SNCR脱硝原理

合集下载

有co存在sncr脱硝原理

有co存在sncr脱硝原理

有co存在sncr脱硝原理SNCR(Selective Non-Catalytic Reduction)是一种常用的烟气脱硝技术,它是通过向燃烧介质中注入适量的还原剂,使脱硝剂与NOx气体发生还原反应,从而达到降低烟气中NOx浓度的目的。

本文将介绍SNCR脱硝的基本原理,并探讨其与CO存在时的反应情况。

SNCR脱硝的基本原理是还原反应,其反应物为脱硝剂和NOx气体。

脱硝剂一般为氨气(NH3)或尿素(CO(NH2)2)。

在高温烟气中,脱硝剂通过喷射或喷淋的方式与NOx气体接触,发生强烈而迅速的化学反应,将NOx还原为氮气(N2)和水(H2O)。

在SNCR脱硝过程中,脱硝剂的注入量、注入位置和注入温度是关键因素。

脱硝剂的注入量需要经过实地测试和优化确定,以保证达到最佳的脱硝效果。

注入位置应选择在烟气进一步燃烧和混合的区域,以增加脱硝反应的有效性。

注入温度需要控制在一定的范围内,过高的温度可能导致脱硝剂分解而失去脱硝效果,过低的温度则难以实现充分的反应。

当CO同时存在于烟气中时,会对SNCR脱硝的反应产生影响。

一方面,CO的存在会抑制NOx的还原反应,因为CO与脱硝剂竞争反应。

CO与氨气或尿素可以发生氧化反应,生成氰化物(HCN)和CO2,而不参与NOx的还原。

因此,在SNCR脱硝系统设计和操作中,需要考虑CO的浓度和对反应的影响,以保证脱硝效果。

另一方面,CO的存在也可以起到助燃剂的作用,促进脱硝反应的进行。

CO在高温下可以与氧气反应生成CO2和能量释放,提高燃烧温度和烟气混合效果,从而增加脱硝剂与NOx气体的接触机会,加速脱硝反应。

因此,在CO存在的情况下,SNCR脱硝的反应速率可能会有所提高。

综上所述,SNCR脱硝是一种有效降低烟气中NOx浓度的技术。

在SNCR脱硝过程中,脱硝剂的注入量、注入位置和注入温度需要合理控制,以实现最佳的脱硝效果。

而当CO同时存在时,需要考虑CO对反应的影响,尤其是在高浓度CO存在的情况下。

sncr脱硝原理及工艺

sncr脱硝原理及工艺

sncr脱硝原理及工艺
脱硝是指将燃烧过程中产生的氮氧化物(NOx)转化为较为无害的氮气(N2)或氨(NH3)的过程。

脱硝在工业生产中非
常重要,尤其是对于电力、钢铁、化工等行业而言。

Sncr是
一种常用的脱硝工艺,下面将介绍其原理和工艺过程。

1. Sncr脱硝原理:
Sncr脱硝主要利用氨水或尿素溶液与燃烧过程中的NOx发生
化学反应,将其转化为氮气或氨。

这种反应在高温下进行,需要满足适当的反应温度和氨水的投加量。

2. Sncr脱硝工艺过程:
(1)烟气进入SNCR反应器:燃烧产生的烟气进入SNCR反
应器中,反应器中设置有适当的喷射装置,用于喷射氨水或尿素溶液。

(2)氨水或尿素喷射:通过喷射装置,将氨水或尿素溶液喷
射到烟气中。

喷射后的氨水或尿素溶液与烟气中的NOx发生
反应,将其转化为氮气或氨。

(3)反应温度控制:Sncr脱硝反应需要在一定的温度范围内
进行,通常为800°C-1100°C。

通过调节喷射装置和燃烧设备,控制烟气的温度在适宜的范围内。

(4)反应产物处理:脱硝反应后的烟气中生成的氮气或氨进
入气体处理系统进行进一步处理,以确保排放的气体符合环保要求。

Sncr脱硝工艺具有脱硝效率高、操作简单、设备布局灵活等
优点,广泛应用于不同工业领域。

但同时也存在氨逃逸、不适
用于高浓度NOx气体等问题,因此在实际应用中需要综合考虑各种因素,选择合适的脱硝工艺。

sncr脱硝原理及工艺

sncr脱硝原理及工艺

sncr脱硝原理及工艺
sncr脱硝技术可以有效减轻大气中的氮氧化物污染,是大气污染控制技术的重要技术之一。

sncr脱硝技术实质上是一种燃烧控制技术,可以通过调节燃料与空气的混合比率,并加入富氧剂,提高燃烧温度来减少烟气中的氮氧化物,如NOX、SOx等。

sncr脱硝技术具有一定的烟气浓度条件,它在一定程度上增加了这些气体的燃烧温度,从而减少了气体中氮氧化物的含量。

1. 预燃阶段:在较高温度条件下,控制预燃或助燃气体,增加富氧剂,燃烧分解消耗氮氧化物。

2. 余氧燃烧:燃烧室的温度达到稳定值后,为了维持燃烧室的持续稳定燃烧,需要适时或连续加入富氧剂,使氮氧化物转化率达到最大。

3. 对称燃烧:通过调节燃料与空气的混合比率,恒定滞燃混合比以及改善燃烧均匀性,提高燃烧温度,使燃烧室保持一定温度和合理的火焰模型,以达到脱硝的目的。

1. 容易操作:烟囱限制气体排放浓度的调节非常容易;
2. 低成本: sncr技术的实施成本低,投资费用更少;
3. 良好的排放效果:可以有效降低燃烧过程中氮氧化物的排放;
4. 功率浓度容量: sncr技术能够满足不同功率浓度和容量的变数要求。

SNCR脱硝技术原理

SNCR脱硝技术原理

SNCR脱硝技术:SNCR脱硝技术是将NH3、尿素等还原剂喷入锅炉炉内与NOx进行选择性反应,不用催化剂,因此必须在高温区加入还原剂;还原剂喷入炉膛温度为850~1100℃的区域,迅速热分解成NH3,与烟气中的NOx反应生成N2和水,该技术以炉膛为反应器; SNCR烟气脱硝技术的脱硝效率一般为30%~80%,受锅炉结构尺寸影响很大;采用SNCR技术,目前的趋势是用尿素代替氨作为还原剂;1、技术原理在850~1100℃范围内,NH3或尿素还原NOx的主要反应为:NH3为还原剂4 NH3 + 4NO +O2→ 4N2 + 6H2O尿素为还原剂NO+CONH22+1/2O2 → 2N2 + CO2 + H2O2、系统组成SNCR系统烟气脱硝过程是由下面四个基本过程完成:接收和储存还原剂;在锅炉合适位置注入稀释后的还原剂;还原剂的计量输出、与水混合稀释;还原剂与烟气混合进行脱硝反应;3、技术特点技术成熟可靠,还原剂有效利用率高系统运行稳定设备模块化,占地小,无副产品,无二次污染4、脱硝系统基本流程和添加剂效果基于纯氨、氨水和尿素的溶液比如satamin和carbamin二次添加剂目前在很大程度上比较流行; 通过选择性非催化还原法,氨基在800℃-1050℃时NO生成氮气和水蒸气: NH2+NO <=>H2O+N2,当使用含氨化合物的水溶液时,化合物分解就会释放出氨气;换言之,只有在雾化流体蒸发后氨气才可以从含氨化合物中挥发出来; 自由基之间的反应选择性并不是很强;因此充足的脱除添加剂还是必要的;5、流程设计和装置描述˙燃料添加剂贮存加料装置Satamin添加剂是一种专利产品;根据锅炉大小和每年的燃料消耗量,Satamin添加剂一般以每桶200,500和1000公升桶装形式供给; 对于大型装置,一般设置一个较大的储罐和加料控制器Satamin和Carbamin是低氨水溶液;因而,在贮料箱的充料过程中,或万一贮料箱遭到破坏,在储存位置附近将不会有有毒气体逸出;储罐中放置一个夹层箱或贮存箱足够使用;如果设备放在室外,贮料箱要考虑伴热或保温,放液区要作防水处理;在充料过程中必须关闭雨水排水阀;罐车利用压缩气来卸液;当往NOx脱除车间输送脱除添加剂时,需要使用磁耦合泵和潜液泵;6、混合和分配系统还原剂用水稀释;可以使用自来水或井水来稀释Satamin和Carbamin还原剂;下图箱体上安装有用来测量调节流量和监控压力的设备; 如果燃料中没有加入防止高低温腐蚀的添加剂,可以通过混合和分配系统加入7、注入系统稀释后还原剂的加料系统依赖于燃烧室的几何尺寸;带有单相喷嘴的水冷喷枪在锅炉的应用中非常成功;双相喷嘴使用压缩空气的喷枪适合于层燃锅炉;8、二次排放燃烧富硫燃料>0.5%的S,温度小于350℃时,烟气中高的NH3浓度能够形成硫酸氨;和硫酸氢氨不一样,硫酸氨是一种无污染的副产物;在温度小于160℃时,硫酸氢氨的形成与烟气中SO3量和NH3量有关;硫酸氢氨容易导致换热器表面结垢腐蚀;但是,通过使用配制合理的脱除添加剂Satamin和Carbamin产品,就可以避免硫酸氢氨的形成; 改进后的SNCR装置氨排放允许值依赖于锅炉大小,为5—30mg/m3; NOx脱除装置的设计是根据使用添加剂satamin和carbamin,该系统不影响锅炉效率;反应热量与稀释水蒸发热量相当;。

sncr脱硝原理

sncr脱硝原理

sncr脱硝原理SNCR脱硝原理。

SNCR(Selective Non-Catalytic Reduction)是一种通过在燃烧过程中喷射氨水或尿素溶液来减少NOx排放的技术。

它是一种选择性非催化还原技术,通过在高温燃烧尾气中注入氨水或尿素溶液,使氨与NOx发生还原反应,生成氮气和水蒸气,从而达到减少NOx排放的目的。

SNCR脱硝技术的原理主要包括三个步骤,混合、反应和吸收。

首先,在燃烧尾气中喷射氨水或尿素溶液,与燃烧尾气中的NOx混合,形成氨和NOx的混合气体。

然后,在高温的燃烧尾气中,氨和NOx发生还原反应,生成氮气和水蒸气。

最后,通过冷却和吸收的过程,将生成的氮气和水蒸气从燃烧尾气中去除,从而实现减少NOx排放的效果。

在SNCR脱硝技术中,影响脱硝效果的关键因素包括温度、氨水或尿素溶液的喷射位置和喷射量。

首先,温度是影响还原反应的重要因素,通常要求燃烧尾气的温度在800°C以上,才能保证还原反应的高效进行。

其次,氨水或尿素溶液的喷射位置和喷射量也是影响脱硝效果的关键因素,需要根据燃烧尾气的温度和NOx的浓度进行合理的设计和控制。

与SCR(Selective Catalytic Reduction)技术相比,SNCR脱硝技术具有成本低、投资少、运行维护简单等优点。

但是,由于SNCR脱硝技术对温度和氨水或尿素溶液的喷射位置和喷射量要求较高,因此在实际应用中需要根据具体的燃烧设备和工艺条件进行合理的设计和调整,以达到最佳的脱硝效果。

总的来说,SNCR脱硝技术是一种有效的减少NOx排放的技术,通过在燃烧过程中喷射氨水或尿素溶液,实现了NOx的选择性非催化还原,从而达到减少NOx排放的目的。

在今后的工业生产中,随着环保要求的不断提高,SNCR脱硝技术将会得到更广泛的应用和推广,为改善大气环境质量做出更大的贡献。

SNCR脱硝原理

SNCR脱硝原理

SNCR 脱硝机理选择性非催化还原(Selective Non —Catalytic Reduction ,以下简写为SNCR )脱除NOx 技术是把含有NHx 基的还原剂(如氨气、氨水或者尿素等)喷入炉膛温度为800℃~1100℃的区域,该还原剂迅速热分解成NH 3和其它副产物,随后NH 3与烟气中的NOx 进行SNCR 反应而生成N 2。

采用NH 3作为还原剂,在温度为900℃~1100℃的范围内,还原NOx 的化学反应方程式主要为:O H N O NO NH 22236444+−→−++ ① O H N O NO NH 222236324+−→−++ ②采用尿素作为还原剂还原NOx 的主要化学反应为:()O H CO N O NO CO NH 222222242322++−→−++ ③ ()O H CO N O NO CO NH 22222242442++−→−++ ④反应过程中可能产生副反应,副反应主要的产物为N 2O ,N 2O 是一种温室气体,同时它对臭氧层也能起到破坏的作用。

以尿素为还原剂时,最佳操作温度范围为900~1150℃。

NH 3—SNCR 系统中,还原NOx 的反应对于温度条件非常敏感,炉膛上喷入点的选择,也就是所谓的温度窗口的选择,是SNCR 还原NOx 效率高低的关键。

一般认为最适宜的温度范围为930℃~1090℃,并随反应器类型的变化而有所不同。

当反应温度低于温度窗口时,由于停留时间的限制,往往使化学反应进行的程度较低反应不够彻底,从而造成NOx 的还原率较低,同时未参与反应的NH 3增加,过量的氨气会溢出而形成硫酸铵,易造成空气预热器堵塞,并有腐蚀危险。

而当反应温度高于温度窗口时,NH 3的氧化反应开始起主导作用:O H NO O NH 2236454+−→−+ ⑤从而,NH 3的作用成为氧化并生成NO ,而不是还原NOx 为N 2。

总之,SNCR 还原NOx 的过程是上述两类反应相互竞争、共同作用的结果。

sncr工作原理

sncr工作原理

sncr工作原理SNCR工作原理一、概述SNCR全称为Selective Non-Catalytic Reduction,中文翻译为选择性非催化还原技术。

它是一种常用的烟气脱硝技术,可以有效地降低燃煤电厂等大型工业设施中NOx的排放量。

SNCR技术是一种相对简单、成本较低的脱硝方法,已经被广泛应用于全球各地。

二、工作原理SNCR技术主要利用氨水或尿素溶液作为还原剂,在高温下与NOx反应,将其转化为N2和H2O。

具体来说,SNCR工作原理可以分为以下几个步骤:1. 还原剂喷射:在锅炉排放口附近设置喷嘴,将氨水或尿素溶液喷入烟道中。

2. 氨解反应:在高温下,氨水或尿素会发生氨解反应,生成NH3和CO2。

3. NOx还原:NH3会与NOx发生反应,生成N2和H2O。

这个过程需要满足一定的条件:首先是温度条件,在500℃-1100℃范围内才能达到最佳效果;其次是空气系数,需要保证适当的空气过剩系数,否则会导致NOx和NH3的反应不完全。

4. 后处理:将烟气通过除尘器等设备进行处理,去除其中的灰尘和其它污染物质。

三、优缺点SNCR技术具有以下优点:1. 成本较低:相对于SCR(Selective Catalytic Reduction)技术,SNCR技术的成本更低,在一些中小型企业中得到广泛应用。

2. 适用范围广:SNCR技术可以适用于各种类型的锅炉和燃煤设备,同时也可以与其他脱硝技术结合使用。

3. 灵活性强:SNCR技术可以根据实际情况进行调整和优化,以达到最佳脱硝效果。

但是SNCR技术也存在一些缺点:1. 脱硝效率低:相对于SCR技术而言,SNCR技术的脱硝效率较低,在高温、高氧化条件下容易出现反应不完全等问题。

2. 操作难度大:由于SNCR工艺比较复杂,操作难度较大,需要专业人员进行操作和维护。

3. 产生二次污染:SNCR技术会产生氨和尿素等还原剂的挥发,容易造成二次污染,对环境造成一定的影响。

四、应用现状目前,SNCR技术已经被广泛应用于各种类型的锅炉和燃煤设备中。

SNCR脱硝原理

SNCR脱硝原理

欢迎共阅SNCR脱硝技术即选择性非催化还原(Selective Non-Catalytic Reduction,以下简写为SNCR)技术,是一种不用催化剂,在850~1100℃的温度范围内,将含氨基的还原剂(如氨水,尿素溶液等)喷入炉内,将烟气中的NOx还原脱除,生成氮气和水的清洁脱硝技术。

在合适的温度区域,且氨水作为还原剂时,其反应方程式为:4NH3 + 4NO + O2→4N2 + 6H2O (1)然而,当温度过高时,也会发生如下副反应:4NH3 + 5O2→4NO + 6H2O(2)SNCR烟气脱硝技术的脱硝效率一般为30%~80%,受锅炉结构尺寸影响很大。

采用SNCR技术,目前的趋势是用尿素代替氨作为还原剂。

SNCR脱硝原理SNCR 技术脱硝原理为:在850~1100℃范围内,NH3或尿素还原NOx的主要反应为:NH3为还原剂:4NH3 + 4NO +O2 → 4N2 + 6H2O尿素为还原剂:NO+CO(NH2)2 +1/2O2 → 2N2 + CO2 + H2O系统组成:SNCR(喷氨)系统主要由卸氨系统、罐区、加压泵及其控制系统、混合系统、分配与调节系统、喷雾系统等组成。

SNCR系统烟气脱硝过程是由下面四个基本过程完成:接收和储存还原剂;在锅炉合适位置注入稀释后的还原剂;还原剂的计量输出、与水混合稀释;还原剂与烟气混合进行脱硝反应。

工艺流程如图(二)所示,水泥窑炉SNCR烟气脱硝工艺系统主要包括还原剂储存系统、循环输送模块、稀释计量模块、分配模块、背压模块、还原剂喷射系统和相关的仪表控制系统等。

SNCR脱硝工艺流程图图(二)典型水泥窑炉SNCR脱硝工艺流程图SNCR脱硝设备序名称数量单位号1 氨水加压泵组 1 套2 稀释水加压泵组 1 套3 稀释水与氨水混合阀组 1 套4 上层稀氨水分配阀组 1 套5 下层稀氨水分配阀组 1 套6 喷雾系统 1 套7 储罐及卸氨系统 1 套8 压缩空气系统 1 套9 仪表、电气控制系统 1 套10 罐区厂房 1 个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SNCR脱硝技术即选择性非催化还原(Selective Non-Catalytic Reduction,以下简写为SNCR)技术,是一种不用催化剂,在850~1100℃的温度范围内,将含氨基的还原剂(如氨水,尿素溶液等)喷入炉内,将烟气中的NOx还原脱除,生成氮气和水的清洁脱硝技术。

系统组成:
SNCR(喷氨)系统主要由卸氨系统、罐区、加压泵及其控制系统、混合系统、分配与调节系统、喷雾系统等组成。

SNCR系统烟气脱硝过程是由下面四个基本过程完成:
接收和储存还原剂;在锅炉合适位置注入稀释后的还原剂;
还原剂的计量输出、与水混合稀释;还原剂与烟气混合进行脱硝反应。

工艺流程
如图(二)所示,水泥窑炉SNCR烟气脱硝工艺系统主要包括还原剂储存系统、循环输送模块、稀释计量模块、分配模块、背压模块、还原剂喷射系统和相关的仪表控制系统等。

SNCR脱硝工艺流程图
图(二)典型水泥窑炉SNCR脱硝工艺流程图
SNCR脱硝设备

名称数量单位号
1 氨水加压泵组 1 套。

相关文档
最新文档