刚性连接节点的抗震性能的分析
钢框架梁柱刚性节点连接抗震研究

于构件破坏 , 达到强节点弱构件 的 目的。 理论上 , 工 程 师 总是 希 望把 梁 截 面 做 的更 高 一 点, 翼缘宽度和厚度尽 量小 , 这样做 是最经 济 、 最合 理
的做法。但 实 际上截 面高 度越 小 、 翼 缘板 越 宽越 厚 , 才能满足抗 震 规范 中的计 算要 求 。在 实际 工程设 计
框架结构在我 国建 筑工 程中得 到越 来越广泛 的应用 。但 在国外 多次地震 灾 害中发现 , 众 多建筑物 的梁柱连接 发 生 了脆性破坏 。本文将通过抗震规范 和相关 资料 , 并结合 自身的设计 经验 , 研究分析 钢框架结构 梁柱节点 的连接 形式 以及其抗震性 能。
【 关键词】 钢框架 ; 刚性 节点 ; 抗震计算 【 中图分类号】 T U 3 9 2 【 文献标识码】 B
且 国内外对这种 节点研究 很多 , 证 明其 能使结 构获得
很 好的延 性 , 是一种 比较可靠 、 成熟 的做法 。
2 抗震规范 规定
在 G B S O 0 1 l一2 0 1 0 《 建 筑 抗 震 设 计 规 范》中第 8 . 2 . 8条给 出了钢结 构抗 侧力构 件 的连接计 算 要求 , 其 中梁柱连接 的极 限抗弯承式为 :
形 。但在美 国北岭和 日本 于梁本身强度 , 可以保证 节点 不先于
构件破坏 。但加腋型节 点对梁 的跨 高 比要求严 格 , 适
用范 围较小 。而 盖板 型节 点 , 受 构造 要求 限制 , 盖 板 的厚 度不 能过 厚 , 会 出现 抗震验 算通 不过 的情 况 , 并
结合 了以上两种类 型特 点的翼缘加强 型狗骨 式节 点 , 目前 尚在理论研 究阶段 , 实际工程 中较少采用 。 目前 , 实际工程中应用 较多 的是 盖板型 节点 和狗 骨式节点。盖板型节点 虽有其局 限性和 缺点 , 但 构造
高层建筑钢结构连接节点的抗震设计

高层建筑钢结构连接节点的抗震设计- 结构理论摘要:本文介绍高层建筑钢结构抗震设计时,并对钢结构构件节点和杆件接头处的三种杆件连接方式,其性能及适用范围进行了分析比较,然后对梁、与柱、柱与柱、梁与梁的连接以及抗震剪力墙与框架的连接等方式进行了阐述,以供同行参考。
关键词:高层建筑;钢结构;连接节点;安装1 前言随着城市建设的发展,高层建筑在我国日益增多。
高层钢结构具有承载力高、抗震性能好、施工周期短等特点,特别适用于高耸的高层建筑。
在高层钢结构抗震设计中,节点连接良好的抗震设计是保证结构安全的重要一环。
连接节点应满足强度、延性和耗能能力三方面的要求,其连接强度应高于相连构件端部的屈服承载力,并且必须有较大的变形能力,用以弥补强度方面的缺陷。
钢材本身具有很好的延性,但这种延性在结构中不一定能体现出来,这主要是由于节点局部压曲和脆性破坏而造成的,因此在设计中应采用合理的细部构造,避免应变集中而形成较大的约束应力。
在钢材的选用上应满足强度、塑性、韧性及可焊性的要求。
钢材强度指的是抗拉强度和屈服强度,钢材应具有较高的强屈比,其屈服强度的上限值和下限值应适当。
钢材的塑性表现在伸长率和冷弯性能两项指标上,反映钢材承受残余变形量的程度及塑性变形能力。
对抗震结构还必须满足冲击韧性的要求。
钢材另一重要的基本要求是对化学成分含量的限制,它将直接影响结构的可焊性,应控制钢材的碳当量。
在高层钢结构中,厚钢板的应用较为广泛,在梁一柱节点范围,当节点约束较强,板厚等于或大于40mm时,应附加要求板厚方向的断面收缩率,以防发生平行于钢材表面的层状撕裂。
2 杆件连接2.1连接方式2.1.1 连接类型建筑钢结构的构件节点和杆件接头处的杆件连接可采用:(1)全焊连接;(2)高强度螺栓连接;(3)焊缝和高强度螺栓混合连接。
2.1.2 性能比较2.1.2.1全焊连接,传力最充分,不会滑移。
良好的焊接构造和焊接质量可以为结构提供足够的延性。
对钢框架结构节点抗震设计思想的分析

3 边 缘纤 维屈服 , ) 传统 的 弹性设计 ( 当于 6度 或非抗 震设 相
防要求 ) 。 各种构件 的宽厚 比要求 , 见 G 0 1—0 0建筑抗 震设 计 详 B 50 2 1 1
M = s — ): A h t +∑( ) ( i f z
=m n n , } i {Ⅳ , l
曲, 保证耗能作用 的发挥。 受压板件 宽厚 比可分为三个等级 : 1 全截 面进 入 塑性 , ) 出现 塑性 铰 , 求 转 动 能 力 ( 当 于 要 相 8度 , 9度抗震设 防要求 ) ;
其 中, , 的计算方法 如下 : M 1 当工字形梁翼缘用 对接焊缝 、 ) 腹板 用角焊缝连接时 :
BI Ch n ・ a g a gg n
( hnagD s na dR sac stt o o eru t lry hnag 100 ,C i ) Sey n ei n e r I tuefN n r sMe l g ,Sey n 10 3 hn g e h ni f o au a
当
/时 [ ( , , 1N 4 : _…
y -
A,f] ,y
.
】 () 1 1
其 中, 为被连 接构件的全塑性弯矩 ; =A ; 为构件 净 M Ny A
所需螺栓数目 = = 为 丽V
= .。实际取5 48 个
截面面积 ; 为构件腹板净截 面面积。 A
M2 2高强 螺栓。
响, 就可能 出现 地震 作用下的局部破 坏 , 甚至整体倒 塌 J 。因此 ,
钢结构 的抗震 问题也 是需要 认真 研究 的 。本文 针对 最 常见 的钢
3 构造缺 陷 : ) 梁翼缘 与柱连接处 的垫板 一般在焊接后 就 留在 框 架结构 , 到节点 的重 要性 , 考虑 将对 节点 的抗 震设 计思 想进 行 结构上 , 与柱 翼缘之间容易成为裂缝发展 的起 源。 深入分 析 , 有助 于加深 对节 点抗震 设计 思路 和具 体方 法 的理解 ,
装配式混凝土框架结构连接节点抗震性能研究进展共3篇

装配式混凝土框架结构连接节点抗震性能研究进展共3篇装配式混凝土框架结构连接节点抗震性能研究进展1装配式混凝土框架结构是一种新型的建筑结构体系,其具有快速装拆、可重复使用、高质量成品等特点。
然而,在地震等自然灾害中,装配式混凝土框架结构需要具备良好的抗震性能,才能保证建筑物的安全性。
因此,本文将阐述装配式混凝土框架结构连接节点抗震性能的研究进展。
一、概述任何结构都会存在受力集中的地方,而装配式混凝土框架结构的连接节点是其中的一个重要环节。
连接节点不仅要承受垂直载荷和水平荷载,还要承受地震力对结构产生的影响。
因此,研究连接节点的抗震性能对于提高装配式混凝土框架结构的抗震能力至关重要。
二、节点类型装配式混凝土框架结构的连接节点类型主要分为刚性节点和半刚性节点两种。
刚性节点指的是在节点处设置刚性连接板和刚性箍筋,使框架节点形成整体刚性的连接方式。
此类节点的抗震性能较好,但在审美和构造上存在一定的限制。
半刚性节点则兼备了连接板和箍筋的作用,同时也可以兼顾节点伸缩性。
与刚性节点相比,其具有更好的工艺性和美观性,但在抗震性能方面可能略逊于刚性节点。
三、节点设计装配式混凝土框架结构的连接节点设计需要充分考虑其在地震作用下的受力特点。
主要包括节点的剪切抗力、轴向力承受能力、旋转能力和节点底部的剪切滞回性。
剪切抗力是连接节点的主要抗震指标之一,其抗震能力需要通过强化节点的节点钢筋来提高。
轴向力承受能力则是指节点在受到在竖向荷载作用下的承载能力,它主要由节点形式和节点刚度所影响。
旋转能力则是指节点在地震时具有可变形性,并且能够承受旋转荷载的能力。
节点底部的剪切滞回性指的是节点地基土壤中的缓慢变形过程,它对节点的剪切性能有着重要的影响。
四、节点连接方式装配式混凝土框架结构的连接方式有螺栓连接和焊接连接两种,而焊接连接由于需要现场施工,对构件的质量和准确性提出了更高的要求,使其难以被广泛采用。
因此,大多数装配式混凝土框架结构采用螺栓连接。
钢筋混凝土框架节点的抗震性能试验研究

钢筋混凝土框架节点的抗震性能试验研究钢筋混凝土框架节点的抗震性能试验研究随着城市化进程的不断推进,建筑物的抗震性越来越被重视。
钢筋混凝土框架结构是一种常见的建筑结构形式,其节点作为框架结构的重要组成部分,其抗震性能对整个结构的抗震性能起着关键作用。
本文将就钢筋混凝土框架节点的抗震性能试验进行研究。
一、钢筋混凝土框架节点的结构形式钢筋混凝土框架结构一般由柱、梁、墙等构件组成,构件之间通过连接件连接起来。
钢筋混凝土框架节点是连接构件的关键部分,承受着构件之间的荷载和力矩。
钢筋混凝土框架节点一般分为刚性节点和半刚性节点两种类型,其中刚性节点的刚度较大,而半刚性节点的刚度较小。
刚性节点的应力和变形分布较为均匀,而半刚性节点的应力和变形分布较为不均匀。
二、钢筋混凝土框架节点的抗震性能试验钢筋混凝土框架节点的抗震性能试验一般通过模型试验进行。
在模型试验中,首先要确定试验的参数,包括节点类型、节点尺寸、材料类型和试验荷载等。
然后设计试验方案,制作试验模型,进行试验。
试验中,应根据试验要求进行加载,并记录试验数据,包括荷载、位移、应力、应变等。
试验结束后,应对试验数据进行分析和处理,得出试验结论。
三、钢筋混凝土框架节点的影响因素钢筋混凝土框架节点的抗震性能受到多种因素的影响,包括节点类型、节点尺寸、材料类型、试验荷载和连接方式等。
其中,节点类型是影响抗震性能最为重要的因素之一。
四、钢筋混凝土框架节点的设计方法钢筋混凝土框架节点的设计应根据国家相关标准和规范进行,采用强度设计和变形设计相结合的方法,保证节点的强度和变形能力均满足要求。
在节点设计中,应根据节点类型和荷载情况进行合理的尺寸设计和配筋设计,并选择合适的节点连接方式,确保节点的抗震性能。
五、钢筋混凝土框架节点的加固方法对于已经存在的钢筋混凝土框架结构,如果节点抗震性能不足,可以通过加固节点的方式提高结构的抗震性能。
加固方法包括增加节点的截面尺寸、加强节点的配筋、采用钢板加固等。
PEC柱—型钢梁顶底角钢连接框架抗震性能研究

about 7.0%, the ductility coefficient improves by 21.1%, the node rigidity and the degradation of bearing capacity has been improved. Therefore, this frame should be restrict the column axial compression ratio appropriately and be minimized the angle bolts margins within the required range in order to increase the joint stiffness, and improve the frame ductility.Another, three frame models were built by using ABAQUS finite element software in the test, The results of the simulation and the test were compared based on the analysis. the gap between the two results is range from 2.8% to 16.2%. On this basis, a composite frame of three-layer one-span was designed, forcing loads in the situation of frequently occurred earthquake and rarely occurred earthquake with quivalent base shear method. Ultimately the storey drifts of this frame meet the requirement of the seismic code.Key Words:Partially encased concrete composite column;Top-seat angles;Composite frame;Seismic behavior;Finite element analysis* This study is supported by the National Natural Science Foundation(51268042)目录摘要 (I)Abstract (II)1 绪论 (1)1.1 PEC柱的形式及优点 (1)1.2 梁柱节点的种类 (1)1.3 梁柱连接节点的典型构造 (2)1.3.1 刚性连接节点 (3)1.3.2 铰接连接 (3)1.3.3 半刚性连接 (3)1.4 半刚性连接钢框架的优越性 (4)1.5 研究与应用现状 (4)1.5.1 H型钢部分包裹混凝土组合结构 (4)1.5.2半刚性连接钢框架的试验研究现状 (5)1.5.3半刚性连接钢框架理论研究现状 (7)1.6PEC柱—钢梁角钢连接框架应用的主要问题 (8)1.7 课题提出背景及本文研究内容 (8)2 部分包裹混凝土柱半刚性框架的试验研究 (10)2.1 概述 (10)2.2 试件设计与制作 (10)2.3 材料性能 (11)2.4 试验加载及制度 (12)2.5 试验数据采集 (13)2.5.1 应变片及应变花位置 (13)2.5.2 位移计位置 (15)2.6 试验过程与特征分析 (15)2.6.1 KJ-1试验现象 (15)2.6.2 KJ-2试验现象 (16)2.6.3 KJ-3试验现象 (17)2.6.4破坏特征与破坏机理分析 (18)3 抗震性能与应变分析 (19)3.1 滞回性能 (19)3.1.1 滞回曲线 (19)3.1.2 骨架曲线 (20)3.2 承载力退化 (21)3.3 刚度退化 (23)3.4 延性分析 (26)3.5 节点初始转动刚度 (27)3.6 应变分析 (30)3.6.1 节点核心区剪应变 (30)3.6.2 角钢应变 (32)3.6.3 角钢、梁端、柱脚应变分析 (33)3.6.4 角钢、梁端、柱脚屈服先后顺序分析 (33)3.6.4 内力分析 (39)3.7 小结 (41)4 有限元分析 (43)4.1 概述 (43)4.2 建模过程 (43)4.2.1 材料属性及本构关系 (43)4.2.2 网格划分 (45)4.2.3 接触与约束 (45)4.2.4 螺栓预紧力及边界条件 (45)4.3 模拟结果与试验对比分析 (46)4.3.1 破坏形态 (46)4.3.2 数据对比 (49)4.4 PEC柱—型钢梁角钢连接三层框架抗震性能分析 (50)4.4.1 拟静力加载条件下抗震性能分析 (50)4.4.2 地震作用下抗震性能分析 (52)4.5 小结 (55)结论 (56)参考文献 (58)在学研究成果 (62)致谢 (63)1 绪论1.1 PEC柱的形式及优点PEC柱为英文Partially Encased Concrete Composite Column的缩写,即部分包裹混凝土组合柱,为近年来出现的新型构件。
北岭和阪神地震导致钢结构节点破环原因和分析

北岭和阪神地震导致焊接刚性节点破坏原因和改进方法学院: 天津大学建工学院姓名: 薛飞北岭和阪神地震导致焊接刚性节点破坏原因和改进方法摘要:通过对1994年发生的美国北岭地震和1995年发生的日本阪神地震这两次钢结构建筑普遍出现的梁柱端节点破坏原因的深入分析,从而获得高层钢结构建筑抗震改良的节点设计方法。
关键词:梁柱端节点,焊缝缺陷,人工缝,超高应力,塑性铰1.综述1994年1月14日美国发生北岭地震,1995年1月17日日本发生阪神地震,这两次地震非常具有代表性,因为当时普遍认为钢结构建筑具有良好的抗震性能,在历次地震中经受了考验,较少发生整体破坏和倒塌现象。
但是这两次地震时钢结构建筑的焊接梁柱刚性节点却遭受了严重的破坏。
2.北岭和阪神地震前典型的梁柱节点形式梁柱节点形式根据其连接刚度的大小可分为三类:铰接连接,半刚性连接和刚性连接。
高层和比较重要的钢结构建筑的连接,一般采用刚性连接。
梁柱刚性连接的做法为梁翼缘与柱翼缘现场熔透焊,梁腹板与柱翼缘采用高强螺栓现场进行连接或用角焊缝焊接,这种刚性连接可以传递弯矩、剪力和轴力。
梁的截面形状一般为H形,柱的截面形状有H形或箱形两种。
美国一般采用H形柱,日本普遍采用箱形柱。
主梁与柱刚接连接时,应在柱腹板上与梁翼缘对应处加设水平加劲板,箱形内应设加劲隔板。
水平加劲板应按与梁翼缘面积等强设计,水平加劲板的中心线应与梁翼缘中心线互相对准,连接焊缝也要按照等强传力的要求进行设计,如图。
图2.1 梁柱刚性连接的两种常见形式2.1北岭和阪神地震中钢结构梁柱焊接节点震害2.1.1北岭地震中钢结构梁柱焊接节点震害北岭地震之前广泛采用的焊接梁柱节点是按美国统一的建筑标准设计制造的。
由于建筑外包物掩盖了节点的破坏,因此地震最初未见有关钢结构损害的报道。
后来通过对多座钢框架建筑的仔细观察后发现梁柱节点存在不同程度的破坏现象夕,于是引起了工程界的广泛关注。
通过对个楼板框架进行现场检验,发现大部分破坏出现在节点梁翼缘与柱翼缘的连接处,而又以底梁翼缘的破坏明显多于梁翼缘。
系梁对连续钢构桥的地震反应分析

工程科技系梁对连续钢构桥的地震反应分析张燕飞1胡国民2(1、内蒙古通辽市交通工程局,内蒙古通辽0280002、长安大学,陕西西安710064)1概述目前,随着混凝土强度的不断改善,设计和施工工艺的不断完善,连续钢构桥越来越受到桥梁工程师的青睐。
连续钢构桥上部结构连续长度,桥墩高度有不断增大的趋势。
特别是在跨径在200至300m之间刚构桥应用越来越多。
随着连续钢构桥的大量建设,其在地震作用下的反应分析成为研究的热点。
本文探讨系梁对连续刚构桥在地震能力的影响,以地震做用下控制截面的内力,位移等来分析系梁的作用,并加以算例说明。
2抗震分析理论2.1动态时程分析原理动态时程分析法是随着强震记录的增多和计算机技术的广泛应用而发展起来的,是公认的精细分析方法。
目前,对于重要、复杂、大跨的桥梁抗震计算都建议采用动态时程分析法。
地震作用下,桥梁结构地震运动微分方程为:公式中:[M]、[C]、[K]分别为系统的总体质量矩阵、阻尼矩阵和刚度矩阵,{U}为对应的自由度的广义坐标列阵,P(t)为外荷载。
上述方程是二阶微分方程,右端输入的实际是地震加速度时程,它是不规则的,难以用确定的函数表达。
解方程较为有效的方法是逐步积分法,逐步积分法根据已知的位移、速度、加速度和荷载条件,从前一时刻计算下一时刻地震反应,具体计算步骤分为如下三步。
a.将振动时程分为一系列相等或不相等的微小时间间隔Δt;b.假定在Δt时间间隔内,位移、速度、加速度按一定规律变化建立三者之间的关系;c.求解ti+Δt时刻结构的地震反应;通过对上述b、c两个步骤采用不同假定,发展了很多积分方法。
根据对位移、速度和加速度之间关系的不同假定,时程分析计算的方法可以分为:NewMark-β法以及Wilson-θ法本文在计算分析时采用midascivil大型通用有限元分析程序中的常加速度法。
2.2地震动的输入采用1940年美国帝国峡谷地震的EI-Centro地震波输入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚性连接节点的抗震性能的分析
刘朝科彭军
(西安科技大学建筑与土木工程学院 710054)
[摘要] 通常认为钢框架具有良好的抗震性能,但在最近的几次大地震中许多高层钢结构房屋的梁柱刚性连接节点受到严重破坏。
这说明传统的刚性连接框架在某些方面存在这不足之处。
本文对刚性连接框架的形式以及抗震性能进行了深入的分析和总结,最后对提高刚性连接框架的抗震性能,在设计、构造、及施工三方面提出一些意见和建议。
[关键词] 梁-柱刚性连接节点常用设计法栓焊连接强节点弱构件延性
中图分类号:TU391
ANALYSIS OF THE ASEISMATIC CAPABILITY OF THE BEAM-COLUMN CONNECT IN STEEL FRAME
Liu Chao Ke PengJun
(Xi’an university of science and technology 710054)
Abstract Steel frame has nice aseismatic capability, but column-beam rigidity joints in hundreds of multi-story and high steel buildings had been damaged in the Northridge earthquake and the Hanshen earthquake. The traditional method has some deficiencies. The authors study in form and capability of the Frame. And suggestions on design and fabrication are presented.
Keywords column-beam rigidity joints; bolt-weld connection; general design method; ductility
一直被工程界认为具有良好抗震性能的钢结构建筑在多次大地震中发生各种不同的破坏形式。
特别是1994年美国Northridge地震和1995年日本阪神地震中,数百栋多高层钢结构房屋的梁柱刚性连接节点受到严重破坏,引起世人的极大关注。
这种局部破坏在某些情况下比构件的材料破坏或失稳更具危险,因为结构在遇到荷载改变或强烈余震的作用后有可能发生整体倒塌。
因此梁柱连接的性能对刚性框架的受力性能有极大的影响。
1震害原因
1.1梁-柱刚性连接方式
目前国内已建成的高层钢框架梁柱节点连接的主要采用刚性连接。
常见有三种刚性连接:①全焊连接;②全栓连接;③栓焊连接。
国内外许多科研机构对上述三种不同形式的连接性能进行了试验研究,认为:全焊连接节点在反复荷载作用下,节点承载能力没有降低,荷载-挠度滞回曲线呈稳定的纺锤形,连接具有良好的延性,但对钢构件的制作精度要求较高;全栓连接施工方便却方面费用太高;而栓焊连接表现出良好的抗震性能造价又低的优点。
因此大多数梁柱连接采用栓焊混合连接。
典型的刚性梁柱连接形式见图1。
1.2原因分析
对美国Northridge地震中节点破坏的钢框架进行研究发现在钢框架房屋结构设计时不恰当地采用了所谓“常用设计法”,即在无任何加强连接构造措施的情况下,翼缘连接承受全部作用弯矩,梁腹板只承受全部作用剪力的假定。
在实际的工程中,常用的工字型截面梁中在处于弹性阶段翼缘承受全截面抗弯承载力的80%~85%,腹板承受全截面抗弯承载力的15%~20%。
而采用栓焊连接的梁柱节点,翼缘对接所能承受的弯矩最多只能与翼缘等强。
腹板的抗弯承载力只有框架横梁的80%~85%。
再将高空施焊条件差、焊缝存在某些缺陷以及残余应力等不利因素考虑在内,其抗弯承载力可能只有横梁的70%~75%。
此时,腹板不能有效地传递弯矩,加上一部分剪力有翼缘焊缝传递,这样柱翼缘将发生较大变形,导致梁翼缘焊缝开裂,最后塑性铰没有形成,节点就发生脆性破坏。
这违背了“强节点弱构件”的设计基本原则。
美国Northridge地震中数百栋钢结构房屋梁端开裂就证明了这一点。
2强节点设计原则
要实现强节点弱杆件的目标,就必须在梁—柱连接节点设计中,不仅要对罕遇地震时节点的极限承载力进行计算,而且更应该对在常遇地震时弹性设计阶段的节点承载力进行计算。
此外,在设计中还必须遵守以下两个基本原则:
1、在弹性阶段,梁柱连接处的抗弯能力必须大于框架梁的抗弯能力,并使二者之比≥k(k 为连接承载力抗震调整系数与框架梁承载力抗震调整系数之比)。
防止受大震作用时因梁柱连接处可能存在的某些缺陷导致框架横梁在尚未出现塑性铰之前,节点连接就过早地发生脆性破坏。
2、在满足基本原则1后,在弹塑性阶段,塑性
铰必然将离开柱面向外移,为此在弹性设计阶段就应预测并人为控制塑性铰的位置,使该位置梁截面最外纤维的最大弯曲应力高于梁相连接处焊缝的最大弯曲应力,以便在大震时促使框架梁在可能出现塑性铰的部位。
其翼缘在高应力下首先屈服,产生塑性变形,形成塑性铰,以达到耗散地震能量的目的。
为了实现以上两个基本原则,就必须排除在常规的等截面梁上未经任何加强或削弱就直接与柱连接的作法(不论是全焊接连接还是栓焊混合连接)。
在构造上必须打破常规,采取一些改进措施来满足上述要求。
3改进梁柱连接的措施
对Northridge地震中破坏的钢框架研究发现,这些钢框架的梁柱节点没有满足强度和延性的要求,所以这些破坏的节点没能发挥设计者预期的延性水平。
虽然在地震中没有人员的伤亡,但业主要花费大量的维修费用。
因此提高梁柱节点的强度和延性对整个工程的安全性和经济型都有重大的意义。
1)为了做到“大震不倒”,在多高层刚性钢框架抗震设计时应注意做到“强柱弱梁,强连接弱杆件”。
《高层建筑钢结构技术规程》规定梁柱连接的最大受弯承载力不小于连接梁截而全塑性弯矩的1.2倍。
即
Mu≥1.2Mp (1)
这里Mu,是节点连接的最大受弯承载力,Mp为梁的全塑性弯矩。
2)选择合适的节点域厚度。
节点域太薄,则梁端难以形成塑性铰;节点域太厚则使用钢量增加,而且不能利用节点域的屈曲和屈服来吸收地震能量。
“JGJ99- 98”规定7度以上抗震设防的结构梁柱连接应满足(2)
式中,α为系数,按7度设防的结构取0.6,按8、9度设防的结构取0.7,Mpb1和Mpb2分别为节点域两侧钢梁端部截面的全塑性弯矩;fv为节点域抗剪强度设计值;Vp是节点域体积。
当节点域不满足要求时,可采用加贴加劲板或增加劲肋的办法补强。
3)连接构造应使结构能够形成可靠的耗能体系。
由于Northridge地震中焊接刚性发生了脆性破坏,人们提出了许多改进连接延性的方法。
其中一种是在靠近连接处适当削弱梁翼缘,使能形成塑性铰,即所谓的“狗骨式”(dog bone)设计,见图2。
这种形式的连接具有非常好的塑性变形能力。
塑性转角可以达到0. 03 rad以上。
另外还可以采用加腋的方法对梁柱连接进行补强,见图3。
4)焊缝及焊接热影响区的缺陷是导致梁柱连接脆性破坏的重要因素。
因此设计时应选用韧性比较好的焊条,施工时应保证焊缝质量,尤其是下翼焊缘的质量,注意施焊顺序,控制焊接时的最高温度。
对于难以施焊处应采用熔化咀电渣焊。
5)重视连接的细部构造。
如对于腹板连接较弱的螺栓连接用适当的角焊缝补强可以改善连接的滞回性能;梁腹板切角的形状和大小既要便于施工。
又不能对结构削弱太多;高层
钢框架的柱翼缘较厚,应采用防止层间撕裂的构造。
4结论
1)在设计方面,常用设计法即翼缘连接承受全部弯矩,梁腹板承受全部剪力的假定,是导致结构发生脆性破坏的主要原因。
2)在构造方面,常规的等截面梁上未经任何加强或削弱就直接与柱连接的作法是钢框架在地震作用时梁柱连接处过早地发生脆性破坏的主要因素。
为使结构能够形成可靠的耗能体系,提高延性,可采用两种方法。
一种是削弱型即在靠近连接处适当削弱梁翼缘,使能形成塑性铰;另一种是加强型即对梁柱连接进行补强措施。
3)节点域太薄,则梁端难以形成塑性铰;节点域太厚则使用钢量增加,而且不能利用节点域的屈曲和屈服来吸收地震能量。
因此选择合适的节点域厚度对刚性连接框架的抗震性能影响显著。
4)在施工方面,由于焊缝的质量是影响刚性连接框架的延性的因素之一,因此在进行钢结构施工时严格控制施焊顺序以及控制焊接时的最高温度等施工细节是十分必要的。
参考文献
[1].Kraw inkler H, Povo E P. Seismic Behavior of Moment Connections and Joints[J].Journal of the Structural Division, ASCE, 1969,95(3)
[2].邱国桦.高层建筑钢结构节点连接的抗震设计.建筑结构,1993(12)53~57
[3].高层民用建筑钢结构技术规程(JGJ99-98)北京中国建筑工业出版社,1998
[4].钢结构设计规范(GBJ50017-2003)北京中国计划出版社,2003
[5].李和华.钢结构连接节点设计手册北京中国建筑工业出版社,1992
[6].陈绍藩.钢结构设计原理陕西科学出版社,2004
[7].陈骥.钢结构稳定理论与设计陕西科学出版社,2001。