2019年贵州省黔东南州数学中考试题及答案

合集下载

2019年贵州省黔东南中考数学试卷-答案

2019年贵州省黔东南中考数学试卷-答案

贵州省黔东南州2019年初中毕业生学业考试数学答案解析 一、选择题1.【答案】A【解析】解:2019的相反数是2019-.【考点】相反数的意义2.【答案】D【解析】解:55 000这个数用科学记数法可表示为45.510⨯.【考点】科学记数法的表示方法3.【答案】B【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.【考点】正方体相对两个面上的文字4.【答案】B【解析】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确; ③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B .【考点】中心对称图形与轴对称图形的概念5.【答案】D【解析】解:①301111272733-=+=+,故此选项错误;③23628a a ()=,故此选项错误;④844a a a -÷=-,正确.故选:D .【考点】负指数幂的性质以及二次根式的加减运算,积的乘方运算法则,同底数幂的乘除运算6.【答案】A【解析】解:根据题意可得:211m m -=+,解得:2m =,故选:A .【考点】同类项的定义7.【答案】C【解析】解:A .234+>,能组成三角形;B .367+>,能组成三角形;C .226+<,不能组成三角形;D .567+>,能够组成三角形.故选:C .【考点】能够组成三角形三边的条件8.【答案】B【解析】解:根据平行四边形的判定定理,可推出平行四边形ABCD 是菱形的有①或③, 概率为21=42.故选:B .【考点】菱形,概率9.【答案】C【解析】解:∵点()14,A y -、()22,B y -、()32,C y 都在反比例函数1y x=-的图象上, ∴111=44y -=-,211=22y -=-,31=2y -, 又∵111242-<<,∴312y y y <<.故选:C .【考点】反比例函数图象上点的坐标特征10.【答案】D【解析】解:设AF x =,则3AC x =,∵四边形CDEF 为正方形,∴2EF CF x ==,EF BC ∥,∴AEF ABC △∽△,∴13EF AF BC AC ==, ∴6BC x =,在Rt ABC △中,222AB AC BC +=,即()()2223036x x +=,解得,x =∴AC =BC =,∴剩余部分的面积()21=100cm 2⨯-=,故选:D .二、填空题11.【答案】2【解析】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.【考点】众数12.【答案】()()33x y x y +-【解析】解:原式()()=33x y x y +-,故答案为:()()33x y x y +-.【考点】公式法分解因式13.【答案】34︒【解析】解:∵40B ∠︒=,36C ∠︒=,∴180104BAC B C ∠︒-∠-∠︒==∵AB BD =∴()180270BAD ADB B ∠∠︒-∠÷︒===,∴34DAC BAC BAD ∠∠-∠︒==故答案为:34︒.【考点】等腰三角形的性质,三角形内角和定理14.【答案】1 【解析】解:把x a y b =⎧⎨=⎩代入方程组2623x y x y +=⎧⎨+=-⎩得:2623a b a b ⎧+=⎨+=-⎩①②, ①+②得:333a b +=,1a b +=,故答案为:1.【考点】二元一次方程组的解15.【答案】2 000【解析】解:设这种商品的进价是x 元,由题意得,()140%0.82240x +⨯=.解得:2000x =,故答案为2 000.【考点】一元一次方程的应用16.【答案】3【解析】由勾股定理得,BC ==,∴正方形ABCD 的面积23BC ==.故答案为:3.【考点】勾股定理17.【答案】3【解析】解:201945043÷ =,故第2019个图案中的指针指向与第3个图案相同,故答案为:3.【考点】图形的变化类18.【答案】20【解析】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是5011503=, 设口袋中大约有x 个白球,则101103x =+, 解得20x =.故答案为:20.【考点】利用频率估计概率19.【答案】4x < 【解析】解:函数y ax b =+的图象如图所示,图象经过点()4,1A ,且函数值y 随x 的增大而增大, 故不等式1ax b +<的解集是4x <.故答案为:4x <.【考点】一次函数与不等式的关系及数形结合思想的应用20.【答案】15-【解析】解:过点B 作BM FD ⊥于点M ,在ACB △中,90ACB ∠︒=,60A ∠︒=,10AC =,∴30ABC ∠︒=,10tan60BC ⨯︒==, ∵AB CF ∥,∴1sin302BM BC ⨯︒=, cos3015CM BC ⨯︒==,在EFD △中,90F ∠︒=,45E ∠︒=,∴45EDF ∠︒=,∴MD BM ==∴15CD CM MD --==.故答案是:15-.【考点】解直角三角形的性质,平行线的性质三、解答题21.【答案】解:(1)原式11=11122-+-=-; (2)解:去分母得, ()2236x x x +--=,∴56x x +=,解得,1x =经检验:1x =是原方程的解.【解析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【考点】解分式方程22.【答案】解:(1)∵AB 是直径90302ACP A AB BC∴∠︒∠︒∴ =,=,=∵PC 是O 切线∴30BCP A ∠∠︒==,∴30P ∠︒=,∴PB BC =,12BC AB =,∴3PA PB =(2)∵点P 在O 外,PC 是O 的切线,C 为切点,直线PO 与O 相交于点A 、B , 180902180BCP A A P ACB BCP ACB BCP P ∴∠∠∠+∠+∠+∠︒∠︒∴∠︒-∠ =,=,且=,=,∴()1902BCP P ∠︒-∠= 【解析】(1)由PC 为圆O 的切线,利用弦切角等于夹弧所对的圆周角得到BCP A ∠∠=,由A ∠的度数求出BCP ∠的度数,进而确定出P ∠的度数,再由PB BC =,2AB BC =,等量代换确定出PB 与PA 的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.23.【答案】解:(1)此次调查的总人数为15030%500÷=(人),则50045%225m ⨯==,5005%25n ⨯==,故答案为:500,225,25;(2)C 选项人数为50020%100⨯=(人),补全图形如下:(3)11502100325425⨯+⨯+⨯=,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有()110000145%60500⨯-=(名).【解析】(1)由B 选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m 、n 的值;(2)先求出C 选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.【考点】条形统计图和扇形统计图的综合运用24.【答案】解:(1)依题意,根据表格的数据,设日销售量y (袋)与销售价x (元)的函数关系式为y kx b +=得 25=152020k b k b +⎧⎨=+⎩,解得140k b =-⎧⎨=⎩故日销售量y (袋)与销售价x (元)的函数关系式为:40y x +=-(2)依题意,设利润为w 元,得()()2104050400w x x x x --+++==-整理得()225225w x -+=-∵10-<∴当2x =时,w 取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【解析】(1)根据表格中的数据,利用待定系数法,求出日销售量y (袋)与销售价x (元)的函数关系式即可;(2)利用每件利润⨯总销量=总利润,进而求出二次函数最值即可.【考点】二次函数的性质在实际生活中的应用25.【答案】解:(1)①()()2222222224{,}=23223M -+-=,--; ②sin30cos60tan 1{}=524min ︒︒︒,,; 故答案为:43;12; (2)∵32,13,55{}min x x -+-=-,∴325135x x --⎧⎨+-⎩≥≥, 解得24x -≤≤.(3)∵22,32{,}M x x -=,∴22323x x -++=, 解得1x =-或3;(4)∵2,1,22,1,2{}{}M x x min x x +=+, 又∵2+1+213x x x +=+,∴1212x x x+⎧⎨+⎩≤≤, 解得11x ≤≤,∴1x =.【解析】(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.【考点】不等式组,平均数,最小值等知识26.解:(1)函数的表达式为:()()()21323y a x x a x x -++-==,即:33a -=,解得:1a =-,故抛物线的表达式为:223y x x -+=-…①,顶点坐标为()1,4-;(2)∵OB OC =, 41:2:5CPD BPD CBO S S ∴∠︒ △△=,=,∴2233BD BC ⨯==, sin 2D y BD CBO ∠==,则点()1,2D -;(3)如图2,设直线PE 交x 轴于点H ,15230451OGE PEG OGE OHE OH OE ∠︒∠∠︒∴∠︒∴ =,==,=,==,则直线HE 的表达式为:1y x -=-…②,联立①②并解得:x (舍去正值),故点P ⎝⎭; (4)不存在,理由:连接BC ,过点P 作y 轴的平行线交BC 于点H ,直线BC 的表达式为:3y x +=,设点()2,23P x x x --+,点(),3H x x +, 则()211332333822OBC PBC BOCP S S S x x x +⨯⨯+-+--⨯-△△四边形===, 整理得:23970x x ++=,解得:0∆<,故方程无解,则不存在满足条件的点P .【解析】(1)函数的表达式为:()()()21323y a x x a x x -++-==,即可求解;(2):1:2CPD BPD S S △△=,则2233BD BC ⨯==,即可求解;(3)15OGE ∠=︒,230PEG OGE ∠=∠=︒,则45OHE ∠=︒,故1OH OE ==,即可求解;(4)利用8OBC PBC BOCP S S S +△△四边形==,即可求解.【考点】二次函数综合运用。

黔东南州2019年中考数学试卷及答案(解析word版)

黔东南州2019年中考数学试卷及答案(解析word版)

2019年贵州省黔东南州中考数学试卷一、选择题:每个小题4分,10个小题共40分1.(4分)(2019年贵州黔东南)=()A. 3 B.﹣3 C.D.﹣考点:绝对值.分析:按照绝对值的性质进行求解.解答:解:根据负数的绝对值是它的相反数,得:|﹣|=.故选C.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2019年贵州黔东南)下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.(a+b)2=a2+b2 D.+=考点:完全平方公式;实数的运算;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式=a5,错误;B、原式=a6,正确;C、原式=a2+b2+2ab,错误;D、原式不能合并,错误,故选B点评:此题考查了完全平方公式,实数的运算,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.3.(4分)(2019年贵州黔东南)如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD=BC B.A B∥DC,AD∥BC C.AB=DC,AD=BC D.OA=OC,OB=OD考点:平行四边形的判定.分析:根据平行四边形的判定定理分别进行分析即可.解答:解:A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故选:A.点评:此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.(4分)(2019年贵州黔东南)掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上考点:随机事件.分析:根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.解答:解:A、是随机事件,故A正确;B、不是必然事件,故B错误;C、不是必然事件,故C错误;D、是随机事件,故D错误;故选:A.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)(2019年贵州黔东南)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5 B. 1.5 C. D. 1考点:旋转的性质.分析:解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC ﹣BD计算即可得解.解答:解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选D.点评:本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.6.(4分)(2019年贵州黔东南)如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB的长为()A.4cm B.3cm C.2cm D.2cm考点:圆周角定理;等腰直角三角形;垂径定理.专题:计算题.分析:连结OA,根据圆周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断△OAE为等腰直角三角形,所以AE=OA=,然后利用AB=2AE进行计算.解答:解:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴A E=,∴AB=2AE=3(cm).故选B.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.7.(4分)(2019年贵州黔东南)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2019的值为()A.2019 B.2019 C.2019 D. 2019考点:抛物线与x轴的交点.分析:把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2019,并求值.解答:解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2019=1+2019=2019.故选:D.点评:本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.8.(4分)(2019年贵州黔东南)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x轴于点C,则△ABC的面积为()A.1 B.2C.D.考点:反比例函数系数k的几何意义.专题:计算题.分析:由于正比例函数y=x与反比例函数y=的图象相交于A、B两点,则点A与点B 关于原点对称,所以S△AOC=S△BOC,根据反比例函数比例系数k的几何意义得到S△BOC=,所以△ABC的面积为1.解答:解:∵正比例函数y=x与反比例函数y=的图象相交于A、B两点,∴点A与点B关于原点对称,∴S△AOC=S△BOC,∵BC⊥x轴,∴△ABC的面积=2S△BOC=2××|1|=1.故选A.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9.(4分)(2019年贵州黔东南)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选B.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.10.(4分)(2019年贵州黔东南)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A. 6 B.12 C.2D. 4考点:翻折变换(折叠问题).分析:设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.解答:解:设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF===4.故选D.点评:本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.二、填空题:每个小题4分,6个小题共24分11.(4分)(2014年贵州黔东南)cos60°=.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算.解答:解:cos60°=.点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.12.(4分)(2019年贵州黔东南)函数y=自变量x的取值范围是x>1.考点:函数自变量的取值范围.分析:根据二次根式被开方数非负、分母不等于0列式计算即可得解.解答:解:有意义的条件是x﹣1≥0,解得x≥1;又分母不为0,x﹣1≠0,解得x≠1.∴x>1.故答案为:x>1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(4分)(2019年贵州黔东南)因式分解:x3﹣5x2+6x=x(x﹣3)(x﹣2).考点:因式分解-十字相乘法等;因式分解-提公因式法.分析:先提取公因式x,再利用十字相乘法分解因式.解答:解:x3﹣5x2+6x=x(x2﹣5x+6)=x(x﹣3)(x﹣2).故答案是:x(x﹣3)(x﹣2).点评:本题考查了用提公因式法和十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(4分)(2019年贵州黔东南)若一元二次方程x2﹣x﹣1=0的两根分别为x1、x2,则+=﹣1.考点:根与系数的关系.分析:欲求+的值,先把此代数式变形为两根之积或两根之和的形式,再代入数值计算即可.解答:解:∵一元二次方程x2﹣x﹣1=0的两根分别为x1、x2,∴x1+x2=1,x1x2=﹣1,∴+===﹣1.故答案为﹣1.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.15.(4分)(2019年贵州黔东南)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为5.考点:由三视图判断几何体.分析:易得此几何体有三行,三列,判断出各行各列最少有几个正方体组成即可.解答:解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故答案为5.点评:本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最少正方体的个数.16.(4分)(2019年贵州黔东南)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为.考点:轴对称-最短路线问题;一次函数图象上点的坐标特征.分析:利用一次函数图象上点的坐标性质得出OA′=1,进而利用勾股定理得出即可.解答:解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时PA+PB最小,由题意可得出:OA′=1,BO=2,PA′=PA,∴PA+PB=A′B==.故答案为:.点评:此题主要考查了利用轴对称求最短路线以及一次函数图象上点的特征等知识,得出P点位置是解题关键.三、解答题:8个小题,共86分17.(8分)(2019年贵州黔东南)计算:2tan30°﹣|1﹣|+(2019﹣)0+.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2×﹣(﹣1)+1+=﹣+1+1+=2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、绝对值、特殊角的三角函数值、二次根式化简等考点的运算.18.(8分)(2019年贵州黔东南)先化简,再求值:÷﹣,其中x=﹣4.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•﹣=﹣=,当x=﹣4时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(10分)(2019年贵州黔东南)解不等式组,并写出它的非负整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:分别求出各不等式的解集,再求出其公共解集,找出符合条件的x的非负整数解即可.解答:解:,由①得,x>﹣,由②得,x<,故此不等式组的解集为:﹣<x<,它的非负整数解为:0,1,2,3.点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.20.(12分)(2019年贵州黔东南)黔东南州某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:学习时间t(分钟)人数占女生人数百分比0≤t<30 4 20%30≤t<60 m 15%60≤t<90 5 25%90≤t<120 6 n120≤t<150 2 10%根据图表解答下列问题:(1)在女生的频数分布表中,m=3,n=0.3.(2)此次调查共抽取了多少名学生?(3)此次抽样中,学习时间的中位数在哪个时间段?(4)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?考点:频数(率)分布直方图;频数(率)分布表;中位数;列表法与树状图法.分析:(1)根据第一段中有4人,占20%,即可求得女生的总人数,然后根据频率的计算公式求得m、n的值;(2)把直方图中各组的人数相加就是男生的总人数,然后加上女生总人数即可;(3)求得每段中男女生的总数,然后根据中位数的定义即可判断;(4)利用列举法即可求解.解答:解:(1)女生的总数是:4÷20%=20(人),则m=20×15%=3(人),n==0.3;(2)男生的总人数是:6+5+12+4+3=30(人),则此次调查的总人数是:30+20=50(人);(3)在第一阶段的人数是:4+6=10(人),第二阶段的人数是:3+5=8(人),第三阶段的人数是:5+12=17(人),则中位数在的时间段是:60≤t<90;(4)如图所示:共有20种等可能的情况,则恰好抽到男女生各一名的概率是=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(12分)(2019年贵州黔东南)已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B 作BD⊥CP于D.(1)求证:△ACB∽△CDB;(2)若⊙O的半径为1,∠B CP=30°,求图中阴影部分的面积.考点:切线的性质;扇形面积的计算;相似三角形的判定与性质.分析:(1)由CP是⊙O的切线,得出∠BCD=∠BAC,AB是直径,得出∠ACB=90°,所以∠ACB=∠CDB=90°,得出结论△ACB∽△CDB;(2)求出△OCB是正三角形,阴影部分的面积=S扇形OCB﹣S△OCB=π﹣.解答:(1)证明:∵直线CP是⊙O的切线,∴∠BCD=∠BAC,∵AB是直径,∴∠ACB=90°,又∵BD⊥CP∴∠CDB=90°,∴∠ACB=∠CDB=90°∴△ACB∽△CDB;(2)解:如图,连接OC,∵直线CP是⊙O的切线,∠BCP=30°,∴∠COB=2∠BCP=60°,∴△OCB是正三角形,∵⊙O的半径为1,∴S△OCB=,S扇形OCB==π,∴阴影部分的面积=S扇形OCB﹣S△OCB=π﹣.点评:本题主要考查了切线的性质及扇形面积,三角形的面积,解题的关键是利用弦切角找角的关系.22.(10分)(2019年贵州黔东南)黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-仰角俯角问题.分析:过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25m.由小明站在B 点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,继而得出得出AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m.在Rt△CEN中,由tan∠ECN==,代入CN、EN解方程求出x的值,继而可求得旗杆的高EF.解答:解:过点A作AM⊥EF于M,过点C作CN⊥EF于N,∴MN=0.25m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m,∵∠ECN=30°,∴tan∠ECN===,解得:x≈8.8,则EF=EM+MF≈8.8+1.5=10.3(m).答:旗杆的高EF为10.3m.点评:本题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.23.(12分)(2019年贵州黔东南)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组解决问题;(2)分情况:不大于20件;大于20件;分别列出函数关系式即可;(3)设购进玩具x件(x>20),分别表示出甲种和乙种玩具消费,建立不等式解决问题.解答:解:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,由题意得,解得,答:件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x﹣20)×30×0.7=21x+180;(3)设购进玩具x件(x>20),则乙种玩具消费27x元;当27x=21x+180,则x=30所以当购进玩具正好30件,选择购其中一种即可;当27x>21x+180,则x>30所以当购进玩具超过30件,选择购甲种玩具省钱;当27x<21x+180,则x<30所以当购进玩具少于30件,选择购乙种玩具省钱.点评:此题考查二元一次方程组,一次函数,一元一次不等式的运用,理解题意,正确劣势解决问题.24.(14分)(2019年贵州黔东南)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A (,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.考点:二次函数综合题.分析:(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)根据直线AB的解析式,可求得直线AC的解析式y=﹣x+b,已知了点A的坐标,即可求得直线AC的解析式,联立抛物线的解析式,可求得C点的坐标;解答:解:(1)∵B(4,m)在直线线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,)、B(4,6)在抛物线y=ax2+bx﹣4上,∴,∵c=6,∴a=2,b=﹣8,∴y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n﹣)2+,∵PC>0,∴当n=时,线段PC最大且为.(3)设直线AC的解析式为y=﹣x+b,把A(,)代入得:=﹣+b,解得:b=3,∴直线AC解析式:y=﹣x+3,点C在抛物线上,设C(m,2m2﹣8m+6),代入y=﹣x+3得:2m2﹣8m+6=﹣m+3,整理得:2m2﹣7m+3=0,解得;m=3或m=,∴P(3,0)或P(,).点评:此题主要考查了二次函数解析式的确定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识;。

2019年贵州省黔东南中考数学试卷含答案解析

2019年贵州省黔东南中考数学试卷含答案解析

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前贵州省黔东南州2019年初中毕业生学业考试数 学一、选择题(本大题共10小题,共40.0分) 1.下列四个数中,2019的相反数是( )A .2019-B .12019C .12019-D .020192.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55 000米,55 000这个数用科学记数法可表示为 ( )A .35.510⨯B .35510⨯C .50.5510⨯D .45.510⨯3.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是( )A .国B .的C .中D .梦 4.观察下列图案,既是轴对称图形又是中心对称图形的共有( )A .4个B .3个C .2个D .1个 5.下列四个运算中,只有一个是正确的,这个正确运算的序号是( )①01333+﹣-== ③()3252=8a a④844=a a a -÷- A .① B .② C .③D .④ 6.如果213m ab ﹣与19m ab +是同类项,那么m 等于( )A .2B .1C .1-D .0 7.在下列长度的三条线段中,不能组成三角形的是( ) A .2 cm ,3 cm ,4 cm B .3 cm ,6 cm ,76 cm C .2 cm ,2 cm ,6 cmD .5 cm ,6 cm ,7 cm8.平行四边形ABCD 中,AC 、BD 是两条对角线,现从以下四个关系①AB BC =;②AC BD =;③AC BD ⊥;④AB BC ⊥中随机取出一个作为条件,即可推出平行四边形ABCD 是菱形的概率为( )A .14B .12C .34D .19.若点()14,A y -、()22,B y -、()32,C y 都在反比例函数1y x=-的图象上,则1y 、2y 、3y 的大小关系是( ) A .123y y y >>B .321y y y >>C .213y y y >>D .132y y y >>10.如图,在一块斜边长30 cm 的直角三角形木板(Rt ACB △)上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若:1:3AF AC =,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A .2200 cmB .2170 cmC .2150 cmD .2100 cm二、填空题(本大题共10小题,共30.0分) 11.一组数据:2,1,2,5,3,2的众数是 .12.分解因式:229x y -= .13.如图,以ABC △的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接AD .若40B ∠︒=,36C ∠︒=,则DAC ∠的大小为 .14.已知x a y b =⎧⎨=⎩是方程组2623x y x y +=⎧⎨+=-⎩的解。

2019年贵州省黔东南中考数学试卷

2019年贵州省黔东南中考数学试卷

精品文档 欢迎下载数学试卷 第13页(共16页) 数学试卷 第14页(共16页)绝密★启用前贵州省黔东南州2019年初中毕业生学业考试数 学一、选择题(本大题共10小题,共40.0分) 1.下列四个数中,2019的相反数是( )A.2019-B.12019C.12019-D.020192.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55 000米,55 000这个数用科学记数法可表示为 ( ) A.35.510⨯B.35510⨯C.50.5510⨯D.45.510⨯3.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是( )A.国B.的C.中D.梦 4.观察下列图案,既是轴对称图形又是中心对称图形的共有( )A.4个B.3个C.2个D.1个 5.下列四个运算中,只有一个是正确的,这个正确运算的序号是( )①01333+﹣-== ③()3252=8a a④844=a a a -÷- A.①B.②C.③D.④ 6.如果213m ab ﹣与19m ab +是同类项,那么m 等于( )A.2B.1C.1-D.0 7.在下列长度的三条线段中,不能组成三角形的是( ) A.2 cm ,3 cm ,4 cm B.3 cm ,6 cm ,76 cm C.2 cm ,2 cm ,6 cmD.5 cm ,6 cm ,7 cm8.平行四边形ABCD 中,AC 、BD 是两条对角线,现从以下四个关系①AB BC =;②AC BD =;③AC BD ⊥;④AB BC ⊥中随机取出一个作为条件,即可推出平行四边形ABCD 是菱形的概率为 ( )A.14B.12C.34D.19.若点()14,A y -、()22,B y -、()32,C y 都在反比例函数1y x=-的图象上,则1y 、2y 、3y 的大小关系是( ) A.123y y y >>B.321y y y >>C.213y y y >>D.132y y y >>10.如图,在一块斜边长30 cm 的直角三角形木板(Rt ACB △)上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若:1:3AF AC =,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A.2200 cmB.2170 cmC.2150 cmD.2100 cm二、填空题(本大题共10小题,共30.0分)11.一组数据:2,1,2,5,3,2的众数是 . 12.分解因式:229x y -= .13.如图,以ABC △的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接AD .若40B ∠︒=,36C ∠︒=,则DAC ∠的大小为 .14.已知x a y b =⎧⎨=⎩是方程组2623x y x y +=⎧⎨+=-⎩的解。

贵州省黔东南州2019年中考数学真题试题(含解析)

贵州省黔东南州2019年中考数学真题试题(含解析)

2019年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中,2019的相反数是()A. −2019B. 12019C. −12019D. 201902.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A. 5.5×103B. 55×103C. 0.55×105D. 5.5×1043.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A. 国B. 的C. 中D.梦4.观察下列图案,既是轴对称图形又是中心对称图形的共有()A. 4个B. 3个C. 2个D. 1个5.下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3-3=-3;②√5-√2=√3;③(2a2)3=8a5;④-a8÷a4=-a4A. ①B. ②C. ③D. ④6.如果3ab2m-1与9ab m+1是同类项,那么m等于()A. 2B. 1C. −1D. 07.在下列长度的三条线段中,不能组成三角形的是()A. 2cm,3cm,4cmB. 3cm,6cm,76cmC. 2cm,2cm,6cmD. 5cm,6cm,7cm8.平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A. 14B. 12C. 34D. 19.若点A(-4,y1)、B(-2,y2)、C(2,y3)都在反比例函数y=-1x的图象上,则y1、y2、y3的大小关系是()A. x1>x2>x3B. x3>x2>x1C. x2>x1>x3D. x1>x3>x210.如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A. 200xx2B. 170xx2C. 150xx2D. 100xx2二、填空题(本大题共10小题,共30.0分)11.一组数据:2,1,2,5,3,2的众数是______.12.分解因式:9x2-y2=______.13.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为______.14. 已知{x =x x =x 是方程组{2x +x =6x +2x =−3的解,则a +b 的值为______. 15. 某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.16. 如图,点E 在正方形ABCD 的边AB 上,若EB =1,EC =2,那么正方形ABCD 的面积为______.17. 下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第______个箭头方向相同(填序号).18. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有______个白球.19. 如图所示,一次函数y =ax +b (a 、b 为常数,且a >0)的图象经过点A (4,1),则不等式ax +b <1的解集为______.20. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC =10,则CD 的长度是______.三、计算题(本大题共1小题,共12.0分)21. (1)计算:|-12|+(-1)2019+2-1-(π-3)0;(2)解方程:1-x −32x +2=3x x +1四、解答题(本大题共5小题,共68.0分)22. 如图,点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A 、B .(1)若∠A =30°,求证:PA =3PB ;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=1(90°-∠P)成立.请2你写出推理过程.23.某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了______名学生,条形统计图中m=______,n=______;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有______封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)15 20 30 …若日销售量是销售价的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}=1+2+9=4,min{1,2,-3}=-3,min3(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=______,②min{sin30°,cos60°,tan45°}=______;(2)若min(3-2x,1+3x,-5}=-5,则x的取值范围为______;(3)若M{-2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.26.已知抛物线y=ax2+bx+3经过点A(1,0)和点B(-3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为______,抛物线的顶点坐标为______;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,-1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:2019的相反数是-2019,故选:A.根据相反数的概念解答即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】D【解析】解:55000这个数用科学记数法可表示为5.5×104,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】B【解析】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】D【解析】解:①30+3-3=1+=1,故此选项错误;②-无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④-a8÷a4=-a4,正确.故选:D.直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.【答案】A【解析】解:根据题意,得:2m-1=m+1,解得:m=2.故选:A.根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.【答案】C【解析】解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.根据三角形任意两边的和大于第三边,进行分析判断.本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.【答案】B【解析】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.故选:B.菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.【答案】C【解析】解:∵点A(-4,y1)、B(-2,y2)、C(2,y3)都在反比例函数y=-的图象上,∴y1=-=,y2=-=,y3=-,又∵-<<,∴y3<y1<y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.【答案】D【解析】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12-(4)2=100(cm2).故选:D.设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.11.【答案】2【解析】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.根据众数的定义即一组数据中出现次数最多的数,即可得出答案.此题考查了众数,众数是一组数据中出现次数最多的数.12.【答案】(3x+y)(3x-y)【解析】解:原式=(3x+y)(3x-y),故答案为:(3x+y)(3x-y).利用平方差公式进行分解即可.此题主要考查了公式法分解因式,关键是掌握平方差公式:a2-b2=(a+b)(a-b).13.【答案】34°【解析】解:∵∠B=40°,∠C=36°,∴∠BAC=180°-∠B-∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°-∠B)÷2=70°,∴∠DAC=∠BAC-∠BAD=34°故答案为:34°.根据三角形的内角和得出∠BAC=180°-∠B-∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°-∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC-∠BAD=34°.本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.【答案】1【解析】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.把代入方程组得:,相加可得出答案.本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b后相加即可.15.【答案】2000【解析】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.【答案】3【解析】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.根据勾股定理求出BC,根据正方形的面积公式计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.【答案】3【解析】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.【答案】20【解析】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.【答案】x<4【解析】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合. 20.【答案】15-5√3【解析】解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10,∵AB ∥CF ,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD 中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.故答案是:15-5.过点B 作BM ⊥FD 于点M ,根据题意可求出BC 的长度,然后在△EFD 中可求出∠EDF=45°,进而可得出答案.本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.21.【答案】解:(1)原式=12-1+12-1=-1;(2)去分母得:2x +2-x +3=6x ,解得:x =1,经检验x =1是分式方程的解.【解析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.【答案】解:(1)∵AB 是直径∴∠ACP =90°,∵∠A =30°,∴AB =2BC∵PC 是⊙O 切线∴∠BCP =∠A =30°,∴∠P =30°,∴PB =BC ,BC =12AB ,∴PA =3PB(2)∵点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A 、B , ∴∠BCP =∠A ,∵∠A +∠P +∠ACB +∠BCP =180°,且∠ACB =90°,∴2∠BCP =180°-∠P ,∴∠BCP =12(90°-∠P )【解析】(1)由PC 为圆O 的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A ,由∠A 的度数求出∠BCP 的度数,进而确定出∠P 的度数,再由PB=BC ,AB=2BC ,等量代换确定出PB 与PA 的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.【答案】500 225 25 425【解析】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C 选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1-45%)=60500(名).(1)由B 选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m 、n 的值;(2)先求出C 选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】解:(1)依题意,根据表格的数据,设日销售量y (袋)与销售价x (元)的函数关系式为y =kx +b 得{25=15x +x 20=20x +x ,解得{x =−1x =40故日销售量y (袋)与销售价x (元)的函数关系式为:y =-x +40(2)依题意,设利润为w 元,得w =(x -10)(-x +40)=-x 2+50x +400整理得w=-(x-25)2+225∵-1<0∴当x=2时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【解析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.【答案】4312-2≤x≤4【解析】解:(1)①M{(-2)2,22,-22}=,②min{sin30°,cos60°,tan45°}=;故答案为:,.(2)∵min(3-2x,1+3x,-5}=-5,∴,解得-2≤x≤4,故答案为-2≤x≤4.(3)∵M{-2x,x2,3}=2,∴=2,解得x=-1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.【答案】y=-x2-2x+3 (-1,4)【解析】解:(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即:-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2-2x+3…①,顶点坐标为(-1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BDsin∠CBO=2,则点D(-1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=-x-1…②,联立①②并解得:x=(舍去正值),故点P(,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,-x2-2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(-x2-2x+3-x-3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.祝福你考试成功祝福语祝你考试成功!。

2019年贵州省黔东南州中考数学试卷(含答案解析)

2019年贵州省黔东南州中考数学试卷(含答案解析)

2019年贵州省黔东南州中考数学试卷(含答案解析)一、选择题(本大题10小题,每题4分,共40分)1.(4分)下列四个数中,2019的相反数是()A.﹣2019B.C.﹣D.201902.(4分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×1043.(4分)某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦4.(4分)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个5.(4分)下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.①B.②C.③D.④6.(4分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.07.(4分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm8.(4分)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.19.(4分)若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2 10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2二、填空题(本大题10小题,每题3分,共30分)11.(3分)一组数据:2,1,2,5,3,2的众数是.12.(3分)分解因式:9x2﹣y2=.13.(3分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为度.14.(3分)已知是方程组的解,则a+b的值为.15.(3分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.16.(3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为.17.(3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第个箭头方向相同(填序号).18.(3分)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有个白球.19.(3分)如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.20.(3分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC =10,则CD的长度是.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=22.(12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.2019年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每题4分,共40分)1.(4分)下列四个数中,2019的相反数是()A.﹣2019B.C.﹣D.20190【分析】根据相反数的概念解答即可.【解答】解:2019的相反数是﹣2019,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:55000这个数用科学记数法可表示为5.5×104,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(4分)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;④是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(4分)下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.①B.②C.③D.④【分析】直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:①30+3﹣3=1+=1,故此选项错误;②﹣无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④﹣a8÷a4=﹣a4,正确.故选:D.【点评】此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.(4分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.0【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.【点评】本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.(4分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+3>4,能组成三角形;B、3+6>6,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.(4分)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.1【分析】菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).【解答】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.【点评】本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.(4分)若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=,y2=﹣=,y3=﹣,又∵﹣<<,∴y3<y1<y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【分析】设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.【点评】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.二、填空题(本大题10小题,每题3分,共30分)11.(3分)一组数据:2,1,2,5,3,2的众数是2.【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.12.(3分)分解因式:9x2﹣y2=(3x+y)(3x﹣y).【分析】利用平方差公式进行分解即可.【解答】解:原式=(3x+y)(3x﹣y),故答案为:(3x+y)(3x﹣y).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a ﹣b).13.(3分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为34度.【分析】根据三角形的内角和得出∠BAC=180°﹣∠B﹣∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°﹣∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC﹣∠BAD=34°.【解答】解:∵∠B=40°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=34°故答案为:34.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.(3分)已知是方程组的解,则a+b的值为1.【分析】把代入方程组得:,相加可得出答案.【解答】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.【点评】本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b 后相加即可.15.(3分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是2000元.【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【解答】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.(3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为3.【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【解答】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.(3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第3个箭头方向相同(填序号).【分析】根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.【解答】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3【点评】主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.(3分)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有20个白球.【分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【解答】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.(3分)如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为x<4.【分析】由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.【解答】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.20.(3分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC =10,则CD的长度是15﹣5.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10 ,∵AB∥CF,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5 ,∴CD=CM﹣MD=15﹣5 .故答案是:15﹣5.【点评】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=【分析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1+﹣1=﹣1;(2)去分母得:2x+2﹣x+3=6x,解得:x=1,经检验x=1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.【分析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB与P A的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.【解答】解:(1)∵AB是直径∴∠ACB=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=AB,∴P A=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=180°﹣∠P,∴∠BCP=(90°﹣∠P)【点评】本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了500名学生,条形统计图中m=225,n=25;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有425封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【分析】(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.【解答】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y =kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=25时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点评】本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为﹣2≤x≤4;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.【分析】(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.【解答】解:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;故答案为:,.(2)∵min(3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4,故答案为﹣2≤x≤4.(3)∵M{﹣2x,x2,3}=2,∴=2,解得x=﹣1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.【点评】本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为y=﹣x2﹣2x+3,抛物线的顶点坐标为(﹣1,4);(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.【解答】解:(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即:﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①,顶点坐标为(﹣1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BD sin∠CBO=2,则点D(﹣1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=﹣x﹣1…②,联立①②并解得:x =(舍去正值),故点P (,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,﹣x2﹣2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC =×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.【点评】本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.第21页(共21页)。

贵州省黔东南州2019年中考数学试卷(解析版)

贵州省黔东南州2019年中考数学试卷(解析版)

贵州省黔东南州2019年中考数学试卷一、选择题(本大题10小题,每题4分,共40分)1.(4分)下列四个数中,2019的相反数是()A.﹣2019B.C.﹣D.20190【分析】根据相反数的概念解答即可.【解答】解:2019的相反数是﹣2019,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:55000这个数用科学记数法可表示为5.5×104,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(4分)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(4分)下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.①B.②C.③D.④【分析】直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:①30+3﹣3=1+=1,故此选项错误;②﹣无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④﹣a8÷a4=﹣a4,正确.故选:D.【点评】此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.(4分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.0【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.【点评】本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.(4分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,76cmC.2cm,2cm,6cm D.5cm,6cm,7cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+3>4,能组成三角形;B、3+6>7,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.(4分)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.1【分析】菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).【解答】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.故选:B.【点评】本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.(4分)若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=,y2=﹣=,y3=﹣,又∵﹣<<,∴y3<y1<y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【分析】设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.【点评】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.二、填空题(本大题10小题,每题3分,共30分)11.(3分)一组数据:2,1,2,5,3,2的众数是2.【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.12.(3分)分解因式:9x2﹣y2=(3x+y)(3x﹣y).【分析】利用平方差公式进行分解即可.【解答】解:原式=(3x+y)(3x﹣y),故答案为:(3x+y)(3x﹣y).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).13.(3分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为34°.【分析】根据三角形的内角和得出∠BAC=180°﹣∠B﹣∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°﹣∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC﹣∠BAD=34°.【解答】解:∵∠B=40°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=34°故答案为:34°.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.(3分)已知是方程组的解,则a+b的值为1.【分析】把代入方程组得:,相加可得出答案.【解答】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.【点评】本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b后相加即可.15.(3分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是2000元.【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【解答】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.(3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC =2,那么正方形ABCD的面积为3.【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【解答】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.(3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第3个箭头方向相同(填序号).【分析】根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.【解答】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3【点评】主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.(3分)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有20个白球.【分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【解答】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.(3分)如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为x<4.【分析】由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.【解答】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.20.(3分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F =∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是15﹣5.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10 ,∵AB∥CF,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5 ,∴CD=CM﹣MD=15﹣5 .故答案是:15﹣5.【点评】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=【分析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1+﹣1=﹣1;(2)去分母得:2x+2﹣x+3=6x,解得:x=1,经检验x=1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.【分析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB 与P A的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.【解答】解:(1)∵AB是直径∴∠ACP=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=AB,∴P A=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=180°﹣∠P,∴∠BCP=(90°﹣∠P)【点评】本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了500名学生,条形统计图中m=225,n=25;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有425封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【分析】(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.【解答】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=2时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点评】本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为﹣2≤x≤4;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.【分析】(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.【解答】解:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;故答案为:,.(2)∵min(3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4,故答案为﹣2≤x≤4.(3)∵M{﹣2x,x2,3}=2,∴=2,解得x=﹣1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.【点评】本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为y=﹣x2﹣2x+3,抛物线的顶点坐标为(﹣1,4);(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P 的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即可求解;(2)S △CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.【解答】解:(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x ﹣3),即:﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①,顶点坐标为(﹣1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BD sin∠CBO=2,则点D(﹣1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=﹣x﹣1…②,联立①②并解得:x=(舍去正值),故点P(,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,﹣x2﹣2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.【点评】本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.。

2019年贵州省黔东南中考数学试卷含答案解析

2019年贵州省黔东南中考数学试卷含答案解析

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前贵州省黔东南州2019年初中毕业生学业考试数 学一、选择题(本大题共10小题,共40.0分) 1.下列四个数中,2019的相反数是( )A .2019-B .12019C .12019-D .020192.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55 000米,55 000这个数用科学记数法可表示为 ( )A .35.510⨯B .35510⨯C .50.5510⨯D .45.510⨯3.某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是( )A .国B .的C .中D .梦 4.观察下列图案,既是轴对称图形又是中心对称图形的共有( )A .4个B .3个C .2个D .1个 5.下列四个运算中,只有一个是正确的,这个正确运算的序号是( )①01333+﹣-== ③()3252=8a a④844=a a a -÷- A .① B .② C .③D .④ 6.如果213m ab ﹣与19m ab +是同类项,那么m 等于( )A .2B .1C .1-D .0 7.在下列长度的三条线段中,不能组成三角形的是( ) A .2 cm ,3 cm ,4 cm B .3 cm ,6 cm ,76 cm C .2 cm ,2 cm ,6 cmD .5 cm ,6 cm ,7 cm8.平行四边形ABCD 中,AC 、BD 是两条对角线,现从以下四个关系①AB BC =;②AC BD =;③AC BD ⊥;④AB BC ⊥中随机取出一个作为条件,即可推出平行四边形ABCD 是菱形的概率为( )A .14B .12C .34D .19.若点()14,A y -、()22,B y -、()32,C y 都在反比例函数1y x=-的图象上,则1y 、2y 、3y 的大小关系是( ) A .123y y y >>B .321y y y >>C .213y y y >>D .132y y y >>10.如图,在一块斜边长30 cm 的直角三角形木板(Rt ACB △)上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若:1:3AF AC =,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A .2200 cmB .2170 cmC .2150 cmD .2100 cm二、填空题(本大题共10小题,共30.0分) 11.一组数据:2,1,2,5,3,2的众数是 .12.分解因式:229x y -= .13.如图,以ABC △的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接AD .若40B ∠︒=,36C ∠︒=,则DAC ∠的大小为 .14.已知x a y b =⎧⎨=⎩是方程组2623x y x y +=⎧⎨+=-⎩的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年初中毕业生学业(升学)考试
数 学
一、选择题(本大题10小题,每题4分,共40分) 1、下列四个数中,2019的相反数是
A.-2019
B.20191
C.2019
1
- D.2019
答案:A
2、举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米,55000这个数用科学记数法可表示为
A.3105.5⨯
B.31055⨯
C.51055.0⨯
D.4105.5⨯ 答案:D
3、某正方体的平面展开图 如下,由此可知,原正方体“中”字所在面的对面的汉子是
A.国
B.的
C.中
D.梦 答案:B
4、观察下列图案,既是轴对称图形又是中心对称图形的共有
A.4个
B.3个
C.2个
D.1个 答案:B
5、下列四个运算中,只有一个是正确这个正确运算的序号是
①3-331-0=+ ②32-5= ③
53
282a a =)( ④448--a a a =÷
A. ①
B.②
C.③
D.④ 答案:D
6、如果123-m ab 与19+m ab 是同类项,那么m 等于
A.2
B.1
C.-1
D.0 答案:A
7、在下列长度的三条线段中,不能组成三角形的是
A.cm cm cm 4,3,2
B.cm cm cm 6,6,3
C.cm cm cm 6,2,2
D.cm cm cm 7,6,5 答案:C
8、平行四边形ABCD 中,AC 、BD 是两条对角线,现从以下四个关系①BC AB =、②B D AC = ③BD AC ⊥、④BC AB ⊥中随机取出一个作为条件,即可推出平行四边形ABCD 是菱形的概率为 A.
41 B.21 C.4
3
D.1 答案:B
9、若点),()、,()、,(32122-4-y C y B y A 都在反比例函数x y 1-=的图像上,
则321y y y 、、的大小关系是
A.321y y y 〉〉
B. 123y y y 〉〉
C. 312y y y 〉〉
D. 231y y y 〉〉 答案:C
10、如右图,在一斜边长30cm 的直角三角形模板(即ACB Rt ∆)中截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若3:1:=AC AF ,则这块木板截取正方形CDEF 后,剩余部分的面积为
A.2200cm
B.2170cm
C.2150cm
D.2100cm 答案:D
二、填空题(本大题10小题,每题3分,共30分)
11.一组数据:2,1,2,5,3,2的众数是 . 答案:2
12.分解因式:229y x -= .
答案:
3(3-)x y x y +() 13.如图,以△ABC 的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D,连接AD ,若︒=∠40B ,︒=∠36C ,,则DAC ∠的大小为 度.
答案:34° 14.已知
是方程组
的解,则b a +的值
是 . 答案:1
15、某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价2240元,则这种商品的进价是 . 答案:2000
16.如图,点E 在正方形ABCD 的边AB 上,若EB=1,EC=2, 那么正方形ASCD 的面积为 .
答案:3
17、下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第 个箭头方向相同(填序号)
答案:3
18、从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有 个白球. 答案:20
19、如图19所示,一次函数),(b a b a b ax y >为常数,且+=的图像经过点 A (4,1),则不等式1<b ax +的解集为 .
答案:x <4
20、三角板是我们学习数学的好帮手,将一对直角三角板如图20放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF,
,,,106045,90=︒=∠︒=∠︒=∠=∠AC A E ACB F 则CD 的长度是 . 答案:1553-
三、解答题(本大题6小题,共80分) 21、(12分)
(1)(6分)计算:012019)3(2)1(2
1
--+-+-
-π (2)(6分)解方程:1
32231+=+--
x x
x x 解:(1)原式=11
1122+--=-1
(2)方程两边同乘2(x+1),得: 2x+2-x+3=6x , 解得: x =1,
经检验: x =1是原方程的根。

22.(12分)如图,点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交与点A 、B ,
(1)若∠A=30゜,求证:PA=3PB ;
(2)小明发现,∠A 在一定范围内变化时,始终有)90(21
P BCP ∠-︒=∠成
立,请你写出推理过程.
(1)证明:PC 是⊙O 的切线, 所以,∠PCB =∠A =30°,
由AB 是圆O 的直径,得:∠ABC =60°, 所以,∠BCP =∠BPC =30°, 所以,PB =BC , 又BC =
1
2
AB ,
所以,PB =OB =OA ,即PA =3PB (2)PC 是⊙O 的切线, 所以,∠PCB =∠A ,
△ACP 中,∠A+∠P+∠ACB+∠PCB =180°, 所以,2∠PCB =180°-90°-∠P ,
所以,)90(2
1
P BCP ∠-︒=∠
22.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道,为了解两年来活动开展的情况,某课题组从全地区 随机抽取部分中学生进行问卷调査.对“两年来,你通过心灵信箱给老师总共投递过几封信? ”这一调查项设有四个回答选项,选项A :没有投过^选项B :一封;选项C :两封:选项D :三封及以上.根据接受问卷调査学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:
请根据以上统计图回答:
(1) 此次抽样调査________名学生,条形统计图中=m _______,=n _________; (2)请将条形统计图补全;
(3)接受问卷调査的学生在活动中投出的信件总数至少有_____________封; (4)全地区中学生共有110 000名,由此次调査估算,在此项活动中,全地区
给老师投过信件的学生约有多少名? 解:(1)设总人数为x , 对于B :有
150
30%x
=,解得:x =500,
m=500×45%=225,n=500×5%=25,
所以,答案为:500,225,25
(2)500×20%=100,如下图,
(3)150+100×2+25×3=425
(4)110000×(1-45%)=60500
24.(14分)某山区不仅有美丽风光,也有许多令人軎爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.己知某种土特产毎袋成本10元,试销阶段每袋的销售价x (元)与该土特产的日销售量y (袋)之间的关系如下表:
x(元)15 20 30 …
y(袋)25 20 10 …
若日销售量y是销售价x的一次函数,试求:
(1)日销售量y(袋)与销售价x(元)的函数关系式;
(2)假设后续销售情况与试销阶段效果相同,要使这种土特产毎日销售的利润最大, 每袋的销售价应定为多少元?每日销售的最大利润是多少元?
25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下
对于三个实数c b a ,,,用{}c b a M ,,表示这三个教的平均数,用{}c b a ,,m in 表
示这 三个教中最小的数,例如:{
}43
9
219,2,1=++=M ,{},33,2,1m in -=-{}11,,1,3m in =,清结合上述材料,解决下列问题:
(1)①{}
=--2222,2,)2(M ____________,
②{}=︒︒︒45tan ,60cos ,30sin m in ____________;
(2)若{}55,31,23m in -=-+-x x ,则x 的取值范围为___________: (3)若{}
,23,,22=-x x M 求x 的值
(4)如果{}{}x x x x M 2,1,2m in 2,1,2+=+,求x 的值。

26. (16分)已知抛物线32++=bx ax y 经过点A (1,0)和点B (-3,0),与y 轴
交于点C , 点P 为第二象限内抛物线上的动点.
(1)抛物线的解析式为______________,抛物线的顶点坐标为_________; (2)如图26-1,连接OP 交BC 于点D ,当2:1:=∆∆BPD CPD S S 时,清求出点D 的坐标;
(3)如图26-2,点E 的坐标为(0, -1),点G 为x 轴负半轴上的一点,∠OGE
= 15°,连接PE ,若∠PEG=2∠OGE,请求出点P 的坐标;
(4)如图26-3,是否存在点P ,使四边形BOCP 的面积为8?若存在,清求
出点P 的坐标,若不存在,清说明理由。

相关文档
最新文档