中考数学专题圆的切线精华习题
中考数学专题圆的切线

中考数学专题圆的位置关系第一部分真题精讲【例1】已知:如图,AB为O O的直径,O O过AC的中点D , DE丄BC于点E. (1)求证:DE为O O的切线;1(2)若DE=2, tanC=丄,求O O的直径.2【例2】已知:如图,O O为ABC的外接圆, BC为O 0的直径,作射线BF,使得BA平分.CBF ,过点A作AD _ BF 于点D . (1)求证: DA为O 0的切线; (2)若BD =1 ,求O O的半径.AC △C【例3】已知:如图,点 D 是O O 的直径CA 延长线上一点,点 B 在O O 上,且OA =AB =AD . (1) 求证:BD 是O O 的切线;(2) 若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且BE =8 , tan BFA 5,求O O 的半径长.2【例4】如图,等腰三角形 ABC 中,AC 二BC =6 , AB =8 .以BC 为直径作O O 交AB 于点D ,交AC 于点G , DF _ AC ,垂足为F ,交CB 的延长线于点E . (1) 求证:直线EF 是O O 的切线; (2) 求sin . E 的值.【例5】如图,平行四边形 ABCD 中,以A 为圆心,AB 为半径的圆交 AD 于F ,交BC 于G ,延长BA 交圆于E.(1) 若ED 与O A 相切,试判断 GD 与O A 的位置关系,并证明你的结论; (2) 在(1)的条件不变的情况下,若 GC = CD = 5,求AD 的长.CCG C第二部分发散思考【思考1】如图,已知AB为O O的弦,C为O O上一点,/ C= / BAD,且BD丄AB于B.(1)求证:AD是O O的切线;(2)若O O的半径为3, AB=4,求AD的长.【思路分析】此题为去年海淀一模题,虽然较为简单,但是统计下来得分率却很低•因为题目中没有给出有关圆心的任何线段,所以就需要考生自己去构造。
同一段弧的圆周角相等这一性质是非常重要的,延长DB就会得到一个和C一样的圆周角,利用角度关系,就很容易证明了。
圆的切线综合练习题与答案完整版

圆的切线综合练习题与答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】切线的判定与性质练习题一、选择题(答案唯一,每小题3分)1.下列说法中,正确的是( )A.与圆有公共点的直线是圆的切线 B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径的直线是圆的切线2. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70° B.35° C.20° D.40°第2题第3题第4题第5题3. 如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )A.20° B.25° C.30° D.40°4.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.45.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC二.填空题(每小题3分)6.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.第6题第7题第8题7.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.8.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.9. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.第9题第10题第11题10. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.11.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.三、解答题(写出详细解答或论证过程)12.(7分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.第12题第13题第14题13.(7分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A.14.(7分)如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.第15题第16题16.(12分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________________________或者_______________________;(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.17.(12分)如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.答案:DDADC 6. 相切 7. ∠ABC=90°不排除等效答案 8. 6 9. 45 10. 4 11. 6012. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线13. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A14. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD=OD-OB=22-216. (1) ∠BAE=90°∠EAC=∠ABC(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O 的切线(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD=6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6。
中考数学专项练习圆的切线长定理(含解析)

中考数学专项练习圆的切线长定理(含解析)一、单选题1.如图,△ABC是一张周长为17cm的三角形的纸片,BC=5cm,⊙O 是它的内切圆,小明预备用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线MN剪下△AMN,则剪下的三角形的周长为()A.12cm B.7cm C.6cm D.随直线MN的变化而变化2.下列说法正确的是()A.过任意一点总能够作圆的两条切线 B.圆的切线长确实是圆的切线的长度C.过圆外一点所画的圆的两条切线长相等 D.过圆外一点所画的圆的切线长一定大于圆的半径3.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB 于C,D.若⊙O的半径为1,△PCD的周长等于2 ,则线段AB的长是()A.B.3C. 2D. 34.如图,圆和四边形ABCD的四条边都相切,且AB=16,CD=10,则四边形ABCD的周长为()A.5B.52C.54D.565.如图,PA,PB,CD与⊙O相切于点为A,B,E,若PA=7,则△P CD的周长为()A.7B.14C.10.5D.106.如图,PA,PB切⊙O于点A,B,PA=8,CD切⊙O于点E,交PA,PB 于C,D两点,则△PCD的周长是()A.8B.18C.16D.147.如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB= 6,以AB为直径的半⊙O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为()A.9B.1C. 3D. 28.圆外切等腰梯形的一腰长是8,则那个等腰梯形的上底与下底长的和为()A.4B.8C.12D.169.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm ,小明预备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为()A.20cmB.15cmC.10cm D.随直线MN的变化而变化二、填空题10.如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于________.11.PA、PB分别切⊙O于点A、B,若PA=3cm,那么PB=________cm.12.如图,一圆内切于四边形ABCD,且AB=16,CD=10,则四边形A BCD的周长为________.13.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是________cm.14.如图,PA,PB是⊙O的两条切线,切点分别是A、B,PA=10,CD 是⊙O的切线,交PA于点C,交PB于点D,则△PCD的周长是________.15.如图,AB,AC,BD是⊙O的切线,P,C,D为切点,假如AB=5,AC=3,则BD的长为________.16.如图,一圆外切四边形ABCD,且AB=16,CD=10,则四边形的周长为________.答案解析部分一、单选题1.【答案】B【考点】切线长定理【解析】【解答】解:设E、F分别是⊙O的切点,∵△ABC是一张三角形的纸片,AB+BC+AC=17cm,⊙O是它的内切圆,点D是其中的一个切点,BC=5cm,∴BD+CE=BC=5cm,则AD+AE=7cm,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=7(cm).故选:B.【分析】利用切线长定理得出BC=BD+EC,DM=MF,FN=EN,AD=AE,进而得出答案.2.【答案】C【考点】切线长定理【解析】【解答】解:A、过圆外任意一点总能够作圆的两条切线,过圆上一点只能做圆的一条切线,过圆内一点不能做圆的切线;故A错误,不符合题意;B、圆的切线长确实是,过圆外一点引圆的一条切线,这点到切点之间的线段的长度确实是圆的切线长;故B错误,不符合题意;C、依照切线长定理:过圆外一点所画的圆的两条切线长相等;故C是正确的符合题意;D、过圆外一点所画的圆的切线长取决于点离圆的距离等,故不一定大于圆的半径;故D错误,不符合题意;故答案为:C。
2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)一.选择题1.P是⊙O外一点,PA切⊙O于A,割线PBC交⊙O于点B、C,若PB=BC=3,则PA的长是()A.9 B.3 C.D.182.如图,PA切⊙O于点A,PBC是⊙O的一条割线,且PA=2,BC=2PB,那么PB 的长为()A.2 B.C.4 D.3.如图,⊙O的两条割线PAB,PCD分别交⊙O于点A,B和点C,D.已知PA=6,AB=4,PC=5,则CD=()A.B.C.7 D.244.如图,已知P为⊙O外一点,PO交⊙O于点A,割线PBC交⊙O于点B、C,且PB =BC,若OA=7,PA=4,则PB的长等于()A.B.C.6 D.5.如图,PA切⊙O于点A,PBC是⊙O的割线,如果PB=2,PC=8,那么PA的长为()A.2 B.4 C.6 D.6.如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE =5,则DE的长为()A.3 B.4 C.D.7.如图,在以O为圆心的两个同心圆中,A为大圆上任意一点,过A作小圆的割线AXY,若AX•AY=4,则图中圆环的面积为()A.16πB.8πC.4πD.2π8.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.99.以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B.C.D.410.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB =60°,PA=8,那么点P与O间的距离是()A.16 B.C.D.二.填空题11.如图,⊙O的半径为,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB 延长线上任一点,QS⊥OP于S,则OP•OS=.12.如图,过点P引圆的两条割线PAB和PCD,分别交圆于点A,B和C,D,连接AC,BD,则在下列各比例式中,①;②;③,成立的有(把你认为成立的比例式的序号都填上).13.如图,割线PAB与⊙O交于点A、B,割线PCD与⊙O交于点C、D,PA=PC,PB=3cm,则PD=cm.14.如图,过⊙O外一点P作两条割线,分别交⊙O于A,B和C,D.已知PA=2,PB =5,PD=8,则PC的长是.15.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC 的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).三.解答题16.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,求CE的长.17.如图所示,⊙O的内接△ABC的AB边过圆心O,CD切⊙O于C,BD⊥CD于D,交⊙O于F,CE⊥AB于点E,FE交⊙O于G.解答下列问题:(1)若BC=10,BE=8,求CD的值;(2)求证:DF•DB=EG•EF.18.如图1,已知Rt△ABC的直角边AC的长为2,以AC为直径的⊙O与斜边AB交于点D,过D点作⊙O的切线(1)求证:BE=DE;(2)延长DE与AC的延长线交于点F,若DF=,求△ABC的面积;(3)从图1中,显然可知BC<AC.试分别讨论在其它条件不变,当BC=AC(图2)和BC>AC(图3)时,直线DE与直线AC还会相交吗?若不能相交,请简要说明理由;若能相交,设交点为F'且DF'=,请再求出△ABC的面积.19.已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O 于B、D,直线DE交⊙O于C,连接BC,(1)求证:PE∥BC;(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.20.如图PAB、PCD是⊙O的两条割线,AB是⊙O的直径.(1)如图甲,若PA=8,PC=10,CD=6.①求sin∠APC的值;②sin∠BOD=;(2)如图乙,若AC∥OD.①求证:CD=BD;②若,试求cos∠BAD的值.参考答案一.选择题1.解:∵PB=BC=3,∴PC=6,∵PA2=PB•PC=18,∴PA=3,故选:C.2.解:设PB=x,则PC=3x,∵PA2=PB•PC,PA=2,BC=2PB,∴x•3x=12,∴x=2.故选:A.3.解:由于PAB、PCD都是⊙O的割线,根据切割线定理可得:PA•PB=PC•PD,即PA•(PA+PB)=PC•PD,∵PA=6,AB=4,PC=5,∴PD=12,即CD=PD﹣PC=7;故选:C.4.解:延长PO交圆于D;设PB=BC=x,∵PB•PC=PA•PD,PB=BC,OA=7,PA=4,∴x•2x=72,∴x=6.故选:C.5.解:∵PA切⊙O于点A,PBC是⊙O的割线,∴PA2=PB•PC=16,即PA=4;故选:B.6.解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选:D.7.解:过点A作圆的切线AD,切点是D,∵AD2=AX•AY,AX•AY=4,∴AD=2,∴圆环的面积=πAD2=4π.故选:C.8.解:∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选:D.9.解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选:A.10.解:连接OA,OP∵PA,PB是⊙O的切线,∠APB=60°,∴∠OPA=∠APB=30°,OA⊥OP,∴OP===,∴点P与O间的距离是.故选:B.二.填空题(共5小题)11.解:连接OQ交AB于M,则OQ⊥AB,连接OA,则OA⊥AQ.∵∠QMP=∠QSP=90°,∴S,P,Q,M四点共圆,故OS•OP=OM•OQ.又∵OM•OQ=OA2=2,∴OS•OP=2.故答案为:2.12.解:∵四边形ABCD是圆内接四边形∴∠PAD=∠C,∠PAD=∠B∴△PAD∽△PCB根据相似三角形的对应边的比相等,得到②③是正确的.13.解:∵PA•PB=PC•PD,PA=PC,PB=3cm∴PB=PD=3cm.14.解:∵PA•PB=PC•PD,PA=2,PB=5,PD=8∴PC==.15.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.三.解答题(共5小题)16.解:如图,由切割线定理,得CD2=CB•CA,(2分)CD2=CB(AB+CB),CB2+2CB﹣4=0,解得CB=(负数舍去)连接OD,则OD⊥CD,又EB与⊙O相切,∴EB⊥OC,∴Rt△ODC∽Rt△EBC,(6分)于是,即∴CE=.17.(1)解:∵AB为直径,BD⊥CD∴∠ABC+∠A=90°,∠CBD+∠BCD=90°∵CD为⊙O切线∴∠BCD=∠A∴∠ABC=∠BCD∵CD⊥BD,CE⊥BE∴CE=CD∴CE==6∴CD=6(2)证明:∵CD为切线,BD为割线∴CD2=DF•DB①∵∠ACB=90°,CE⊥AB∴RT△ACE∽RT△CBE∴CE2=EA•EB②∵EG•EF=EA•EB③由①②③及CD=CE得DF•DB=EG•EF.18.(1)证明:连接OD,∴OD⊥DE,∴∠ADO+∠BDE=90°,∵OA=OD,∴∠A=∠ADO,∵∠ACB=90°,∴∠B+∠A=90°,∴∠B=∠BDE,∴BE=DE;(2)解:在直角三角形ODF中,OD=1,DF=,∴∠OFD=30°,∴OF=2,AF=3.∴tan∠A=,∴BC=AC•tan∠A=2×tan30°=.S△ABC=AC•BC=×2×=;(3)解:如图,当BC=AC时,直线DE与直线AC平行;当BC>AC时,在直角三角形ODF′中,OD=1,DF′=,∴∠OF′D=30°,∴OF′=2,AF=1,∴CF′=3,∠BAC=60°,∴tan∠BAC=,∴BC=AC•tan∠BAC=2×tan60°=2.S△ABC=AC•BC=×2×2=2.19.(1)证明:∵PF与⊙O相切,∴PF2=PD•PA.∵PE=PF,∴PE2=PD•PA.∴PE:PD=PA:PE.∵∠APE=∠APE,∴△EPD∽△APE.∴∠PED=∠A.∵∠ECB=∠A,∴∠PED=∠ECB.∴PE∥BC.(2)解:PE与BC仍然平行.证明:画图如图,∵△EPD∽△APE,∴∠PEA=∠D.∵∠B=∠D,∴∠PEA=∠B.∴PE∥BC.20.解:(1)作OE⊥CD于E,连接OC,作DF⊥PB于F.①根据垂径定理,得CE=3.设圆的半径是r.根据勾股定理,得OP2﹣PE2=OC2﹣CE2,(8+r)2﹣169=r2﹣9,解得r=6.则OE=3.则sin∠APC==;②设OF=x.根据勾股定理,得PD2﹣PF2=OD2﹣OF2,256﹣(14+x)2=36﹣x2,解得x=.所以DF=.所以sin∠BOD===.(2)①∵AC∥OD,∴∠1=∠2.又OA=OD,∴∠2=∠3.∴∠1=∠3.所以弧CD=弧BD,所以CD=BD;②∵AC∥OD,∴=.又CD=BD,AB=2OA,∴=.∴cos∠BAD==.。
中考数学总复习《圆的切线证明》专项提升练习题(带答案)

中考数学总复习《圆的切线证明》专项提升练习题(带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,,AC BD 是圆内接四边形ABCD 的对角线,AC BD ⊥于点E BD ,平分ADC ∠.(1)求BAD ∠的度数;(2)点P 在DB 的延长线上,PA 是该圆的切线.①求证:PC 是该圆的切线;①若3PA AC ==,直接写出PD 的长.2.如图,AB 是圆O 的直径,O 为圆心,AD 、BD 是半圆的弦,且PDA PBD ∠=∠.延长PD 交圆的切线BE 于点E .(1)判断直线PD 是否为O 的切线,并说明理由;(2)如果60BED ∠=︒,3PD =求PA 的长.(3)在(2)的条件下,将线段PD 以直线AD 为对称轴作对称线段DF ,点F 正好在圆O 上,如图2求证:四边形DFBE 为菱形.3.如图,AB 是圆O 的直径,O 为圆心,AD BD 、是半圆的弦,且PDA PBD ∠=∠.延长PD 交圆的切线BE 于点E .(1)判断直线PD 是否为O 的切线,并说明理由;(2)将线段PD 以直线AD 为对称轴作对称线段DF ,点F 正好在圆O 上,如图2求证:四边形DFBE 为菱形.4.如图1和图2,线段12AB =,点C 在AB 上.以AC 为直角边构造Rt ADC ,使70ACD ∠=︒.点O 是CB 上一点(包括端点),以点O 为圆心、OA 为半径作半圆,交DC 于点E .(1)如图1,OF 平分AOE ∠,交AD 于点F ,连接FE .求证:FE 是半圆所在圆的切线;(2)如图2,点G ,E 关于AB 对称,连接EG 交AB 于点H ,设OA r =.若60AOE =︒∠求EG 与r 的数量关系;(3)若CO CE =,AE 的长为76π,直接写出点B 与半圆所在圆的位置关系.5.如图,AB 是圆O 的直径,C ,D 是圆上的点(在AB 同侧),过点D 的圆的切线交直线AB 于点E .(1)若2AB =,1BC =求AC 的长;(2)若四边形ACDE 是平行四边形,证明:BD 平分ABC ∠.6.如图,已知线段6BE =,点C 为BE 上一点,以点C 为圆心,分别以CB ,CE 为半径在BE 的上方作圆心角均为()90180αα︒<<︒的扇形BCD 和扇形ACE .(1)求证:≌ACB ECD △△;(2)已知4BC =,若AD 是扇形ACE 所在圆的切线.①求AE 的长;①判断DE 和扇形ACE 所在圆的位置关系,并说明理由.7.如图,已知点A、B、C在①O上,且AC=6,BC=8,AB=10.点E在AC延长线上,连接BE,且BE2=AE•CE.(1)求证:BE为①O的切线;(2)若点F为①ABE外接圆的圆心求OF的长.8.如图,AC=AD,在①ACD的外接圆中弦AB平分①DAC,过点B作圆的切线BE,交AD的延长线于点E.(1)求证:CD//BE.(2)已知AC=7,sin①CAB=37求BE的长9.如图,圆O是①ABP的外接圆,①B=①APC;(1)求证:PC是圆的切线;(2)若AP=6,①B=45°求劣弧AP的长.10.如图1,四边形ADBC 内接于O ,E 为BD 延长线上一点,AD 平分EDC ∠.(1)求证:AB AC =;(2)如图2,若CD 为直径,过A 点的圆的切线交BD 延长线于E ,若1DE =,2AE =求O 的半径.11.如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于D ,交O 于E ,过E 作//EF AC 交BA 的延长线于F .(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.12.如图,在①ABC中①ABC=45°,它的外接圆的圆心O在其内部,连结OC,过点A作AD①OC,交BC 的延长线于点D.(1)求证:AD是①O的切线;(2)若①BAD=105°,①O的半径为2求劣弧AB的长.13.如图,△ABC是钝角三角形90A︒∠>,圆O是△ABC的外接圆,直径PQ恰好经过AB的中点M,PQ⊥,CF也为圆的直径.与BC的交点为D,CDO45︒∠=l为过点C圆的切线,作DE l∆∆;(1)证明:CFB~DCE(2)已知圆O的半径为3求22+的值.AD CD14.如图,AB是①O的直径,AD,BD是弦,点P在BA的延长线上,且PDA PBD∠=∠,延长PD交圆的切线BE于点E.(1)求证:PD是①O的切线;(2)若60∠=︒,3BEDPD=求P A的长.15.如图,线段BC 所在的直线 是以AB 为直径的圆的切线,点D 为圆上一点,满足BD =BC ,且点C 、D 位于直径AB 的两侧,连接CD 交圆于点E . 点F 是BD 上一点,连接EF ,分别交AB 、BD 于点G 、H ,且EF =BD .(1)求证:EF ①BC ;(2)若EH =4,HF =2求BE 的长.参考答案1.【答案】(1)90BAD ∠=︒(2)①PD 的长为3.【详解】(1)解:BD 平分ADC ∠ADB CDB ∴∠=∠.BAC CDB ∠=∠ADB BAC ∴∠=∠.AC BD90ADB CAD ︒∴∠+∠=.90BAC CAD ∴∠+∠=︒.90BAD ∴∠=︒;(2)①证明:如图,取BD 的中点O ,连接OAOC ,.90BAD ∠=︒BD ∴是该圆的直径.∴点O 是该圆的圆心.PA 是O 的切线90OAP ∴∠=︒.OA OC AC BD =⊥,AOP COP ∴∠=∠.OP OP =AOP COP ∴△≌△.90OCP OAP ∴∠=∠=︒.PC ∴是O 的切线;①①PC 、PA 都是O 的切线①PA PC =①3PA AC ==①3PA PC AC ===①PAC △是等边三角形①1302APO APC ∠=∠=︒ 60AOP ∠=︒①PO 2OA =,BAO 是等边三角形①222PO OA PA =+①1OA =①1OA OD == 22PO OA ==①3PD =①PD 的长为3.2.【答案】(1)PD 是O 的切线,(2)1;【详解】(1)直线PD 为O 的切线,理由如下:如图1,连接OD①AB 是O 的直径90ADB ∴∠=︒90ADO BDO ∴∠+∠=︒①DO BO =BDO PBD ∴∠=∠PDA PBD ∠=∠BDO PDA ∴∠=∠①90ADO PDA ∠+∠=︒,即PD OD ⊥①OD 是O 的半径直线PD 为O 的切线;(2)BE 为O 切线90PBE ∴∠=︒60BED ∠=∠︒90906030P BED ∴∠=︒-∠=︒-︒=︒在Rt PDO △中90PDO ∠=︒ 3PD =①3tan 30313OD PD =⨯︒=⨯=22PO OD ==①1OA OD ==①211PA PO OA =-=-=;(3)如图2,连接OD由题意得:ADF PDA∠=∠∠=∠APD AFD∴∠=∠PDA PBD①ADF ABF∠=∠PAD DAF∠=∠①ADF AFD BPD ABF∠=∠=∠=∠①APD ABF∠=∠①AD AF∥=BF PD∴⊥DF PBBE为切线∴⊥BE PB∴∥DF BE四边形DFBE为平行四边形①PE、BE为切线①BE DE=四边形DFBE为菱形.3.【答案】【详解】(1)解:直线PD为O的切线,理由如下:连接OD,如图所示:①AB是圆O的直径∴∠=︒ADB90∴∠+∠=︒ADO BDO90=又DO BO∴∠=∠BDO PBD∠=∠PDA PBDBDO PDA∴∠=∠∴∠+∠=︒90ADO PDA即PD OD ⊥点D 在O 上∴直线PD 为O 的切线.(2)证明:依题意得:ADF PDA ∠=∠ PAD DAF ∠=∠PDA PBD ADF ABF ∠=∠∠=∠,ADF PDA PBD ABF ∴∠=∠=∠=∠AB 是圆O 的直径90ADB ∴∠=︒设PBD x ∠=,则902DAF PAD x DBF x ∠=∠=︒+∠=,四边形AFBD 内接于O180DAF DBF ︒∴∠+∠=即902180x x ︒++=︒,解得30x =︒30ADF PDA PBD ABF ∴∠=∠=∠=∠=︒BE ED 、是O 的切线90DE BE EBA ∴=∠=︒,60DBE ∴∠=︒BDE ∴是等边三角形BD DE BE ∴==又903060260FDB ADB ADF DBF x ∠=∠-∠=︒-︒=︒∠==︒, BDF ∴是等边三角形BD DF BF ∴==DE BE DF BF ∴===①四边形DFBE 为菱形.4.【答案】(2)3EG r =(3)点B 在半圆所在圆上【详解】(1)证明:OF 平分AOE ∠=EOF AOF ∴∠∠.又OE OA = OF OF =OFE OFA ∴△≌△.90OEF OAF ∴∠=∠=︒.FE ∴是半圆所在圆的切线.(2)解:点G ,E 关于AB 对称EG AB ∴⊥ 2EG EH =.又60AOE =︒∠ OE OA r ==3·sin 602EH OE r ∴=︒=. 3EG r ∴=.(3)解:点B 在半圆所在圆上.理由如下:①①ACD =70︒①①ECO =110︒①CO =CE①①COE =①CEO =()180110352︒-︒=︒ ①35723606AE r ππ=⨯= ①r =6①AB =12=2r①点B 在半圆所在的圆上.5.【答案】(1)3AC =【详解】(1)①AB 是圆O 的直径①90ACB ∠=︒①2223AC AB BC =-=,①3AC =(舍负值).(2)连结BD ,连结OD 与AC 交于F 点.①ED 与圆O 相切于D 点①OD ED ⊥①四边形ACDE 是平行四边形①ED AC ∥ CD EA ∥①OD AC ⊥ 90OFA ACB ∠=︒=∠①OD BC ∥①CD EB ∥ OD OB =①四边形OBCD 是菱形①BD 平分ABC ∠.6.【答案】(2)①43π;①相切 【详解】(1)(1)证明:由题意可知 ,,CB CD CA CE BCD ACE α==∠=∠= ①BCD ACD ACE ACD ∠-∠=∠-∠,即BCA DCE ∠=∠.在ACB △和ECD 中 =⎧⎪∠=∠⎨⎪=⎩CB CD BCA DCE CA CE ①()ACB ECD SAS ≌.(2)(2)解:①由题意,得4,642CD BC CA CE BE BC ====-=-=. ①AD 是扇形ACE 所在圆的切线①90CAD ∠=︒.在Rt①ACD 中2,4AC CD ==①30ADC ∠=︒①60ACD ∠=︒①,180BCA DCE BCA ACD DCE ∠=∠∠+∠+∠=︒①60BCA DCE ∠=∠=︒①120ACE ∠=︒①120421803AE ππ=⨯⨯=. ①DE 和扇形ACE 所在圆相切.理由如下:在BCA 和DCA △中 CB CD BCA DCA CA CA =⎧⎪∠=∠⎨⎪=⎩①()BCA DCA SAS ≌①90CAB CAD ∠=∠=︒.由(1)得≌ACB ECD △△ ①90DEC BAC ∠=∠=︒,即CE DE ⊥. 又①点E 在扇形ACE 所在的圆上①DE 和扇形ACE 所在圆相切.7.【答案】(2)203OF = 【详解】(1)证明:①AC =6,BC =8,AB =10. ①AC 2+BC 2=AB 2①①ABC 为直角三角形且①ACB =90°①①ECB =90°①AB 为①O 的直径①BE 2=AE •CE①BE CE AE BE= 又①①E =①E①①ECB ①①EBA①①ECB =①EBA =90°①EB ①AB又①OB 为①O 的半径①BE 为①O 的切线;(2)解:如图,连接BF在Rt ①ABE 中tan①BAE =10BE BE AB = 在Rt ①ABC 中tan①BAE =86BC AC = ①8106BE = 解得BE =403①点F 为①ABE 外接圆的圆心①AF =BF =EF①点F 为直角三角形ABE 斜边AE 的中点 ①点O 为AB 的中点①OF 为①ABE 的中位线①OF =12BE =12×403=203. 8.【答案】(2)14740【详解】(1)证明:设AB 与CD 的交点为F ,连接BD①AC =AD ,AB 平分①DAC①AB ①CD ,DF =CF①AB是直径①BE是①ACD的外接圆的切线①BE①AB①CD//BE;(2)解:①AC=7,sin①CAB=3=7CFAC①CF=3=DF①AF=222273210 AD DF-=-=①cos①DAB=AD AF AB AD=①AB=77491020 210⨯=①tan①DAB=BE DF AB AF=①3 492101020BE=①BE=147 40.9.(2)劣弧AP的长为322π.【详解】(1)证明:过点P作直径PQ,连接AQ①PQ为①O的直径①①P AQ=90°①PA=PA①①B=①Q①①B=①APC①①APC=①Q①①Q +①APQ =90°①①APQ +①APC =90°①①CPQ =90°.①PC 是圆O 的切线;(2)连接OP 、OA①PA =PA①①O =2①B =90°①OP =OA①①AOP 是等腰直角三角形①222OP OA AP +=①AP =6①OP =OA =32①劣弧AP 的长=9032321802ππ︒⨯=︒. 10.【详解】(1)证明:①四边形ADBC 内接于①O ①①EDA =①ACB由圆周角定理得,①CDA =①ABC①AD 平分①EDC①①EDA =①CDA①①ABC =①ACB①AB =AC ;(2)解:连接AO 并延长交BC 于H ,AM①CD 于M ①AB =AC ,四边形ADBC 内接于①O①AH①BC ,又AH①AE①AE①BC①CD 为①O 的直径①①DBC =90°①①E =①DBC =90°①四边形AEBH 为矩形①BH =AE =2①BC =4①AD 平分①EDC ,①E =90°,AM①CD ①DE =DM =1,AE =AM =2 在Rt △ABE 和Rt △ACM 中 AE AMAB AC ⎧⎨⎩==①Rt △ABE①Rt △ACM (HL ) ①BE =CM设BE =x ,CD =x +2在Rt △BDC 中x 2+42=(x +2)2 解得,x =3①CD =5①①O 的半径为2.5.11.(2)35【详解】(1)连接OE①①B的平分线BE交AC于D①①CBE=①OBE①EF①AC①①CAE=①FEA①①OBE=①OEB,①CBE=①CAE①①FEA=①OEB①AB是O的直径①①AEB=90°①①FEO=90°①EF是O切线;(2)①①FEA=①OEB=①OBE,①F=①F ①∆FEA~∆FBE①EF AF BF EF=即:2EF AF BF=⋅①AF×(AF+15)=10×10,解得:AF=5或AF=-20(舍去)①51102 AE AFBE EF===①在Rt∆ABE中AE2+BE2=AB2①AE2+(2AE)2=152①AE=35.12.(2)53π.【详解】解:(1)连接AO.①①ABC=45°,①①AOC=2①B=90°.①OC①AD,①①OAD=90°①AD是①O的切线;(2)连接OB.①①BAD=105°,①OAD=90°①①OAB=15°.①OB=OA,①①ABO=15°①①AOB=150°①劣弧AB的长=15025 1803ππ⨯=.13.(2)22218AD CD AC+==【详解】(1)①CF为直径,l为切线①CF l⊥又①DE l⊥①CF//DE①①BCF=①CDE.又①CED=①CBF=90°①CFB~DCE∆∆;(2)连接AF由题意得:①CDP=①BDM=45°①M为弦AB的中点①OM垂直平分线段AB①①ADM=①BDM=45°①△ADB为等腰直角三角形①①ADB=①ADC=90°①222AD CD AC += ①①AFC=①ABC=45° ①AC=CF×sin45°=32 ①22218AD CD AC +==. 14.【详解】(1)证明:连接OD①AB 是①O 的直径 ①90ADB ∠=︒①90ADO BDO ∠+∠=︒ ①DO BO =①BDO PBD ∠=∠ ①PDA PBD ∠=∠ ①BDO PDA ∠=∠ ①90ADO PDA ∠+∠=︒ 即PD ①OD①直线PD 为①O 的切线;(2)解:①BE 是①O 的切线 ①90EBA ∠︒= ①60BED ∠=︒①30P ∠=︒①PD 为①O 的切线 ①90PDO ∠=︒设①O 的半径为R在Rt①PDO 中30P ∠=︒,则22PO OD R ==①222PO OD PD -= ①222(2)(3)R R -=解得1R = ①2PO = 1AO = ①211PA PO AO =-=-=; 15.【答案】(2) 233π【详解】(1)①EF =BD ①EF =BD①BE DF①①D =①DEF又BD =BC①①D =①C①①DEF=①CEF①BC(2)①AB 是直径,BC 为切线 ①AB①BC又EF①BC①AB①EF ,弧BF=弧BE GF =GE =12(HF+EH)=3,HG=1 DB 平分①EDF 又BF①CD①①FBD =①FDB =①BDE =①BFH ①HB =HF =2①cos①BHG =HGHB =12,①BHG =60°.①①FDB =①BDE =30°①①DFH=90°,DE为直径,DE=43,且弧BE所对圆心角=60°.①弧BE=63π=233π。
圆的切线练习题

圆的切线练习题圆是基础几何学中的重要概念之一,掌握圆的性质和相关定理对于解决与圆有关的问题非常重要。
其中,在求解圆的切线问题时,可以遵循一定的方法和步骤。
本文将介绍一些常见的圆的切线练习题,以帮助读者更好地理解和掌握这一内容。
题目一:求过给定点的切线已知圆O的半径为r,圆心为C,给定一点A在圆外。
请问如何求解过点A的圆O的切线?解析:连接圆心C和点A,得到斜率为k的直线。
利用勾股定理可以得到斜边CA的长度为√(r^2+k^2)。
由于切线与半径的垂直,因此切线段与半径长相等。
所以,切线段的长度也是√(r^2+k^2)。
因此,可以通过先求解直线CA的斜率k,然后计算切线段长度来求解过点A的圆的切线。
题目二:求圆的切线方程已知圆O的半径为r,圆心为C,给定过圆上一点A的切线。
请问如何求解通过点A的切线的方程?解析:切线与半径的垂直,因此可以利用斜率来求解切线的方程。
先求解直线CA的斜率k,然后通过斜率和点A的坐标来确定切线的方程。
设点A的坐标为(x1, y1),圆心C的坐标为(x0, y0),则切线的斜率为k = -(x1 - x0)/(y1 - y0)。
由切线与点A的坐标可以确定方程为(y - y1) = k(x - x1)。
题目三:求两圆的外切线已知圆O1的半径为r1,圆心为C1,圆O2的半径为r2,圆心为C2。
请问如何求解这两个圆的外切线段的长度?解析:连接两个圆心C1和C2,得到直线L。
根据勾股定理可以求得直线L的长度为d = √((x2 - x1)^2 + (y2 - y1)^2),其中(x1, y1)和(x2,y2)分别为圆心C1和C2的坐标。
由于切线与圆心到切点的线段相等(切点为两圆的外切点),所以外切线段的长度等于d - r1 - r2。
题目四:切线和半径的关系已知圆O的半径为r,圆心为C,给定过圆上一点A的切线。
设切线与半径的交点为点B,请问切线AB与半径OC之间存在什么关系?解析:根据圆的性质,切线与半径的垂直。
2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(一)一.选择题1.P是⊙O外一点,PA切⊙O于A,割线PBC交⊙O于点B、C,若PB=BC=3,则PA的长是()A.9 B.3 C.D.182.如图,PA切⊙O于点A,PBC是⊙O的一条割线,且PA=2,BC=2PB,那么PB 的长为()A.2 B.C.4 D.3.如图,⊙O的两条割线PAB,PCD分别交⊙O于点A,B和点C,D.已知PA=6,AB=4,PC=5,则CD=()A.B.C.7 D.244.如图,已知P为⊙O外一点,PO交⊙O于点A,割线PBC交⊙O于点B、C,且PB =BC,若OA=7,PA=4,则PB的长等于()A.B.C.6 D.5.如图,PA切⊙O于点A,PBC是⊙O的割线,如果PB=2,PC=8,那么PA的长为()A.2 B.4 C.6 D.6.如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE =5,则DE的长为()A.3 B.4 C.D.7.如图,在以O为圆心的两个同心圆中,A为大圆上任意一点,过A作小圆的割线AXY,若AX•AY=4,则图中圆环的面积为()A.16πB.8πC.4πD.2π8.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6 B.7 C.8 D.99.以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B.C.D.410.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB =60°,PA=8,那么点P与O间的距离是()A.16 B.C.D.二.填空题11.如图,⊙O的半径为,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB 延长线上任一点,QS⊥OP于S,则OP•OS=.12.如图,过点P引圆的两条割线PAB和PCD,分别交圆于点A,B和C,D,连接AC,BD,则在下列各比例式中,①;②;③,成立的有(把你认为成立的比例式的序号都填上).13.如图,割线PAB与⊙O交于点A、B,割线PCD与⊙O交于点C、D,PA=PC,PB=3cm,则PD=cm.14.如图,过⊙O外一点P作两条割线,分别交⊙O于A,B和C,D.已知PA=2,PB =5,PD=8,则PC的长是.15.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC 的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是(只需填一个条件).三.解答题16.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E.若AB=CD=2,求CE的长.17.如图所示,⊙O的内接△ABC的AB边过圆心O,CD切⊙O于C,BD⊥CD于D,交⊙O于F,CE⊥AB于点E,FE交⊙O于G.解答下列问题:(1)若BC=10,BE=8,求CD的值;(2)求证:DF•DB=EG•EF.18.如图1,已知Rt△ABC的直角边AC的长为2,以AC为直径的⊙O与斜边AB交于点D,过D点作⊙O的切线(1)求证:BE=DE;(2)延长DE与AC的延长线交于点F,若DF=,求△ABC的面积;(3)从图1中,显然可知BC<AC.试分别讨论在其它条件不变,当BC=AC(图2)和BC>AC(图3)时,直线DE与直线AC还会相交吗?若不能相交,请简要说明理由;若能相交,设交点为F'且DF'=,请再求出△ABC的面积.19.已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O 于B、D,直线DE交⊙O于C,连接BC,(1)求证:PE∥BC;(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.20.如图PAB、PCD是⊙O的两条割线,AB是⊙O的直径.(1)如图甲,若PA=8,PC=10,CD=6.①求sin∠APC的值;②sin∠BOD=;(2)如图乙,若AC∥OD.①求证:CD=BD;②若,试求cos∠BAD的值.参考答案一.选择题1.解:∵PB=BC=3,∴PC=6,∵PA2=PB•PC=18,∴PA=3,故选:C.2.解:设PB=x,则PC=3x,∵PA2=PB•PC,PA=2,BC=2PB,∴x•3x=12,∴x=2.故选:A.3.解:由于PAB、PCD都是⊙O的割线,根据切割线定理可得:PA•PB=PC•PD,即PA•(PA+PB)=PC•PD,∵PA=6,AB=4,PC=5,∴PD=12,即CD=PD﹣PC=7;故选:C.4.解:延长PO交圆于D;设PB=BC=x,∵PB•PC=PA•PD,PB=BC,OA=7,PA=4,∴x•2x=72,∴x=6.故选:C.5.解:∵PA切⊙O于点A,PBC是⊙O的割线,∴PA2=PB•PC=16,即PA=4;故选:B.6.解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选:D.7.解:过点A作圆的切线AD,切点是D,∵AD2=AX•AY,AX•AY=4,∴AD=2,∴圆环的面积=πAD2=4π.故选:C.8.解:∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选:D.9.解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选:A.10.解:连接OA,OP∵PA,PB是⊙O的切线,∠APB=60°,∴∠OPA=∠APB=30°,OA⊥OP,∴OP===,∴点P与O间的距离是.故选:B.二.填空题(共5小题)11.解:连接OQ交AB于M,则OQ⊥AB,连接OA,则OA⊥AQ.∵∠QMP=∠QSP=90°,∴S,P,Q,M四点共圆,故OS•OP=OM•OQ.又∵OM•OQ=OA2=2,∴OS•OP=2.故答案为:2.12.解:∵四边形ABCD是圆内接四边形∴∠PAD=∠C,∠PAD=∠B∴△PAD∽△PCB根据相似三角形的对应边的比相等,得到②③是正确的.13.解:∵PA•PB=PC•PD,PA=PC,PB=3cm∴PB=PD=3cm.14.解:∵PA•PB=PC•PD,PA=2,PB=5,PD=8∴PC==.15.解:∵∠PAC=90°,∠ABC=90°,∴90°﹣∠AFP=90°﹣∠BEP,∴∠APF=∠CPF,∴PF平分∠APC.三.解答题(共5小题)16.解:如图,由切割线定理,得CD2=CB•CA,(2分)CD2=CB(AB+CB),CB2+2CB﹣4=0,解得CB=(负数舍去)连接OD,则OD⊥CD,又EB与⊙O相切,∴EB⊥OC,∴Rt△ODC∽Rt△EBC,(6分)于是,即∴CE=.17.(1)解:∵AB为直径,BD⊥CD∴∠ABC+∠A=90°,∠CBD+∠BCD=90°∵CD为⊙O切线∴∠BCD=∠A∴∠ABC=∠BCD∵CD⊥BD,CE⊥BE∴CE=CD∴CE==6∴CD=6(2)证明:∵CD为切线,BD为割线∴CD2=DF•DB①∵∠ACB=90°,CE⊥AB∴RT△ACE∽RT△CBE∴CE2=EA•EB②∵EG•EF=EA•EB③由①②③及CD=CE得DF•DB=EG•EF.18.(1)证明:连接OD,∴OD⊥DE,∴∠ADO+∠BDE=90°,∵OA=OD,∴∠A=∠ADO,∵∠ACB=90°,∴∠B+∠A=90°,∴∠B=∠BDE,∴BE=DE;(2)解:在直角三角形ODF中,OD=1,DF=,∴∠OFD=30°,∴OF=2,AF=3.∴tan∠A=,∴BC=AC•tan∠A=2×tan30°=.S△ABC=AC•BC=×2×=;(3)解:如图,当BC=AC时,直线DE与直线AC平行;当BC>AC时,在直角三角形ODF′中,OD=1,DF′=,∴∠OF′D=30°,∴OF′=2,AF=1,∴CF′=3,∠BAC=60°,∴tan∠BAC=,∴BC=AC•tan∠BAC=2×tan60°=2.S △ABC=AC•BC=×2×2=2.19.(1)证明:∵PF与⊙O相切,∴PF2=PD•PA.∵PE=PF,∴PE2=PD•PA.∴PE:PD=PA:PE.∵∠APE=∠APE,∴△EPD∽△APE.∴∠PED=∠A.∵∠ECB=∠A,∴∠PED=∠ECB.∴PE∥BC.(2)解:PE与BC仍然平行.证明:画图如图,∵△EPD∽△APE,∴∠PEA=∠D.∵∠B=∠D,∴∠PEA=∠B.∴PE∥BC.20.解:(1)作OE⊥CD于E,连接OC,作DF⊥PB于F.①根据垂径定理,得CE=3.设圆的半径是r.根据勾股定理,得OP2﹣PE2=OC2﹣CE2,(8+r)2﹣169=r2﹣9,解得r=6.则OE=3.则sin∠APC==;②设OF=x.根据勾股定理,得PD2﹣PF2=OD2﹣OF2,256﹣(14+x)2=36﹣x2,解得x=.所以DF=.所以sin∠BOD===.(2)①∵AC∥OD,∴∠1=∠2.又OA=OD,∴∠2=∠3.∴∠1=∠3.所以弧CD=弧BD,所以CD=BD;②∵AC∥OD,∴=.又CD=BD,AB=2OA,∴=.∴cos∠BAD==.。
2023年中考九年级数学高频考点拔高训练--圆的切线的证明综合题(含答案)

2023年中考九年级数学高频考点拔高训练--圆的切线的证明综合题1.如图,已知:射线PO与⊙O交于A、B两点,PC、PD分别切⊙O于点C、D.(1)请写出两个不同类型的正确结论;(2)若CD=12,tan⊙CPO= 12,求PO的长.2.如图,⊙ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG//BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,⊙A=⊙D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分⊙ACB,BD=12,求DE的长.3.如图,已知⊙O的直径为AB,AC⊙AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线.(2)当OA=3,AE=4时,求BC的长度.4.如图,AB是⊙O的直径,点F,C是⊙O上两点,且点C是弧FB̀的中点,连接AC,AF,过点C作CD⊙AF,垂足为点D.(1)求证:CD是⊙O的切线;(2)若AB=10,AC=8,求DC的长.5.如图,⊙O是⊙ABC的外接圆,点O在BC边上,⊙BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:AB·CP=BD·CD;(3)若tan∠ABC=2,AB=2√5,求线段DP的长.6.如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且⊙CAD=⊙D,给出下列三个信息:①sin⊙CAB=12;②BO=BD;③DC是⊙O的切线.(1)请在信息①或②中选择一个作为条件,剩下的两个信息中选择一个作为结论,组成一个真命题....你选择的条件是,结论是(只要填写序号).(2)证明(1)中你写出的真命题.7.如图,AB是⊙O的直径,点C在⊙O上,点D在AB的延长线上,且⊙BCD =⊙A.(1)求证:CD是⊙O的切线;(2)若AC =2,AB =32CD,求⊙O半径.8.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB 交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:ΔDAF≌ΔDCE.(2)求证:DE是⊙O的切线.(3)若BF=2,DH=√5,求四边形ABCD的面积.9.如图,在矩形ABCD中,点E是BC边上一点,且AD=DE,以AB为半径作⊙A,交AD边于点F,连接EF.(1)求证:DE是⊙A的切线;(2)若AB=2,BE=1,求AD的长;(3)在(2)的条件下,求tan⊙FED.10.等腰三角形ABC,AB=AC,CD⊥AB于点D,AE⊥BC于点E,AE、CD交于点F,⊙O为⊙ADF的外接圆,连接DE.(1)求证:DE是⊙O的切线:(2)若CF=5,DF=3,求⊙O的直径.11.如图,在Rt△OAB中,∠AOB=90°,OA=OB=4,以点O为圆心、2为半径画圆,过点A作⊙O的切线,切点为P,连接OP.将OP绕点O按逆时针方向旋转到OH时,连接AH,BH.设旋转角为α(0°<α<360°).(1)当α=90°时,求证:BH是⊙O的切线;(2)当BH与⊙O相切时,求旋转角α和点H运动路径的长;(3)当△AHB面积最大时,请直接写出此时点H到AB的距离.12.如图,AB是⊙O的直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且OEEB=23,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.13.如图,AB是 ⊙O的直径,点C是 ⊙O上一点,AC平分⊙DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分⊙ACB,交AB于点F,交 ⊙O于点E.(1)求证:PC与⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan⊙ABC=43,求线段BE的长.14.如图,已知二次函数图象的对称轴为直线x=2,顶点为点C,直线y=x+m与该二次函数的图象交于点A,B两点,其中点A的坐标为(5,8),点B在y轴上.(1)求m的值和该二次函数的表达式.P为线段AB上一个动点(点P不与A,B 两点重合),过点P作x轴的垂线,与这个二次函数的图象交于点E.①设线段PE的长为h,求h与x之间的函数关系式,并写出自变量x的取值范围.②若直线AB与这个二次函数图象的对称轴的交点为D,求当四边形DCEP是平行四边形时点P的坐标.(2)若点P(x,y)为直线AB上的一个动点,试探究:以PB为直径的圆能否与坐标轴相切?如果能请求出点P的坐标,如果不能,请说明理由.15.如图,PA为⊙O的切线,A为切点,点B在⊙O上,且PA=PB,连AO并延长交PB的延长线于点C,交⊙O于点D.(1)求证:PB为⊙O的切线;(2)连接OB、DP交于点E.若CD=2,CB=4,求PEDE的值.16.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E 是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,⊙B=50°,AC=4.8,求图中阴影部分的面积.答案解析部分1.【答案】(1)解:不同类型的正确结论有:①PC=PD ,②⊙CPO=⊙DP ,③CD⊙BA ,④⊙CEP=90°,⑤PC 2=PA•PB(2)解:连接OC ∵PC 、PD 分别切⊙O 于点C 、D ∴PC=PD ,⊙CPO=⊙DPA∴CD⊙AB∵CD=12∴DE=CE= 12CD=6. ∵tan⊙CPO= 12, ∴在Rt⊙EPC 中,PE=12∴由勾股定理得CP=6 √5∵PC 切⊙O 于点C∴⊙OCP=90°在Rt⊙OPC 中,∵tan⊙CPO= 12, ∴OC PC =12∴OC=3 √5 ,∴OP= √OC 2+PC 2 =152.【答案】(1)证明:如图1,延长 DB 至 H ,∵DG//BC ,∴∠CBH =∠D ,∵∠A=∠D,∴∠A=∠CBH,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∴∠CBH+∠ABC=90°,∴∠ABD=90°,∴AB⊙BD,∴BD与⊙O相切;(2)解:如图2,连接OF,∵CF平分∠ACB,∴∠ACF=∠BCF,∴AF=BF,∴⊙AOF=⊙BOF=90°,∴OF⊥AB,∵BD⊥AB,∴OF//BD,∴△EFO∽△EDB,∴OFBD=OE BE,∵AE=OE,∴OEEB=1 3,∴OF12=13,∴OF=4,∴OA=OB=OF=4,∴BE =OE +OB =2+4=6 ,∴DE =√BD 2+BE 2=√122+62=6√5 .3.【答案】(1)证明:如图:首先连接OD .∵AC⊙AB ,∴⊙BAC=90°,即⊙OAE=90°.在⊙AOE 与⊙DOE 中,OA=OD ,ED=EA ,OE=OE ,∴⊙AOE⊙⊙DOE (SSS ),∴⊙OAE=⊙ODE=90°,即OD⊙ED .又∵OD 是⊙O 的半径,∴ED 是⊙O 的切线;(2)解:如图,在⊙OAE 中,⊙OAE=90°,OA=3,AE=4,∴由勾股定理求得OE=5.∵AB 是直径,∴⊙ADB=90°(直径所对的圆周角是直角),即AD⊙BC .又∵OA=OD ,AE=DE ,∴OE 垂直平分AD (到线段两个端点距离相等的点在这条线段的垂直平分线上), ∴OE⊙AD ,∴OE⊙BC ,∴OA AB =OE BC =12(平行线分线段成比例定理). ∴BC=2OE=2×5=10,即BC 的长度是10.4.【答案】(1)解:如图1,连接OC ,∵C 是弧FB ̀的中点, ∴弧FC=弧BC ̀̀,∴⊙FAC=⊙BAC ,∵OA=OC ,∴⊙OCA=⊙BAC ,∴⊙FAC=⊙OCA ,∴AD⊙OC ,∵CD⊙AF ,∴CD⊙OC ,即CD 是⊙O 的切线;(2)解:如图2,连接BC ,∵AB 是⊙O 的直径,∴⊙ACB=90°,∴⊙D=⊙ACB ,又⊙DAC=⊙CAB ,∴⊙DAC⊙⊙CAB ,∴AD AC =AC AB, 解得,AD= AC 2AB=6.4, 在Rt⊙ADC 中,CD= √AC 2−AD 2 =4.8.5.【答案】(1)证明:如图,连接OD ,∵BC 是⊙O 的直径,∴⊙BAC=90°,∵AD 平分⊙BAC ,∴⊙BAC=2⊙BAD ,∵⊙BOD=2⊙BAD ,∴⊙BOD=⊙BAC=90°,∵DP⊙BC ,∴⊙ODP=⊙BOD=90°,∴PD⊙OD ,∵OD 是⊙O 半径,∴PD 是⊙O 的切线;(2)证明:∵PD⊙BC ,∴⊙ACB=⊙P ,∵⊙ACB=⊙ADB ,∴⊙ADB=⊙P ,∵⊙ABD+⊙ACD=180°,⊙ACD+⊙DCP=180°,∴⊙DCP=⊙ABD ,∴⊙ABD⊙⊙DCP ,∴AB CD =BD CP∴AB•CP=BD•CD.(3)解:在 RtΔABC 中,∵tan∠ABC =2 , AB =2√5 ,∴AC =2AB =4√5 ,∴BC =√AB 2+AC 2=10 ,∴OD =5 ,过点 C 作 CG ⊥DP ,垂足为 G ,则四边形 ODGC 为正方形,∴DG =CG =OD =5 ,∵BC ∥PD ,∴∠CPG =∠ACB ,∴tan∠CPG =tan∠ACB ,∴CG GP =AB AC,即 5GP =2√54√5 , 解得, GP =10 ,∴DP =DG +GP =15 .6.【答案】(1)①;②(或①,③;或②,①;或②,③;答案不唯一) (2)解:条件:①,结论:②;连接BC ,∵AB是⊙O的直径,∴⊙ACB=90°,∵sin⊙CAB= 1 2,∴BC= 12AB=BO,⊙D=⊙CAB=30°,∴⊙ABC=60°,∴⊙BCD=⊙ABC-⊙D=30°=⊙D,∴BD=BC,∴BD=BO;条件:①,结论:③;连接CO,∵sin⊙CAB= 1 2,∴⊙D=⊙CAB=30°,∵OA=OC,∴⊙OCA=⊙CAB=30°,在⊙DCA中,⊙DCO =180°-⊙D-⊙CAB-⊙OCA =180°-30°-30°-30°=90°,∴OC⊙DC,∴DC是⊙O的切线;条件:②,结论:①;连接BO、CO,∵AB是⊙O的直径∴⊙ACB=90°∵BO=BD,BO=AO,∴DO=AB,在⊙DCO与⊙ACB中,{CD=CA∠D=∠CAD DO=AB,∴⊙DCO⊙⊙ACB,∴BC=CO= 12AB,∴sin⊙CAB= 1 2;条件:②,结论:③;连接BO、CO,∵AB是⊙O的直径,∴⊙ACB=90°,∵BO=BD,BO=AO,∴DO=AB,在⊙DCO与⊙ACB中,{CD=CA ∠D=∠CAD DO=AB∴⊙DCO⊙⊙ACB,∴⊙DCO=⊙ACB=90°,∴CO⊙DC,∴DC是⊙O的切线.7.【答案】(1)证明:如图,连接OC.∵AB 是⊙O 的直径,C 是⊙O 上一点,∴⊙ACB=90°,即⊙ACO+⊙OCB=90°.∵OA=OC ,⊙BCD=⊙A ,∴⊙ACO=⊙A=⊙BCD ,∴⊙BCD+⊙OCB=90°,即⊙OCD=90°,∴CD 是⊙O 的切线.(2)解:设CD 为x ,则AB= 32 x ,OC=OB= 34x , ∵⊙OCD=90°,∴OD= √OC 2+CD 2=√(34x)2+x 2 = 54 x , ∴BD=OD ﹣OB= 54x ﹣ 34 x= 12 x , ∵⊙BCD =⊙A ,⊙BDC =⊙CDA ,∴⊙ADC⊙⊙CDB ,∴AC CB =CD BD, 即 2CB =x 12, 解得CB=1,∴AB= √AC 2+BC 2 =√5∴⊙O 半径是 √52. 8.【答案】(1)证明:如图1,连接 DF ,∵四边形 ABCD 为菱形,∴AB =BC =CD =DA , AD//BC , ∠DAB =∠C ,∵BF=BE,∴AB−BF=BC−BE,即AF=CE,∴ΔDAF≌ΔDCE(2)解:∵ΔDAF≌ΔDCE∴∠DFA=∠DEC.∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°.∵AD//BC,∴∠ADE=∠DEC=90°,∴OD⊥DE.∵OD是⊙O的半径,∴DE是⊙O的切线(3)解:如图2,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DFA=90°,∴∠DFB=90°,∵AD=AB,DH=√5,∴DB=2DH=2√5,在RtΔADF和RtΔBDF中,∵DF2=AD2−AF2,DF2=BD2−BF2,∴AD2−AF2=DB2−BF2,∴AD2−(AD−BF)2=DB2−BF2,∴AD2−(AD−2)2=(2√5)2−22,∴AD=5.∴AF=3∴DF=√AD2−AF2=4∴四边形ABCD的面积=AB⋅DF=5×4=20.9.【答案】(1)证明:过点A作AG⊙DE,∴⊙AGD=90°在矩形ABCD 中,AD⊙BC ,⊙C=90°,∴⊙AGD=⊙C ,⊙ADG=⊙DEC∵AD=DE ,∴⊙ADG⊙⊙DEC∴AG=DC ,DG=EC ,∵AB=DC ,∴AG=AB ,即AG 为⊙A 的半径∴DE 是⊙A 的切线(2)解:连接AE ,由(1)可知,AG=AB ,⊙ABE=⊙AGE=90°,AE=AE ,∴⊙ABE⊙⊙AGE (HL ),∴BE=EG ,设DG=EC=x ,∵AB=2,BE=1,∴DE=x+1,DC=AB=2,在Rt⊙DEC 中,由勾股定理可得,x 2+22=(x +1)2解得,x =32, ∴AD=DE=52(3)解:过点F 作FH⊙DE ,∵AD =52,AF =AB =2, ∴DF =AD −AF =52−2=12, ∵FH⊙DE ,AG ⊥DE ,∴FH ∥AG ,∴⊙DFH⊙⊙DAG ,∴DF AD =FH AG ,即1252=FH 2, 解得FH =25, ∵DH =√(12)2−(25)2=310,DE =√(32)2−22=52, ∴EH =52−310=115∴tan⊙FED =FH EH =211, 10.【答案】(1)证明:如下图所示,连接OD .∵AB =AC ,AE⊙BC ,∴CE =EB ,⊙DCE +⊙CFE =90°.∴CE =12BC . ∵CD⊙AB ,∴DE =12BC ,⊙ADF=90°. ∴DE=CE ,⊙FAD +⊙AFD =90°,⊙ODA +⊙ODF =90°.∴∠DCE =∠CDE .∵⊙AFD 和⊙CFE 是对顶角,∴⊙AFD =⊙CFE .∴⊙FAD =⊙DCE .∴⊙FAD=⊙CDE .∵OA =OD ,∴⊙FAD =⊙ODA .∴⊙ODA =⊙CDE .∴⊙ODE=⊙ODF +⊙CDE =⊙ODF+⊙ODA=90°.∴OD⊙DE .∵OD 为半径,∴DE 是⊙O 的切线.(2)解:如下图所示,连接BF .∵CE =BE ,AE⊙BC ,CF=5,∴BF =CF =5.∵DF=3,∴DB =√BF 2−DF 2=4,CD =CF +DF =8.∵CD⊙AB ,∴⊙ADF=⊙CDB=90°.∴AF 是⊙O 直径.∵⊙FAD=⊙DCE ,即⊙FAD=⊙BCD ,∴⊙ADF⊙⊙CDB .∴AD CD =DF DB. ∴AD 8=34. ∴AD =6.∴AF =√AD 2+DF 2=√62+32=3√5.11.【答案】(1)解: ∵α=90°=∠AOB ,∴∠AOP =∠BOH ,又 ∵OP =OH, OA =OB ,∴△AOP ≌△BOH ,∴∠OPA =∠OHB ,∵AP 是⊙O 的切线,∴∠OPA =90° ,∴∠OHB =90° ,即 OH ⊥BH 于点H ,∴BH是⊙O的切线;(2)解:如图,过点B作⊙O的切线BC、BD,切点分别为C、D,连接OC,OD,则有OC⊥BC,OD⊥BD,∵OC=2,OB=4,∴cos∠BOC=OCOB=24=12,∴∠BOC=60°,同理∠BOD=60°,当点H与点C重合时,由(1)知:α=90°,∴∠OHB=90°,∵OP=2,∴PH的长为90π×2180=π;当点H与点D重合时,α=∠POC+∠BOC+∠BOD=90°+2×60°=210°,∴PH的长为210π×2180=73π,∴当BH与⊙O相切时,旋转角α=90°或210°,点H运动路径的长为π或73π.(3)2+2√212.【答案】(1)解:连接OC,∵AB是⊙O的直径,点C是AB的中点,∴⊙AOC=90°,∵OA=OB,CD=AC,∴OC是⊙ABD是中位线,∴OC⊙BD,∴⊙ABD =⊙AOC =90°,∴AB⊙BD ,∵点B 在⊙O 上,∴BD 是⊙O 的切线(2)解:由(1)知,OC⊙BD ,∴⊙OCE⊙⊙BFE ,∴OC BF =OE EB, ∵OB =2,∴OC =OB =2,AB =4, OE EB =23, ∴2BF =23, ∴BF =3,在Rt⊙ABF 中,⊙ABF =90°,根据勾股定理得,AF =5, ∵S ⊙ABF = 12 AB•BF = 12AF•BH , ∴AB•BF =AF•BH ,∴4×3=5BH ,∴BH = 125. 13.【答案】(1)证明:连接OC ,∵AC 平分⊙DAB ,∴⊙DAC =⊙CAB ,∵OA =OC ,∴⊙OCA =⊙CAB ,∴⊙DAC =⊙OCA ,∴OC⊙AD ,又AD⊙PD ,∴OC⊙PD ,∴PC 与⊙O 相切(2)证明:∵CE 平分⊙ACB ,∴⊙ACE =⊙BCE ,∴AE =BE ,∴⊙ABE =⊙ECB ,∵OC =OB ,∴⊙OCB =⊙OBC ,∵AB 是⊙O 的直径,∴⊙ACB =90°,∴⊙CAB+⊙ABC =90°,∵⊙BCP+⊙OCB =90°,∴⊙BCP =⊙BAC ,∵⊙BAC =⊙BEC ,∴⊙BCP =⊙BEC ,∵⊙PFC =⊙BEC+⊙ABE ,⊙PCF =⊙ECB+⊙BCP ,∴⊙PFC =⊙PCF ,∴PC =PF(3)解:连接AE ,在Rt⊙ACB 中,tan⊙ABC = 43,AC =8, ∴BC =6,由勾股定理得,AB = √AC 2+BC 2=√82+62=10 ,∵AE =BE ,∴AE =BE ,则⊙AEB 为等腰直角三角形,∴BE = √22AB =5 √2 . 14.【答案】(1)解: A 的坐标为(5,8)在直线y=x+m 上,∴8=5+m ,∴m=3,∴直线AB 解析式为y=x+3,∴B (0,3),设抛物线解析式为y=a (x ﹣2)2+k ,∵点A ,B 在抛物线上,∴{9a +k =8a +k =0, ∴{a =1k =−1, ∴抛物线解析式为y=(x ﹣2)2﹣1=x 2﹣4x+3,顶点C (2,﹣1)①∵点P在线段AB上,∴P(x,x+3)(0≤x≤5),∵PE⊙x轴,交抛物线与E,P (x,x+3),∴E(x,x2﹣4x+3),∴h=PE=x+3﹣(x2﹣4x+3)=﹣x2+5x,(0≤x≤5)②∵直线AB与这个二次函数图象的对称轴的交点为D,∴D(2,5),∴DC=6,∵四边形DCEP是平行四边形,∴PE=DC=6,∵PE=|﹣x2+5x|,⊙、当0≤x≤5时,﹣x2+5x=6,∴x1=2(舍),x2=3,∴P(3,6),⊙、当x<0,或x>5时,x2﹣5x=6,∴x3=﹣1,x4=6,∴P(﹣1,2)或P(6,9),(舍)即:点P的坐标为(3,6)(2)解:∵点P(x,y)为直线AB上的一个动点,∴P(x,x+3),∴点P到x轴的距离为|x+3|,到y轴的距离为|x|,∵点B(0,3),∴BP= √x2+(x+3−3)2=√2 |x|,∵以PB为直径的圆能与坐标轴相切,∴①以PB为直径的圆能与y轴相切,∴|x|= √22|x|,∴x=0(舍),②以PB为直径的圆能与x轴相切,∴|x+3|= √22|x|,∴x=﹣6﹣3 √2或x=﹣6+3 √2,∴P(﹣6﹣3 √2,﹣3+3 √2)或P(﹣6﹣3√2,﹣3﹣3 √2).故存在点P,坐标为P(﹣6+3 √2,﹣3+3 √2)或P(﹣6﹣3 √2,﹣3﹣3 √2)时,以PB为直径的圆能与坐标轴相切15.【答案】(1)证明:连接OB,OP,∵PA为⊙O的切线,∴OA⊥PA,∠OAP=90°,∵OA=OB,PA=PB,OP=OP,∴∠OBP=∠OAP=90°∴OB⊥PB∴PB为⊙O切线;(2)解:设OB=OD=r,在Rt△OBC中,BC2+OB2=OC2∴r2+42=(2+r)2,∴r=3,∴OB=OD=3,AC=OA+OD+CD=3,设PB=PA=x,在Rt△PAC中,AC2+PA2=PC2∴x2+82=(x+4)2,解得x=6,∴PB=PA=6,在Rt△PAO中,OP=√OA2+AP2=3√5,连接AB与OP交于G,连接BD,∵OA=OB,PA=PB,∴AB⊙OP,AG=BG,∴S△AOP=12AG⋅OP=12OA⋅AP,即S△AOP=12AG⋅3√5=12×3×6,∴AG=65√5,在Rt△OAG中,OG=√OA2−AG2=35√5,∵OA=OD,AG=BG,∴BD=2OG=65√5,∵AD为直径,∴∠ABD=90°,∴OP//BD,∴∠BDP=∠OPD,∠DBO=∠POE,∴PEDE=OPDB=52.16.【答案】(1)解:直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊙AC,∴⊙OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE⊙BC,∴⊙1=⊙B,⊙2=⊙3,∵OB=OD,∴⊙B=⊙3,∴⊙1=⊙2,在⊙AOE和⊙DOE中{OA=OD∠1=∠2 OE=OE,∴⊙AOE⊙⊙DOE,∴⊙ODE=⊙OAE=90°,∴OA⊙AE,∴DE为⊙O的切线(2)解:∵点E是AC的中点,∴AE=12AC=2.4,∵⊙AOD=2⊙B=2×50°=100°,∴图中阴影部分的面积=2• 12×2×2.4﹣100⋅π⋅22360=4.8﹣109π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题圆的位置关系第一部分真题精讲【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tan C=12,求⊙O的直径.A【思路分析】本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了…近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。
对于此题来说,自然连接OD,在△ABC中OD就是中位线,平行于BC。
所以利用垂直传递关系可证OD⊥DE。
至于第二问则重点考察直径所对圆周角是90°这一知识点。
利用垂直平分关系得出△ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。
【解析】(1)证明:联结OD.∵ D为AC中点, O为AB中点,A∴ OD为△ABC的中位线.∴OD∥BC.∵ DE⊥BC,∴∠DEC=90°.∴∠ODE=∠DEC=90°. ∴OD⊥DE于点D.∴ DE为⊙O的切线.(2)解:联结DB.∵AB为⊙O的直径,∴∠ADB=90°.∴DB⊥AC.∴∠CDB=90°.∵ D为AC中点,∴AB=AC.在Rt△DEC中,∵DE=2 ,tanC=12,∴EC=4tanDEC=. (三角函数的意义要记牢)由勾股定理得:DC=在Rt△DCB 中, BD=tanDC C⋅= BC=5.∴AB=BC=5.∴⊙O的直径为5.【例2】已知:如图,⊙O为ABC∆的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF∠,过点A作AD BF⊥于点D.(1)求证:DA为⊙O的切线;(2)若1BD=,1tan2BAD∠=,求⊙O的半径.FCFC【思路分析】本题是一道典型的用角来证切线的题目。
题目中除垂直关系给定以外,就只给了一条BA平分∠CBF。
看到这种条件,就需要大家意识到应该通过角度来证平行。
用角度来证平行无外乎也就内错角同位角相等,同旁内角互补这么几种。
本题中,连OA之后发现∠ABD=∠ABC,而OAB构成一个等腰三角形从而∠ABO=∠BAO,自然想到传递这几个角之间的关系,从而得证。
第二问依然是要用角的传递,将已知角∠BAD通过等量关系放在△ABC中,从而达到计算直径或半径的目的。
【解析】证明:连接AO.∵AO BO=,∴23∠=∠.∵BA CBF∠平分,∴12∠=∠. ∴31∠=∠.∴DB∥AO. (得分点,一定不能忘记用内错角相等来证平行)∵AD DB⊥,∴90BDA∠=︒.∴90DAO∠=︒.∵AO是⊙O半径,∴DA为⊙O的切线.(2)∵AD DB⊥,1BD=,1tan2BAD∠=,∴2AD=.由勾股定理,得AB=.∴sin4∠=.(通过三角函数的转换来扩大已知条件)∵BC是⊙O直径,∴90BAC∠=︒.∴290C∠+∠=︒.又∵4190∠+∠=︒, 21∠=∠,∴4C∠=∠. (这一步也可以用三角形相似直接推出BD/AB=AB/AC=sin∠BAD)在Rt△ABC中,sinABBCC==sin4AB∠=5.∴⊙O的半径为52.【例3】已知:如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且.OA AB AD==(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,AE与BC相交于点F,且8BE=,tan BFA∠=求⊙O的半径长.【思路分析】此题条件中有OA=AB=OD,聪明的同学瞬间就能看出来BA其实就是三角形OBD中斜边OD 上的中线。
那么根据直角三角形斜边中线等于斜边一半这一定理的逆定理,马上可以反推出∠OBD=90°,于是切线问题迎刃而解。
事实上如果看不出来,那么连接OB以后像例2那样用角度传递也是可以做的。
本题第二问则稍有难度,额外考察了有关圆周角的若干性质。
利用圆周角相等去证明三角形相似,从而将未知条件用比例关系与已知条件联系起来。
近年来中考范围压缩,圆幂定理等纲外内容已经基本不做要求,所以更多的都是利用相似三角形中借助比例来计算,希望大家认真掌握。
C(1)证明:连接OB .∵,OA AB OA OB ==,∴OA AB OB ==.∴ABO ∆是等边三角形. ∴160BAO ∠=∠=︒. ∵AB AD =, ∴230D ∠=∠=︒.∴1290∠+∠=︒.∴DB BO ⊥ . (不用斜边中线逆定理的话就这样解,麻烦一点而已) 又∵点B 在⊙O 上, ∴DB 是⊙O 的切线 .(2)解:∵CA 是⊙O 的直径, ∴90ABC ∠=︒.在Rt ABF △中,tan AB BFA BF ∠==,∴设,AB =则2BF x =,∴3AF x = . ∴23BF AF = . (设元的思想很重要) ∵,34C E ∠=∠∠=∠,∴BFE ∆ ∽ AFC ∆.∴23BE BF AC AF == . ∵8BE =, ∴12AC = .∴6AO =.………………………………………5分【例4】如图,等腰三角形ABC 中,6AC BC ==,8AB =.以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF AC ⊥,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是⊙O 的切线; (2)求sin E ∠的值.【思路分析】本题和前面略有不同的地方就是通过线段的具体长度来计算和证明。
欲证EF 是切线,则需证OD 垂直于EF ,但是本题中并未给OD 和其他线角之间的关系,所以就需要多做一条辅助线连接CD ,利用直径的圆周角是90°,并且△ABC 是以AC,CB 为腰的等腰三角形,从而得出D 是中点。
成功转化为前面的中点问题,继而求解。
第二问利用第一问的结果,转移已知角度,借助勾股定理,在相似的RT 三角形当中构造代数关系,通过解方程的形式求解,也考察了考生对于解三角形的功夫。
CDFGCO B E A(1)证明:如图,连结CD ,则90BDC ∠=︒.∴CD AB ⊥. ∵ AC BC =,∴AD BD =. ∴D 是AB 的中点. ∵O 是BC 的中点, ∴DO AC ∥. ∵EF AC ⊥于F . ∴EF DO ⊥.∴EF 是⊙O 的切线.( 2 ) 连结BG ,∵BC 是直径, ∴90BGC CFE ∠=︒=∠.(直径的圆周角都是90°) ∴BG EF ∥.∴sin FC CGE EC BC∠==. 设CG x =,则6AG x =-.在Rt BGA △中,222BG BC CG =-. 在Rt BGC △中,222BG AB AG =-.(这一步至关重要,利用两相邻RT △的临边构建等式,事实上也可以直接用直角三角形斜边高分比例的方法)∴()2222686x x -=--.解得23x =.即23CG =.在Rt BGC △中.∴ 213sin 69CG E BC ∠===.【例5】如图,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆交AD 于F ,交BC 于G ,延长BA 交圆于E .(1)若ED 与⊙A 相切,试判断GD 与⊙A 的位置关系,并证明你的结论; (2)在(1)的条件不变的情况下,若GC =CD =5,求AD 的长.G FEDCBA【思路分析】本题虽然是圆和平行四边形的位置关系问题,但是依然考察的是如何将所有条件放在最基本的三角形中求解的能力。
判断出DG 与圆相切不难,难点在于如何证明。
事实上,除本题以外,门头沟,石景山【解析】(1)结论:GD 与O e 相切654321GF EDCBA证明:连接AG∵点G 、E 在圆上, ∴AG AE =∵四边形ABCD 是平行四边形, ∴AD BC ∥ ∴123B ∠=∠∠=∠,∵AB AG = ∴3B ∠=∠∴12∠=∠ (做多了就会发现,基本此类问题都是要找这一对角,所以考生要善于把握已知条件往这个上面引)在AED ∆和AGD ∆ 12AE AG AD AD =⎧⎪∠=∠⎨⎪=⎩∴AED AGD ∆∆≌ ∴AED AGD ∠=∠ ∵ED 与A e 相切 ∴90AED ∠=︒ ∴90AGD ∠=︒ ∴AG DG ⊥∴GD 与A e 相切(2)∵5GC CD ==,四边形ABCD 是平行四边形 ∴AB DC =,45∠=∠,5AB AG == ∵AD BC ∥ ∴46∠=∠∴1562B ∠=∠=∠∴226∠=∠ (很多同学觉得题中没有给出特殊角度,于是无从下手,其实用倍分关系放在RT 三角形中就产生了30°和60°的特殊角) ∴630∠=︒∴10AD = .【总结】 经过以上五道一模真题,我们可以得出这类题型的一般解题思路。
要证相切,做辅助线连接圆心与切点自不必说,接下来就要考虑如何将半径证明为是圆心到切线的距离,即“连半径,证垂直”。
近年来中考基本只要求了这一种证明切线的思路,但是事实上证明切线有三种方式。
为以防遇到,还是希望考生能有所了解。
第二种是在题目没有给出交点状况的情况下,不能贸然连接,于是可以先做垂线,然后通过证明垂线等于半径即可,就是所谓的“先证垂直后证半径”。
例如大家看这样一道题,如图△ABC中,AB=AC,点O是BC的中点,与AB切于点D,求证:与AC也相切。
该题中圆0与AC是否有公共点是未知的,所以只能通过O做AC的垂线,然后证明这个距离刚好就是圆半径。
如果考生想当然认为有一个交点,然后直接连AC与圆交点这样证明,就误入歧途了。
第三种是比较棘手的一种,一方面题目中并未给出半径,也未给出垂直关系,所以属于半径和垂直都要证明的题型。
例如看下面一道题:如图,中,AB=AC,=,O、D将BC三等分,以OB为圆心画,求证:与AC相切。
本题中并未说明一定过A点,所以需要证明A是切点,同时还要证明O到AC垂线的垂足和A是重合的,这样一来就非常麻烦。
但是换个角度想,如果连接AO之后再证明AO=OB,AO⊥AC,那么就非常严密了。
(提示:做垂线,那么垂足同时也是中点,通过数量关系将AO,BO都用AB表示出来即可证明相等,而△AOC中利用直角三角形斜边中线长是斜边一半的逆定理可以证出直角。
)至于本类题型中第二问的计算就比较简单了,把握好圆周角,圆心角,以及可能出现的弦切角所构成的线段,角关系,同时将条件放在同一个RT△当中就可以非常方便的求解。
总之,此类题目难度不会太大,所以需要大家做题速度快,准确率高,为后面的代几综合体留出空间。
第二部分 发散思考【思考1】如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B . (1)求证:AD 是⊙O 的切线;(2)若⊙O 的半径为3,AB =4,求AD 的长.【思路分析】此题为去年海淀一模题,虽然较为简单,但是统计下来得分率却很低. 因为题目中没有给出有关圆心的任何线段,所以就需要考生自己去构造。