1,2),则点C的坐标是________.22、如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C 的坐标为________ .23、我国古代数学著作《九章算术》中记载:“今有方不知大小,各开中门,出北门四十步有木,出西门八百一十步见木,问:邑方几何?”译文:如图,一座正方形城池北、西边正中A、C处各开一道门,从点A往正北方向走40步刚好有一棵树位于点B处,若从点C往正西方向走810步到达点D处时正好看到此树,则正方形城池的边长为________步。

湘教版九年级数学上册《3.4 相似三角形的判定与性质》练习题-带参考答案

湘教版九年级数学上册《3.4 相似三角形的判定与性质》练习题-带参考答案

湘教版九年级数学上册《3.4 相似三角形的判定与性质》练习题-带参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知△ABC∽△A′B′C′且ABA′B′=12,则S△ABC∶S△A′B′C′为( )A.1∶2B.2∶1C.1∶4D.4∶12.如图,△ABC与△DE F相似,相似比为1∶2,BC的对应边是EF,若BC=1,则EF的长是( )A.1B.2C.3D.43.已知△ABC∽△DEF,且AB∶DE=1∶2,则△ABC的面积与△DEF的面积之比为( )A.1∶2B.1∶4C.2∶1D.4∶14.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S△DEF :S△ABF=4:25,则DE:EC=()A.2:3 B.2:5 C.3:5 D.3:25.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )A.1对B.2对C.3对D.4对6.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有( )A.1条B.2条C.3条D.4条7.如图,点P是△ABC的边AB上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似.满足这样条件的直线最多有( )A.2条B.3条C.4条D.5条8.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在格点为( )A.P1 B.P2C.P3D.P49.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm,60cm,80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架乙共有( )A.1种B.2种C.3种D.4种10.如图,在△ABC中,CD⊥AB,且CD2=AD•DB,AE平分∠CAB交CD于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DF•DC.则下列结论正确的是( )A.①②④B.②③④C.①②③④D.①③二、填空题11.若△ABC∽△DEF,且△ABC与△DEF的相似比为1:2,则△ABC与△DEF的面积比值为.12.若两个相似三角形的周长比为2:3,则它们的面积比是.13.若△ABC∽△A′B′C′,且AB:A′B′=3:4,△ABC的周长为12 cm,则△A′B′C′的周长为____________.14.下图中的每个点(包括△ABC的各个顶点)都在边长为1的小正方形的顶点上,在P、Q、G、H中找一个点,使它与点D、E构成的三角形与△ABC相似,这个点可以是.(写出满足条件的所有的点)15.如图,平行四边形ABCD中,E是BC边延长线上一点,AE交CD于F,则图中相似三角形有对.16.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则Cn的坐标是.三、解答题17.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°. 求证:△ADC∽△DEB.18.如图,A、B、C、P四点均在边长为1的小正方形网格格点上.(1)判断△PBA与△ABC是否相似,并说明理由;(2)求∠BAC的度数.19.如图所示,已知AB∥CD,AD,BC相交于点E,F为BC上一点,且∠EAF=∠C.求证:(1) ∠EAF=∠B;(2) AF2=FE·FB.20.如图,在△ABC中,AD和BG是△ABC的高,连接GD.(1)求证△ADC∽△BGC;(2)求证CG·AB=CB·DG.21.如图,已知P是正方形ABCD边BC上一点,BP=3PC,Q是CD的中点(1)求证:△ADQ∽△QCP;(2)若AB=10,连接BD交AP于点M,交AQ于点N,求BM,QN的长.22.在等腰三角形ABC中,AB=AC,D是AB延长线上一点,E是AC上一点,DE交BC于点F.(1)如图①,若BD=CE,求证:DF=EF.(2)如图②,若BD=1nCE,试写出DF和EF之间的数量关系,并证明.(3)如图③,在(2)的条件下,若点E在CA的延长线上,那么(2)中结论还成立吗?试证明.答案1.C2.B3.B4.A5.C.6.C7.C.8.B9.C.10.C.11.答案为:1:4.12.答案为:4:9.13.答案为:16cm.14.答案为:Q.15.答案为:4.16.答案为(﹣3×4n﹣1,4n).17.证明:∵△ABC是等边三角形∴∠B=∠C=60°∴∠ADB=∠CAD+∠C=∠CAD+60°∵∠ADE=60°∴∠ADB=∠BDE+60°∴∠CAD=∠BDE∴△ADC∽△DEB.18.解:(1)△PBA与△ABC相似,理由如下:∵AB=5,BC=5,BP=1∴∵∠PBA=∠ABC∴△PBA∽△ABC;(2)∵△PBA∽△ABC∴∠BAC=∠BPA∵∠BPA=90°+45°=135°∴∠BAC=135°.19.证明:(1)∵AB∥CD∴∠B=∠C又∠C=∠EAF∴∠EAF=∠B(2)∵∠EAF=∠B,∠AFE=∠BFA ∴△AFE∽△BFA则AFBF=FEFA∴AF2=FE·FB20.解:(1) ∵在△ABC中,AD和BG是△ABC的高∴∠BGC=∠ADC=90°.又∠C=∠C∴△ADC∽△BGC.(2)∵△ADC∽△BGC∴CGDC=BCAC.∴CGBC=DCAC.又∠C=∠C∴△GDC∽△BAC.∴CGBC=DGAB.∴CG·AB=CB·DG.21.证明:(1)∵正方形ABCD中,BP=3PC,Q是CD的中点∴PC=14﹣BC,CQ=DQ=12CD,且BC=CD=AD∴PC :DQ =CQ :AD =1:2 ∵∠PCQ =∠ADQ =90° ∴△PCQ ∽△ADQ (2)∵△BMP ∽△AMD ∴BM :DM =BP :AD =3:4 ∵AB =10 ∴BD =10 2 ∴BM =同理QN =53 5.22.证明:(1)在题图①中作EG ∥AB 交BC 于点G 则∠ABC =∠EGC ,∠D =∠FEG. ∵AB =AC ,∴∠ABC =∠C. ∴∠EGC =∠C.∴EG =EC. ∵BD =CE ,∴BD =EG. ∵∠D =∠FEG ,∠BFD =∠GFE ∴△BFD ≌△GFE. ∴DF =EF. (2)解:DF =1nEF.证明:在题图②中作EG ∥AB 交BC 于点G ,则∠D =∠FEG.由(1)得EG =EC. ∵∠D =∠FEG ,∠BFD =∠EFG ∴△BFD ∽△GFE.∴BD EG =DF EF. ∵BD =1n CE =1n EG∴DF =1n EF.(3)解:成立.证明:在题图③中作EG ∥AB 交CB 的延长线于点G则仍有EG=EC,△BFD∽△GFE.∴BDEG=DFEF.∵BD=1nCE=1nEG,∴DF=1nEF.。

浙教版数学九年级上册 第四章 相似三角形 单元练习(含答案)

浙教版数学九年级上册 第四章 相似三角形  单元练习(含答案)

浙教版数学九年级上册第四章相似三角形一、选择题1.如果2a =5b ,那么下列比例式中正确的是( )A .a b =25B .a 5=2b C .a 2=b 5D .a 5=b 22.如图,直线l 1∥l 2∥l 3,AC =6,DE =3,EF =2,则AB 的长为( )A .3B .125C .165D .1853.如图,点P 是线段AB 的黄金分割点,且PA >PB ,若AB =2,则PA 的长度是( )A .5−1B .3−5C .25−4D .14.如图, 在▱ABCD 中, E 是边AB 上一点, 连结AC ,DE 相交于点F . 若AE EB =23,则 AF CF 等于( )A .13B .23C .25D .355.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )A .B .C.D.6.△ABC和△DEF是两个等边三角形,AB=2,DE=4,则△ABC与△DEF的面积比是( ) A.1:2B.1:4C.1:8D.1:27.如图,在△ABC中,BC=6,AC=8,∠C=90°,以B为圆心,BC长为半径画弧,与AB交于点D,再分别以点A,D为圆心,大于12AD的长为半径画弧,两弧交于点M,N,作直线MN,分别交AC,AB于点E,F,则AE的长度为( )A.52B.103C.3D.228.如图,△ABC和△A1B1C1是以点O为位似中心的位似图形,点A在线段O A1上,若OA:A A1=1:2,则△ABC和△A1B1C1的周长之比为( )A.1:2B.2:1C.1:3D.3:19.如图,在△ABC中,D为线段AC上一点,点E在AC的延长线上,过点D作DF∥AB交BC于点F,连结BE,EF,若A C2+D E2=A E2,则△BEF与△DCF的面积比为( )A.1:2B.1:3C.2:3D.2:510.如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是( )A .4B .154C .3D .114二、填空题11.如图,AC 、BD 交于点O ,连接AB 、CD ,若要使△AOB ∽△COD ,可以添加条件 .(只需写出一个条件即可)12.已知△ABC ∽△DEF ,且AB:DE =1:3,△ABC 与△DEF 的周长比是 .13.如图,在这架小提琴中,点C 是线段AB 的黄金分割点(BC >AC ).若AB =60cm ,则BC = cm .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图,矩形ABCD 中,AB =3 6 ,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .16.如图,正方形ABCD 中,BF =FG =CG ,BE =2AE ,CE 交DF 、DG 于M 、N 两点,有下列结论:①DF ⊥EC ;②S △MFC =59S 四边形MFBE ;③DM :MF =2:1;④MN NC =913.其中,正确的有  .三、解答题17.(1)已知线段a =2,b =6,求线段a ,b 的比例中项线段c 的长.(2)已知x :y =3:2,求2x−yx的值.18.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥BC ,AD BD =32,求DE BC 的值.19.如图,AD 、BC 相交于点P ,连接AC 、BD ,且∠1=∠2,AC =6,CP =4,DP =2,求BD 的长.20. 如图,在平行四边形ABCD 中,E 为DC 边上一点,∠EAB =∠EBC .(1)求证:△ABE∽△BEC ;(2)若AB=4,DE=3,求BE的长.21.如图,在四边形ABCD中,OA=OC,OB=OD,AB=BC,AC=12,BD=16.(1)求证:四边形ABCD时菱形;(2)延长BC至点M,连接OM交CD于点N,若∠M=12∠BAC,求MNOM.22.如图,AB∥CD,且AB=2CD,E是AB的中点,F是边BC上的动点(F不与B,C重合),EF与BD相交于点M.(1)求证:△FDM∽△FBM;(2)若F是BC的中点,BD=18,求BM的长;(3)若AD=BC,BD平分∠ABC,点P是线段BD上的动点,是否存在点P使DP⋅BP=BF⋅CD,若存在,求出∠CPF的度数;若不存在,请说明理由.23.如图,在平面直角坐标系中,已知抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于C点,且OB=OC=4.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使∠ABC=∠BCM,如果存在,求M点的坐标,如果不存在,说明理由;(3)若D是抛物线第二象限上一动点,过点D作DF⊥x轴于点F,过点A、B、D的圆与DF交于E点,求△ABE的面积.答案解析部分1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】B11.【答案】∠A=∠C(答案不唯一)12.【答案】1:313.【答案】(305−30)14.【答案】9415.【答案】21516.【答案】①④17.【答案】(1)解:∵线段a=2,b=6,线段c是线段a、b的比例中项,∴c2=ab=12,∴c=23(负值舍去);(2)解:∵x:y=3:2,∴可设x=3k,y=2k(k≠0),∴2x−yx=6k−2k3k=43.18.【答案】3519.【答案】BD=320.【答案】(1)证明:∵平行四边形ABCD,∴AB//CD,∴∠EBA=∠BEC,又∵∠EAB=∠EBC,∴△ABE∽△BEC.(2)解:∵四边形ABCD 平行四边形,∴AB =DC =4,∵DE =3,∴CE =1,∵△ABE∽△BEC ,∴AB EB =EBEC,∴AB ⋅CE =B E 2=4×1=4,∴BE =2.21.【答案】(1)证明:∵ 在四边形ABCD 中,OA=OC ,OB=OD∴ 四边形ABCD 是平行四边形 ∵ AB=BC∴ 平行四边形ABCD 是菱形。

九年级数学相似三角形经典题(含答案)

九年级数学相似三角形经典题(含答案)

相似三角形经典习题教师版例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CD F S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长.解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆. 例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2.说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FC AB GF =,即2232xx -=. ∴33-=x ,∴3612)33(2-=-=AEG F S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.相似三角形 一,比例线段 1, 成比例线段对于四条线段a ,b ,c ,d ,如果其中两条线段的长度的比等于另外两条线段的比,如b a =dc(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。

数学九年级上册相似试卷【含答案】

数学九年级上册相似试卷【含答案】

数学九年级上册相似试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若两个三角形的对应角相等,则它们是相似的,这句话是否正确?A. 正确B. 错误2. 在ΔABC和ΔDEF中,若AB/DE = BC/EF = AC/DF,则这两个三角形是否相似?A. 相似B. 不相似3. 两个相似三角形的面积比是9:1,它们的边长比是:A. 3:1B. 1:3C. 9:1D. 1:94. 若ΔABC ∽ ΔA'B'C',则以下哪个比例是错误的?A. AB/A'B' = BC/B'C'B. AB/A'B' = AC/A'C'C. AB/A'B' = (BCAC)/(B'C'A'C')D. AB/A'B' = (BC+AC)/(B'C'+A'C')5. 在ΔABC中,AB = 6cm, BC = 8cm, ∠B = 90°,若ΔDEF ∽ ΔABC,且EF = 4cm,则DE的长度是:A. 3cmB. 4cmC. 5cmD. 6cm二、判断题(每题1分,共5分)6. 相似三角形的对应边长之比相等。

()7. 相似三角形的面积比等于对应边长比的平方。

()8. 若两个三角形的对应边成比例,则这两个三角形一定相似。

()9. 在ΔABC中,若AB = AC,则ΔABC是等腰三角形。

()10. 两个全等三角形的面积比一定是1:1。

()三、填空题(每题1分,共5分)11. 在ΔABC和ΔDEF中,若AB/DE = BC/EF = AC/DF = 2/3,则ΔABC与ΔDEF______。

12. 若ΔABC ∽ ΔA'B'C',且AB = 6cm, A'B' = 9cm,则BC与B'C'的长度之比是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学相似三
角形练习题
内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)
九年级上册数学相似三角形练习题
姓名:日
期:
一、选择题。

1.DE是ABC的中位线,则ADE与ABC面积的比是()
A、 1:1
B、1:2
C、1:3
D、 1:4
BC=()
2.如图1,已知△ADE∽△ABC,相似比为2:3,则
DE
A、3:2
B、2:3
C、 2:1
D、不能确定
3.如图2,已知△ACD∽△BCA,若CD=4,CB=9,则AC等于()
A、 3
B、 4
C、 5
D、 6
4.△ADE∽△ABC,相似比为2:3,则△ADE与△ABC的面积比为()
A、 2:3
B、 3:2
C、 9:4
D、 4:9
5.若DE是△ABC的中位线,△ABC的周长为6,则△ADE的周长为()
A、4
B、3
C、2
D、1
6.如图3,△ABC中,DE∥BC,AD=1,DB=2,AE=2,那么EC=()
A、1
B、2
C、3
D、4
7.如图4,D 是△ABC 的AB 边上的一点,过点D 作DE ∥BC 交AC 于E 。

已知AD :DB=2:3.则S △ADE :S BCED =( )
A 、2:3
B 、4:9
C 、4:5
D 、4:21
8. 如图5,已知:AD 是Rt △ABC 斜边BC 上的高线,DE 是RtCADC 斜边AC 上的高
线,如果DC :AD=1:2,a S CDE =∆,那么ABC S ∆ 等于( )
A 、 4a
B 、9a
C 、16a
D 、25a 二、填空题:
1.两个相似三角形的面积比为4∶25,则它们的周长比为 。

2.顺次连结三角形三边中点所构成的三角形与原三角形 ,它们的面积比
为 。

3.如图6,AB ∥DC ,AC 交BD 于点O .已知5
3
=CO AO ,BO =6,则DO=_____________。

4.某校绘制的校园平面图的面积为,比例尺为1:200,则该校占地面积 m 2 。

5.如图7,在△ABC 中,点D 在线段BC 上,∠BAC=∠ADC ,AC=8,BC=16,那么CD=__________。

6.如图8,AD 、BC 交于点E ,AC ∥EF ∥BD ,EF 交AB 于F ,设AC=p ,BD=q ,则EF=_________。

图6 E
B
C
A
F
D
图8
图7
图9 图10
图3
图2


7.如图4,已知△ABC 的周长为30cm ,D ,E ,F 分别为AB ,BC ,CA 的中点,则△
DEF 的周长等于 cm 。

8.如图10.△ABC 中,D 是AB 上一点,AD :DB=3:4,E 是BC 上一点。

如果DB=DC ,∠1=∠2,那么S △ADC :S △DEB = 。

三、解答题:
1、如图,⊿AOC ∽⊿BOD 。

(1)证明:AC ∥BD ;
(2)已知,3,5,4===OB OC OA 求OD 的长。

2.如图,∠ADC=∠ACB=900
,∠1=∠B,AC=5,AB=6,求AD 的长
3.如图,在梯形ABCD 中,AB ⊥BC ,∠BAD=90°,对角线BD ⊥DC 。

(1)△ABD 与△DCB 相似吗请说明理由。

(2)如果AD=4,BC=9,求BD 的长。

4.如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F.
(1)ΔABE 与ΔADF 相似吗请说明理由.(2)若AB=6,AD=12,BE=8,求DF 的长. 5.如图,已知E 是正方形ABCD 的边CD 上一点,BF AE ⊥于F ,求证:AB 2=AE ·BF 。

6.已知:如图,△PMN 是等边三角形,∠APB=120°。

求证:AM ·PB = PN ·AP 。

7.如图,△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,过A 作AH ∥BE ,连结ED 并延长交AB 于F ,交AH 于
H 。

(1)求证:AH =CE (2)如果AB=4AF ,EH =8,求DF 的长。

8.已知:如图:FGHI 为矩形,AD ⊥BC 于D ,9
5
=GH FG ,BC =36cm,AD =12cm 。

求:矩形FGNI 的周长。

P
N
M
A B
O
D
B
A
9.如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD DE 2
1 。

⑴求证:△ABF ∽△CEB;⑵若△DEF 的面积为2,求□ABCD 的面积。

10.如图,在ABCD 中,过点B 作BE ⊥CD,垂足为E,连结AE,F 为AE 上一点,且∠BFE=∠C.(1)求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;(3)在(1)(2)的条件下,若AD=3,求BF 的长.
F
A
D
E
B C
A
C
E
F D
B。

相关文档
最新文档