热镦挤自动送料机械手传动机构系统结构设计说明书
热镦挤送料机械手

题目5 热镦挤送料机械手一、课程设计任务书1.1设计题目机械手机体底座图1 机械手的外观图设计二自由度关节式热镦挤送料机械手,由电动机驱动,夹送圆柱形镦料,往40吨镦头机送料。
以方案A 为例,它的动作顺序是:手指夹料,手臂上摆15º,手臂水平回转120º,手臂下摆15º,手指张开放料。
手臂再上摆,水平反转,下摆,同时手指张开,准备夹料。
主要要求完成手臂上下摆动以及水平回转的机械运动设计。
图5为机械手的外观图。
技术参数见表8。
表1 热镦挤送料机械手技术参数方案号最大抓重kg手指夹持工件最大直径mm手臂回转角度(º) 手臂回转半径mm 手臂上下摆动角度(º) 送料频率次/min 电动机转速r/min A 2 25 120 685 15 15 1450 B 3 30 100 700 20 10 960 C115110500152014401.4 方案选择选用组合方案:最大抓重:1kg ; 手指夹持工件的最大直径:15mm ; 手臂回转角度: 100 手臂回转半径:500mm ;手臂上下摆动角度:15 ; 送料频率:10/min 次 电机转速: 960r/min二、机构功能分解此机构由原动机、传动部分、执行部分组成,其功能关系如表2所示。
表2机构功能分解机械手原动机 传动部分 执行机构电动机齿轮传动间歇上下摆动机构间歇水平摆动机构三、机构运动方案设计与评价3.1 手臂上下摆动机构的设计与选择机械手臂上下摆动运动为间歇性运动,能实现此功能的机构有很多,如:凸轮、凸轮+齿轮、 不完全齿轮+铰链四杆机构,具体方案如下:方案1: 方案2:图3.1 不完全齿轮+曲柄摇杆 图3.2 盘形凸轮+摇杆机构 方案3:图3.3 圆柱凸轮+连杆机构这3个方案结构都比较简单,方案2使用盘形凸轮机构直接驱动从动件的上下运动,进而通过低复使手臂摇动。
这个方案在计算过程中比较容易,即s=θtan l ⨯,式中s 为从动件行程,l 为手臂转动铰链到凸轮从动件间间距。
送料机械手 设计说明书

目录摘要 (1)第一章机械手设计任务书 (1)毕业设计目的 (1)本课题的内容和要求 (2)第二章抓取机构设计 (3)手部设计计算 (4)腕部设计计算 (6)臂伸缩机构设计 (8)第三章液压系统道理设计及草图 (10)手部抓取缸 (10)腕部摆动液压回路 (12)小臂伸缩缸液压回路 (13)总体系统图 (14)第四章机身机座的布局设计 (15)电机的选择 (16)减速器的选择 (17)螺柱的设计与校核 (17)第五章机械手的定位与平稳性 (18)常用的定位方式 (19)影响平稳性和定位精度的因素 (19)机械手运动的缓冲装置 (20)第六章机械手的控制 (21)第七章机械手的组成与分类 (22)机械手组成 (22)机械手分类 (23)毕业设计感想 (25)参考资料 (26)送料机械手设计摘要本课题是为普通车床配套而设计的上料机械手。
工业机械手是工业出产的必然产品,它是一种模仿人体上肢的局部功能,按照预定要求输送工件或握持东西进行操作的自动化技术设备,对实现工业出产自动化,推开工业出产的进一步开展起着重要作用。
因而具有强大的生命力受到人们的广泛重视和欢迎。
实践证明,工业机械手可以代替人手的繁重劳动,显著减轻工人的劳动强度,改善劳动条件,提高劳动出产率和自动化程度。
工业出产中经常呈现的笨重工件的搬运和持久频繁、单调的操作,采用机械手是有效的。
此外,它能在高温、低温、深水、宇宙、放射性和其他有毒、污染环境条件下进行操作,更显示其优越性,有着广阔的开展前途。
本课题通过应用AutoCAD 技术对机械手进行布局设计和液压传动道理设计,它能实行自动上料运动;在安装工件时,将工件送入卡盘中的夹紧运动等。
上料机械手的运动速度是按着满足出产率的要求来设定。
关键字机械手,AutoCAD。
第一章机械手设计任务书1.1毕业设计目的毕业设计是学生完成本专业教学方案的最后一个极为重要的实践性教学环节,是使学生综合运用所学过的底子理论、底子常识与底子技能去解决专业范围内的工程技术问题而进行的一次底子训练。
机械原理课程设计热墩机械手

机械原理课程设计热墩机械手机械原理课程设计说明书——热镦挤送料机械手B指导老师:温亚莲设计者:李霞学号:20109046班级:机电3班目录第一章设计题目及要求 (1)1.1 设计题目简介 (1)1.2 设计数据及要求 (2)1.3 设计任务与提示 (2)第二章热镦挤送料机械手摆臂的设计 (5)2.1 机械手上下摆臂设计方案A (5)2.2 机械手上下摆臂设计方案B (6)2.3 机械手上下摆臂设计方案C (6)2.4 摆臂方案的确定 (7)第三章热镦挤送料机械手回转装置设计 (8)3.1 回转装置设计方案A (8)3.2 回转装置设计方案B (8)3.3 回转装置设计方案C (9)3.4 驱动装置的选择 (10)3.4.1 常用电动机的结构特征 (10)3.4.2 选定电动机的容量 (10)3.5 回转装置方案的确定 (11)3.6 循环图的拟定及运动路线图 (11)第四章热镦挤送料机械手方案的确定与计算 (13)4.1 拟订的方案 (13)4.2 最终方案的确定与说明 (15)4.3 方案的计算 (16)第五章相关建模过程及仿真 (19)第六章设计总结 (22)第七章参考文献 (22)第一章设计题目及要求1.1 设计题目简介设计二自由度关节式热镦挤送料机械手,由电动机驱动,夹送圆柱形镦料,往40吨镦头机送料。
以方案A为例,它的动作顺序是:手指夹料,手臂上摆15º,手臂水平回转120º,手臂下摆15º,手指张开放料。
手臂再上摆,水平反转,下摆,同时手指张开,准备夹料。
主要要求完成手臂上下摆动以及水平回转的机械运动设计。
图1为机械手的外观图。
图1:机械手的外观图1.2 设计数据及要求表11.3 设计任务与提示设计任务1.至少提出可行的两种运动方案,然后进行方案分析评比,选出一种运动方案进行设计;2. 设计传动系统并确定其传动比分配。
3. 图纸上画出步进送料机的机构运动方案简图和运动循环图。
机械原理课程设计-----热镦挤送料机械手的设计综述

机械原理课程设计设计说明书设计题目:热镦挤送料机械手的设计起止日期:2008 年 6 月18日至2008 年6月23日学生姓名班级机设0xx班学号064051xxxxx成绩指导教师(签字)机械工程学院(部)年月目录设计任务书 (3)1.工作原理和工艺动作分解 (5)2.工艺动作和协调要求拟定运动循环图 (6)3.执行机构选型 (6)4.方案评价 (7)5.动系统的速比和变速机构 (9)6.机构运动简图 (9)7.机构组合 (12)8.各个构件的动作顺序 (12)9.凸轮设计 (13)9.参考资料 (22)10.设计总结 (22)课程设计任务书2007 —2008 学年第2 学期机械工程学院学院(系、部)机械设计专业机设062 班级课程名称:机械原理课程设计设计题目:热镦挤送料机械手的设计完成期限:自2008 年 6 月18至 6 月23日共 1 周指导教师(签字):年月日系(教研室)主任(签字):年月日1.工作原理和工艺动作分解(1)夹料机构:靠平面连杆机构做间歇的直线往复运动。
运动循环图如下:(2)送料机构:送料机构由2种动作的组合,一是间歇的回转运动,二是做上下摆动。
运动循环图如下:(3)夹料机构:通过凸轮对手臂上平面连杆机构的控制来调整手指间的间隙从而达到对物料的夹紧和松开。
运动循环图如下:(4)送料机构:当料被抓紧后,通过凸轮对连杆一端的位置的改变进行对杆的摆角进行调整,从而实现对物料的拿起和放下的动作。
手臂的回转通过回转机构进行实现。
(5)转动送料机构:通过来回的回转110度,这到运动的目的,同时又要注意满足机构动作的相互配合。
此机构运动循环图如下:2.根据工艺动作和协调要求拟定运动循环图拟定运动循环图的目的是确定各机构执行构件动作的先后顺序、相位,以利于设计、装配和调试。
其整体运动循环图如下:3.执行机构选型2.表3.2 机构选用表功能执行构件工艺动作执行机构设计矩阵夹料机构手指直线往复运动凸轮机构A1摆动机构手臂上下摆动凸轮机构A2回转机构手臂回转齿轮机构A3夹料机构与摆动机构:根据动作要求,由表2.1设计实例库A3、A1={a31,a41,a42,a11,a51},由于机构要具有停歇功能,且要进行运动变换,故选择直动从动件盘形凸轮。
送料机械手 设计说明书

目录摘要 (1)第一章机械手设计任务书 (1)1.1毕业设计目的 (1)1.2本课题的内容和要求 (2)第二章抓取机构设计 (4)2.1手部设计计算 (4)2.2腕部设计计算 (7)2.3臂伸缩机构设计 (9)第三章液压系统原理设计及草图 (11)3.1手部抓取缸 (11)3.2腕部摆动液压回路 (13)3.3小臂伸缩缸液压回路 (14)3.4总体系统图 (15)第四章机身机座的结构设计 (16)4.1电机的选择 (17)4.2减速器的选择 (18)4.3螺柱的设计与校核 (18)第五章机械手的定位与平稳性 (20)5.1常用的定位方式 (20)5.2影响平稳性和定位精度的因素 (20)5.3机械手运动的缓冲装置 (21)第六章机械手的控制 (22)第七章机械手的组成与分类 (24)7.1机械手组成 (24)7.2机械手分类 (25)毕业设计感想 (25)参考资料 (26)送料机械手设计摘要本课题是为普通车床配套而设计的上料机械手。
工业机械手是工业生产的必然产物,它是一种模仿人体上肢的部分功能,按照预定要求输送工件或握持工具进行操作的自动化技术设备,对实现工业生产自动化,推动工业生产的进一步发展起着重要作用。
因而具有强大的生命力受到人们的广泛重视和欢迎。
实践证明,工业机械手可以代替人手的繁重劳动,显著减轻工人的劳动强度,改善劳动条件,提高劳动生产率和自动化水平。
工业生产中经常出现的笨重工件的搬运和长期频繁、单调的操作,采用机械手是有效的。
此外,它能在高温、低温、深水、宇宙、放射性和其他有毒、污染环境条件下进行操作,更显示其优越性,有着广阔的发展前途。
本课题通过应用AutoCAD 技术对机械手进行结构设计和液压传动原理设计,它能实行自动上料运动;在安装工件时,将工件送入卡盘中的夹紧运动等。
上料机械手的运动速度是按着满足生产率的要求来设定。
关键字机械手,AutoCAD。
第一章机械手设计任务书1.1毕业设计目的毕业设计是学生完成本专业教学计划的最后一个极为重要的实践性教学环节,是使学生综合运用所学过的基本理论、基本知识与基本技能去解决专业范围内的工程技术问题而进行的一次基本训练。
热镦挤送料机械手课程设计

热镦挤送料机械手课程设计热镦挤送料机械手是一种用于热镦挤压生产线上的自动化设备,它具有高效、精准的特点。
本文将探讨热镦挤送料机械手的课程设计。
热镦挤压是一种金属加工方法,通过在高温下将金属材料挤压成特定形状。
在热镦挤压生产线上,热镦挤送料机械手起到了关键的作用。
它能够将金属材料从储料架上取下,并准确地送入热镦挤压机中进行加工。
因此,热镦挤送料机械手的设计至关重要。
我们需要确定热镦挤送料机械手的基本参数。
根据生产线的要求,我们需要考虑机械手的负载能力、工作范围、速度等。
负载能力应能够满足挤压机的要求,工作范围应能够覆盖整个挤压机工作区域,速度应能够保证生产效率。
在确定这些参数后,我们可以开始进行机械手的设计。
我们需要选择合适的机械结构。
热镦挤送料机械手通常采用多自由度机械结构,以实现复杂的运动轨迹。
对于挤压机上下料的过程,我们可以采用多关节机械手,它能够实现多方向运动,并能够精确控制位置和姿态。
此外,我们还可以考虑使用气动或电动执行机构,以实现更精准的控制。
然后,我们需要设计机械手的控制系统。
控制系统应能够准确地控制机械手的运动,并保证其稳定性和安全性。
在设计控制系统时,我们可以采用传统的PID控制算法,也可以使用现代的自适应控制算法。
此外,我们还需要考虑机械手与挤压机之间的协作,以确保二者之间的同步运动。
我们需要考虑机械手的安全性和可靠性。
挤压生产线通常是高温、高速、高载荷的工作环境,因此机械手需要具备耐高温、耐磨损、抗震动等特性。
此外,我们还需要设计相应的安全保护装置,以防止意外事故的发生。
热镦挤送料机械手的课程设计需要考虑机械手的基本参数、机械结构、控制系统以及安全性和可靠性等方面。
在设计过程中,我们需要充分考虑生产线的要求,并结合现代控制技术和工程材料的特性,以实现高效、精准的热镦挤压生产。
通过合理的设计和优化,热镦挤送料机械手将成为热镦挤压生产线上不可或缺的重要设备。
热镦挤送料手课程设计说明书

机械原理课程设计题目热镦挤送料机械手学院机电工程学院专业年级机械工程及自动化二○○一二年六月机械原理课程设计任务书一、设计题目设计二自由度关节式热镦挤送料机械手,由电动机驱动,夹送圆柱形镦料,往40吨镦头机送料。
以方案A为例,它的动作顺序是:手指夹料,手臂上摆15º,手臂水平回转120º,手臂下摆15º,手指张开放料。
手臂再上摆,水平反转,下摆,同时手指张开,准备夹料。
主要要求完成手臂上下摆动以及水平回转的机械运动设计。
二、工作原理及工艺动作过程:机械手夹送圆柱形镦料,手指夹料,再通过凸轮或连杆机构使手臂上摆15°,然后手臂水平回转120°,到达指定点手臂下摆15°,手指张开放料;手臂再上摆,水平反转,下摆,同时手指张开,准备夹料,往复这些运动。
三、原始数据及设计要求:方案号最大抓重kg 手指夹持工件最大直径mm手臂回转角度(º)手臂回转半径mm手臂上下摆动角度(º)送料频率次/min电动机转速r/minA 2 25 120 685 15 15 1450B 2.5 27.5 110 690 17.5 12.5 1450C 3 30 100 700 20 10 960D 1.5 22.5 105 600 17.5 15 960E 1 15 110 500 15 20 1440四、设计方案提示:1. 机械手主要由手臂上下摆动机构、手臂回转机构组成。
工件水平或垂直放置。
设计时可以不考虑手指夹料的工艺动作。
2. 此机械手为空间机构,确定设计方案后应计算空间自由度。
3. 此机械手可按闭环传动链设计。
五、设计的主要任务1.机械手一般包括连杆机构、凸轮机构和齿轮机构。
2.设计传动系统并确定其传动比分配。
3.设计平面连杆机构。
对所设计的平面连杆机构进行速度、加速度分析,绘制运动线图。
4.设计凸轮机构。
按各凸轮机构的工作要求选择从动件的运动规律,确定基圆半径,校核最大压力角与最小曲率半径。
热镦挤送料机械手 机械原理课程设计说明书

为了培养面向21世纪知识经济时代的科技人才,国家进行了课程体制改革,而机械原理课程设计能够培养机械类专业学生的创新能力,今天我们设计的热墩挤送料机械手,由于机械手能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。
它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
机械手主要由手部和运动机构组成。
手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。
运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。
运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度,选择何时的自由度作出合适的机械手以满足生产的要求,简便了工作。
目录一、总设计要求……………………………………..1、设计题目………………………………………..2、设计任务……………………………………….二、功能分解…………………………………………三、选用的机构…………………………….四、机构的运动循环图…………………………….五、原动件的选择…………………………….六、传动比的分配…………………………….七、主要机构介绍…………………………….1、齿轮设计…………………………….2、对心直动滚子推杆盘形凸轮机构……………3、不完全齿轮机构设计…………………….八、设计方案的评价…………………………….九、总结…………………………….十、参考文献…………………………….一、总设计要求1、设计题目设计二自由度关节式热镦挤送料机械手,由电动机驱动,夹送圆柱形墩料,往40t墩头机送料。
以方案A为例,它的动作顺序是:手指夹料,手臂上摆12度,手臂水平回转120度,于管下摆15度,手指张开放料;手臂再上摆,水平反转,下摆,同时手指张开,准备夹料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章自动送料机械手执行机构的机构设计1.1方案选择1.1.1设计要求本设计要求完成抓握最大直径为24mm,质量为2㎏的圆形棒料,回转90度以及上下15度摆动三个自由度的动作传动方案的拟定a、由三相异步电机/机械手各运动构件b、手臂回转机构由圆柱凸轮带动齿条,齿条再带动齿轮完成运动,手抓夹紧松开机构由平底凸轮机构完成,上下摆动运动机构盘行凸轮传动完成。
1.1.2 传动方案的分析a.方案机构运动较为灵活,,并且三相异步电机性价比比较高,成本不高;b.方案各运动机构布置较为合理,c.本方案机构结构较紧凑,环境适应性好,传动效率较高,工作寿命长,成本较低,连续工作性能较好,能较好地满足工业生产的需要。
1.1.2电动机的选择由于该自动送料机械手机器在工业生产中应用,它的用电环境属于工业用电,所以选择380V 频率为50HZ。
本设计选用三相异步电动机,该机械手作业全过程所需的功率小,故选Y802-2型三相异步电动机,额定功率为1.1KW,额定电压为380V,铁心长度/mm: 80。
气隙长度/mm: 0.3定子外径/mm: 120,定子内径/mm: 67,定子线规nc-dc: 1-0.71,每槽线数: 90,并联支路数: 3,绕组型式: 单层交叉,节距: 1~9/2~10/18~11,槽数Z1/Z2: 18/16 ,转动惯量/(kg·m^2): 0.00090,质量/kg: 17。
第2章 齿轮的设计由于本设计机械手夹料质量体积小,所需功率小。
所以所用的齿轮传递的扭矩不大,我们在选择齿轮时,设计下列参数:(参照《机械设计》第十章)齿轮传动的设计计算过程如下[4]: 本设计中采用的是直齿圆柱齿轮。
已知输入功率P 1=1.1KW ,齿轮转速n 1=15r/min,齿数比u=1:1设工作寿命为10年(年工作300天),两班制。
(1) 选用直齿圆柱齿轮传动。
(2) 由于运转速度不高,故选用7级精度(GB10095-88) (3) 材料选择。
选择齿轮材料为45钢(调质)硬度为240HBS ,选齿轮齿数z 1= z 2=43, (4) 按齿面接触强度设计由设计计算公式(10-9a )进行试算,即 d 1t ≥2.32 21)][(1.3H E dt Z uu T K σφ±1) 确定公式内的各计算数值(1) 试选载荷系数K t =1.3 (2) 计算小齿轮传递的转矩T 1=95.5⨯105⨯P 1/n 1=95.5⨯105⨯1.1/15=6.36⨯105N •mm (3)由表10-7选取齿宽系数d ∅=1(4)由表10-6查得材料的弹性影响系数Z E =189.8MPa 1/2 (5)由图10-21d 按齿面硬度查得齿轮的接触疲劳强度极限σ1lim =550Mpa ;(6)由式10-13计算应力循环次数N=60n 1jL h =60⨯15⨯(2⨯8⨯300⨯10)=4.32⨯610 (7)由图10-19查得接触疲劳寿命系数K NH 1=0.90 (8)计算接触疲劳许用应力取失效概率为1℅,安全系数S=1,由式(10-12)得 [H σ]2=K NH 1σ1lim /S=0.9⨯550=495Mpa2) 计算(1)试算齿轮分度圆直径d 1t ,代入[H σ]中较小的值d 1t ≥2.32⨯ 21)][(1.3H E d t Z u u T K σφ+=2.32⨯3(2) 计算圆周速度vv=лd 1t n 1/(60⨯1000)= л⨯144.796⨯15/60000=0.114m/s(3) 计算齿宽bb=d ∅⨯ d 1t =1⨯144.796=144.796mm(4) 计算齿宽和齿高之比b/h模数 m t = d 1t /z 1=144.796/43=3.36mm 齿高h=2.25 m t =2.25⨯3.36=7.576mm b/h=144.796/7.576=19.11(5) 计算载荷系数根据v=0.114m/s,7级精度,由图10-8查得动载系数K v =1.10 直齿轮,假设K A t F /b<100N/mm 。
由表10-3查得K H α=K F α=1.2 由表10-2查得使用系数K A =1;由表10-4用插值法查得7级精度,小齿轮相对支承对称布局时,K H β=1.441 由b/h=19.11, K H β=1.441,查10-13,得K F β=1.35故载荷系数 K=K A K V K H αK H β=1.0 ⨯1.10⨯1.2⨯1.441=1.902(6) 按实际的载荷系数校正所算得的分度圆直径,(10-10a )得d 1= d 1t3tK K=144.796⨯3 (7)计算模数mm= d 1/z 1=164.89/43=3.8mm3按齿根弯曲强度设计由式(10-5)得弯曲强度设计公式为 m ≥3211)][(2F SaFa d Y Y z KT σφ 1) 确定公式内的计算数值(1)由图10-20c 查得齿轮的弯曲强度极限1FE σ=380Mpa , (2)由图(10-18)查得弯曲疲劳寿命系数1FN k =0.85, (3)计算弯曲疲劳应力取弯曲疲劳安全系数S=1.4,由式(10-12)得1][F σ=SK FE FN 11σ =0.85⨯380/1.4=230.71Mpa (4)计算载荷系数KK=A V Fa F K K K K β=1⨯1.1⨯1.2⨯1.35=1.810 (5)查取齿形系数由表(10-5)查得Y 1Fa =2.65,2Fa Y =2.161 (6)查取应力校正系数由表(10-5)可查得Y 1Sa =1.58,Y 2Sa 1.812(1) 计算大小齿轮的Y Fa Sa Y /[]F σ并加以比较222/[] 2.161 1.810/230.71FA Sa F Y Y σ=⨯=0.0169大齿轮的数值大。
2)设计计算m ≥3=4.562mm对比计算结果,由齿面接触疲劳强度计算的模数m 大于由齿根弯曲疲劳强度计算的模数,由于齿轮模数m 的大小主要取决于弯曲所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯曲强度算得的模数4.562并就近圆整为标准值m=5,按接触强度算得的分度圆直径d 1=211.5mm,算得小齿轮齿数z 1= d 1/m=211.5/5=42.3 取z 1=43这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到结构紧凑,避免浪费。
4 几何尺寸计算1) 计算分度圆直径d 2=z 2m=43⨯5=215mm2) 计算中心距a=( d 1+d 2)/2=(215+215)/2=215mm3) 计算齿轮宽度b=1d d ∅=0.1⨯215=21.5mm 取B 1=B 2=25mm ,齿顶高系数 ha*=1.00 顶隙系数 c*=0.25 压力角α*=︒20 端面齿顶高系数 ha*t=1.00 端面顶隙系数 c*t=0.25 端面压力角α*t=︒20第3章 轴的设计及校核3.1 轴Ⅰ的设计选择轴的材料和热处理方式(参照《机械设计》第十五章) 选择轴的材料为45钢,经调质处理, 其机械性能由表1查得: =650MPa ,=360MPa ,=300MPa ,=155MPa ;=60MPa 。
3.1.1初算轴的最小轴径由表15-3,选0A =123则轴的最小直径为:==30min n P A d 1233151.1=46.04mm 轴的最小直径显然是安装联轴器处轴的直径,需开键槽,故将最小轴径增加5%,变为48.34mm 。
3.1.2、初选轴承因轴承同时受有径向力和轴向力的作用。
故选用角接触球轴承。
根据工作要求及输入端的直径(70mm ),由轴承产品目录中选取型号为71814C 的滚动轴承,其尺寸为d×D×B=70×90×10。
(查《机械设计手册》软件版) 4、轴的结构设计1)拟定轴上零件的装配方案 据轴上零件定位、加工要求以及不同的零件装配方案,参考轴的结构设计的基本要求,得出如图所示的轴结构。
图中,左端轴承能从输入端装入,凸轮、套筒、齿轮、套筒、右端轴承和端盖、依次从轴的右端装入, 这种装配方案装拆更为简单方便,若为成批生产,该方案在机加工和装拆等方面更能发挥其长处。
综合考虑各种因素, 故初步选定轴结构如图。
图4.1轴1的结构2)确定轴的各段直径由于联轴器型号已定,左端用轴端挡圈定位,右端用轴肩定位。
故轴段1的直径即为相配合的半联轴器的直径,取为50mm 。
联轴器是靠轴段2的轴肩来进行轴向定位的,为了保证定位可靠,轴段2要比轴段1的直径大5~10mm ,取轴段2的直径为60mm 。
轴段3和轴段8均是放置滚动轴承的,但是直径与滚动轴承内圈直径不一样, 轴段3为70,轴段8的为 60mm 。
考虑拆卸的方便,轴段7的直径只要比轴段8的直径大1~2mm 就行了,这里取为62mm 。
轴段8有一轴环,左侧用来定位齿轮,右侧用来定位滚动轴承,轴环的直径还要满足比轴段8的直径(为60mm)大5~10mm 的要求,故这段直径最终取为65mm 。
3)确定轴的各段长度轴段8的长度取为55mm 。
轴段7的长度要根据齿轮的轮毂宽度来定,故该段轴长取为25mm 。
轴段6的长度根据凸轮与齿轮的位置关系来确定,所以他的长度取为75mm.轴段5的长度取决于凸轮的宽度,故根据凸轮的宽度得37mm轴段4是圆柱凸轮与盘行凸轮之间得距离,它是一个台阶取为25mm同理其他轴段长度可恰当地取值,轴段3为54mm,轴段2为40mm,轴段1为60mm.4) 轴上零件的周向定位 齿轮、凸轮与轴的周向定位均采用平键联接。
对于齿轮,查《机械设计手册》软件版,得平键截面b×h=18×11(GB1095-79),键槽用键槽铣刀加工,长为20mm(标准键长见 GB1096-79),同时为了保证齿轮轮毂与轴的配合为H7/n6;同样,凸轮与轴的联接,选用平键为20×12×30,凸轮与轴的配合为H7/k6。
滚动轴承与轴的周向定位是借过渡配合来保证的,此处选轴的直径尺寸公差为k6。
5)确定轴上圆角和倒角尺寸。
取轴端倒角为2×45°6)按弯扭合成校核 (1)画受力简图 画轴空间受力简图c ,将轴上作用力分解为垂直面受力图d 和水平受力图e 。
分别求出垂直面上的支反力和水平面上支反力。
对于零件作用于轴上的分布载荷或扭矩(因轴上零件如齿轮、联轴器等均有宽度)可当作集中力作用于轴上零件的宽度中点。
对于支反力的位置,随轴承类型和布置方式不同而异,其中a 值参见滚动轴承样本,跨距较大时可近似认为支反力位于轴承宽度的中点。