圆的切线专题复习
专题复习与圆的切线有关的证明

是圆的切线
5、常用的添加辅助线的方法
(1)直线与圆的公共点已知时,作出过公共点的 半径,再证半径垂直于该直线。 有切点,连半径,证垂直 (2)直线与圆的公共点不确定时,过圆心作直线 的垂线段,再证明这条垂线段为圆的半径 无切点,作垂直,证半径
切线的性质
如图,⊙O的切线PC交直径AB的延长线于点P,C为切点, 若∠P=30°,⊙O的半径为1,则PB的长为_______
无交点,作垂直,证半径
例:如图 ,已知:O 为 BAC 角平分线上一点,
OD AB 于 D ,以 O 为圆心, 为半径作圆。
求证:AC 是⊙ O 的切线。
E
数学解答题P7 数学解答题P9
P9《数学解答题》
切线的性质
P9《数学解答题》
切线的性质
P9《数学解答题》
切线的性质
切线的性质
垂直 于经过切点的半径. 定理:圆的切线________ 技巧:圆心与切点的连线是常用的辅助线.
垂直 于这条半径的直线是圆 定理: 经过半径的外端并且________ 的切线. 证圆的切线技巧: (1)如果直线与圆有交点,连接圆心与交点的半径,证明直 线与该半径垂直,即“有交点,作半径,证垂直”.
(2)如果直线与圆没有明确的交点, 则过圆心作该直线的垂 线段,证明垂线段等于半径,即“无交点,作垂直,证半径”.
切线的判定
作业:《数学解答题》 P7-10第一问
专题复习 与圆的切线有关的证明
1、圆的切线性质定理
圆的切线垂直于经过切点的半径.
2、辅助线: 连接圆心与切点
连半径,得垂直
半径与切线垂直
3、切线判定
定理:经过半径的外端并且垂直于这条半径的 直线是圆的切线。
中考总复习圆的切线专题

题型专项(八)与切线有关的证明与计算类型1与全等三角形有关1. (2016梧州)如图,过O O上的两点A , B分别作切线,交于BO , AO的延长线于点C, D,连接CD ,交O O于点E, F,过圆心O作OM丄CD ,垂足为点M.求证:(1)△ ACO ◎△ BDO ;(2)CE = DF.证明:⑴•/ AC , BD分别是O O的切线,.•./ A = Z B= 90°.又••• AO = BO , / AOC =Z BOD ,•••△ ACO 也厶BDO.(2) •/△ ACO ◎△ BDO ,•••OC = OD.又••• OM 丄CD , • CM = DM.又••• OM丄EF,点O是圆心,•EM = FM.•CM —EM = DM —FM.•CE = DF.2. (2016玉林模拟)如图,AB是O O的直径,/ BAC = 60° , P是OB上一点,过P作AB 的垂线与AC的延长线交于点Q,过点C的切线CD交PQ于点D,连接OC.(1)求证:△ CDQ是等腰三角形;⑵如果△ CDQ COB ,求BP : PO的值.解:⑴证明:由已知得/ ACB = 90° , / ABC = 30°•/ Q= 30° , / BCO =Z ABC = 30°.•/ CD是O O的切线,CO是半径,•CD 丄CO.•/ DCQ = Z BCO = 30°.•/ DCQ = Z Q.故厶CDQ是等腰三角形.(2)设O O 的半径为1 ,则AB = 2, OC= 1 , BC = .3.•••等腰三角形CDQ与等腰三角形COB全等,•CQ = CB = ,3.二 AQ = AC + CQ = 1 +<:,:: 3.••• AP = 2AQ = ^^.••• Bp =AB -AP =违严 •••PO =AP -AO =¥• BP : PO = 3.3. (2016柳州)如图,AB ABC 外接圆O O 的直径,点P 是线段CA 的延长线上一点 点E 在弧上且满足 PE 1 2= PA - PC ,连接CE ,AE ,OE 交CA 于点D.(1) 求证:△ PAE s^ PEC ;⑵求证:PE 为O O 的切线;1⑶若/ B = 30° , AP = 2AC ,求证:DO = DP.证明: ⑴•/ PE 2=PA-PC ,• PE = PA…PC = PE .又•••/ APE = Z EPC ,• △ PAE s^ PEC.⑵•/△ PAEPEC ,PEA = Z PCE.1 •••/ PCE =孑/ AOE ,1 •••/ PEA = -Z AOE. v OA = OE , 2•••/ OAE = Z OEA.•••/ AOE + Z OEA + Z OAE = 180 ° ,•••/ AOE + 2/ OEA = 180° ,即 2/ PEA + 2/ OEA = 180 ° .•••/ PEA + Z OEA = 90° .• PE 为O O 的切线.⑶设O O 的半径为r ,则AB = 2r.•••/ B = 30 ° , / PCB = 90 ° , • AC = r , BC =3r.过点O 作OF 丄AC 于点F , AP =匸 v PE 2= PA-PC , • PE =」r. 2' ~ ' 2 在厶ODF 与厶PDE 中, .•/ AP = ^AC ,/ ODF = Z PDE ,/ OFD = Z PED ,OF = PE ,•••△ ODF ◎△ PDE. ••• DO = DP.类型2与相似三角形有关 针对训练4. (2016泰州)如图,在厶ABC 中,/ ACB = 90 °,在D 为AB 上一点,以CD 为直径的O O 交BC 于点E ,连接AE 交CD 于点P ,交O O 于点F ,连接DF , / CAE = Z ADF.(1) 判断AB 与O O 的位置关系,并说明理由;⑵若 PF : PC = 1 : 2, AF = 5,求 CP 的长.解:(1)AB 是O O 切线.理由:•••/ ACB = 90° ,•••/ CAE + Z CEA = 90° .•••/ CAE = Z ADF , / CDF = Z CEA ,•••/ ADF + Z CDF = 90° .• AB 是O O 切线.⑵连接CF.•••/ ADF + Z CDF = 90° , / PCF +Z CDF = 90° ,•••/ ADF = Z PCF.•••/ PCF =Z PAC.又•••/ CPF =Z APC ,PC 2= PF PA.设 PF = a ,贝U PC = 2a. •- 4a 2 = a(a + 5).• a = 3.PC = 2a =隊5. (2015北海)如图,AB , CD 为O O 的直径,弦AE // CD ,连接BE 交CD 于点F ,过点E 作直线EP 与CD 的延长线交于点 P ,使/ PED = Z C.(1) 求证:PE 是O O 的切线;⑵求证:ED 平分/ BEP ;⑶若O O 的半径为5, CF = 2EF ,求PD 的长.PC • △ P — PAC. •矿 PF PC .解:⑴证明:连接0E.•「CD是圆0的直径,•••/ CED = 90° .•/ 0C = 0E ,•••/ C=Z OEC.又•••/ PED = Z C,•••/ PED = Z OEC.•••/ PED + Z OED = Z OEC + Z OED = 90° ,即/ OEP= 90° .•••OE 丄EP.又「•点E在圆上,•PE是O O的切线.(2) 证明:T AB , CD为O O的直径,•••/ AEB =Z CED = 90°.•••/ AEC = Z DEB(同角的余角相等).又•••/ PED = Z C, AE // CD,•••/ PED = Z DEB ,即ED平分/ BEP.⑶设EF= x,则CF= 2x.TO O的半径为5,•OF = 2x — 5.在Rt A OEF 中,OE2= EF2+ OF2,即52= x2+ (2x —5)2,解得x = 4,•EF = 4.•BE = 2EF= 8, CF= 2EF= 8.•DF = CD —CF= 10 —8= 2.•/ AB为O O的直径,•••/ AEB = 90° .•/AB = 10, BE = 8,•AE = 6.•••/ BEP = Z A , / EFP =Z AEB = 90° ,•△EFP s^ AEB.•在=圧即疋=4BE AE' 8 6'PF =16 10PD = PF—DF = —2 ='3 3'6. (2014桂林)如图,△ ABC为O O的内接三角形,P为BC延长线上一点,/ PAC=Z B, AD为O O的直径,过点C作CG丄AD于点E,交AB于点F,交O O于点G.(1)判断直线PA与O O的位置关系,并说明理由;学习必备 欢迎下载2 (2) 求证:AG = AF-AB ;(3) 若O O 的直径为10, AC = 2 5, AB = 4.5,求厶AFG 的面积.解:⑴PA 与O O 相切.理由:连接CD.•/ AD 为O O 的直径,•••/ ACD = 90° ••••/ D + Z CAD = 90°•••/ B =Z D , / PAC =Z B ,•••/ PAC =Z D.•••/ PAC +Z CAD = 90° ,即 DA 丄 PA.•••点A 在圆上,• PA 与O O 相切.⑵证明:连接BG.•/ AD 为O O 的直径,CG 丄AD ,• A C = AG . •••/ AGF = Z ABG.•/Z GAF = Z BAG , AGFABG.• AG : AB = AF : AG.「. AG 2= AF-AB.⑶连接BD.•/ AD 是直径,•••/ ABD = 90° .•/AG 2= AF-AB , AG = AC = 2 5, AB = 4 5,AB•/ CG 丄 AD , •••/ AEF = Z ABD = 90° /Z EAF = Z BAD , AEF ABD.• EF = AF 2 — AE 2= 1.•/ EG = AG 2— AE 2= 4,• FG = EG — EF = 4— 1 = 3.1 1 • AFG = ^FG -AE =2 X3 X 2= 3. 类型3与锐角三角函数有关针对训练7. (2014梧州)如图,已知O O 是以BC 为直径的厶ABC 的外接圆,OP // AC ,且与BC 的 垂线交于点P , OP 交AB 于点D , BC , PA 的延长线交于点 E.(1)求证:PA 是O O 的切线;3⑵若 sin Z E = 5, PA = 6,求 AC 的长.• Al =篇,即4V 才解得AE =2. • Al = AF AB = AD解:⑴证明:连接OA.•/ AC // OP , •••/ AOP = Z OAC , / BOP = Z OCA.•/ OA = OC , OCA = Z OAC. AOP = Z BOP.又••• OA = OB , OP = OP ,• △ AOP ◎△ BOP.A Z OAP = Z OBP.•/ BP 丄 CB , OAP = Z OBP = 90° .• OA 丄 PA.• PA 是O O 的切线.⑵•/ PB 丄CB , • PB 是O O 的切线.又••• PA 是O O 的切线,PA = PB = 6.在 Rt A OPB 中,OP = 62+ 32= 3 5.•/ BC 为O O 直径,CAB = 90° .•••/ CAB = Z OBP = 90° , / OCA =Z BOP.AC CB• △ ACB 亠 BOP .. BO =丽. CB ・BO = J8_= 6/5OP =3』5= 58. (2015来宾)已知O O 是以AB 为直径的厶ABC 的外接圆,OD // BC 交O O 于点 D ,交 AC 于点E ,连接AD , BD , BD 交AC 于点F.(1)求证:BD 平分/ ABC ;⑵延长AC 到点P,使PF = PB ,求证:PB 是O O 的切线;3 亠(3) 如果 AB = 10, cos /ABC = 5,求 AD.解:(1)证明:T OD // BC ,ODB = / CBD.T OB = OD ,OBD = / ODB.CBD = / OBD.• BD 平分/ ABC. 又T sinE = PB _ EP = AO _ 3EO = 5, • • AO = 3.• AC(2) 证明:TO O是以AB为直径的厶ABC的外接圆,•••/ ACB = 90°. •••/ CFB + Z CBF = 90°.•/ PF = PB, PBF = Z CFB.由(1)知/ OBD =Z CBF ,•••/ PBF + Z OBD = 90° ••••/ OBP = 90°.•PB是O O的切线.(3) •••在Rt A ABC 中,/ ACB = 90° , AB = 10,•cos/ ABC = BC = BC = 3AB 10 5'•BC = 6, AC = AB2—BC2= 8.•/ OD // BC ,•△AOEABC , / AED = / OEC = 180°—/ ACB = 90•AE_ OE _ AO AE _ OE _ _5_…AC =BC =AB,8 = 6 =10.•AE = 4, OE= 3.•DE = OD —OE= 5—3 = 2.•AD = AE2+ DE2= 42+ 22= 2 5.9. (2016柳州模拟)如图,已知:AC是O O的直径,PA丄AC,连接OP,弦CB // OP,直线PB 交直线AC于点D, BD = 2PA.(1) 证明:直线PB是O O的切线;(2) 探究线段PO与线段BC之间的数量关系,并加以证明; ⑶求sin/ OPA的值.解:⑴证明:连接OB.•/ BC // OP, OB = OC,•/ BCO = / POA ,/ CBO =/ POB , / BCO = / CBO.•/ POA = / POB.又T PO= PO, OB = OA ,•△ POB◎△ POA. •/ PBO = / PAO = 90°•PB是O O的切线.(2)2PO = 3BC.(写PO = |B C亦可)证明:•••△ POB◎△ POA , • PB = PA.•/ BD = 2PA, • BD = 2PB.•/ BC // PO, •△ DBC DPO.• BC_ PO BD 2PD二.• 2PO= 3B C.DC BD 2 加 “2 DO = PD = 3,即 DC = 3OD.1 •••OC = 3OD. ••• DC = 2OC.设 OA = x , PA = y.则 OD = 3x , OB = x , BD = 2y.在 Rt A OBD 中,由勾股定理得(3X )2= x 2+ (2y)2,即 2x 2= y 2.10. (2016玉林)如图,AB 是O O 的直径,点C , D 在圆上,且四边形AOCD 是平行四边形, 过点D 作O O 的切线,分别交OA 延长线与OC 延长线于点E , F ,连接BF.(1)求证:BF 是O O 的切线;⑵已知圆的半径为1 ,求EF 的长.解:⑴证明:连接OD.•/ EF 为O O 的切线,•••/ ODF = 90° .•••四边形AOCD 为平行四边形,• AO = DC , AO // DC.又••• DO = OC = OA ,DO = OC = DC.• △ DOC 为等边三角形.•••/ DOC = Z ODC = 60° .•/ DC // AO ,• / AOD =Z ODC = 60° .• / BOF = 180° -Z COD -Z AOD = 60° 在厶DOF 和厶BCF 中,DO = BO ,Z DOF = Z BOF ,OF = OF ,• △ DOF ◎△ BOF.• Z ODF = Z OBF = 90° .• BF 是O O 的切线.⑵ T Z DOF = 60° , Z ODF = 90 ° ,• Z OFD = 30° .TZ BOF = 60° , Z BOF = Z CFD + Z E , ■/x > 0, y > 0, • y = 2x , OP = x 2+ y 2= 3x. • sin类型4 与特殊四边形有关•••/ E=Z OFD = 30°.•••OF = OE.又••• OD 丄EF,•DE = DF.在Rt A ODF 中,/ OFD = 30 ° .•OF = 2OD.•DF = OF2- OD2= 22- 12=. 3.EF = 2DF = 2 3.11. (2016宁波)如图,已知O O的直径AB = 10,弦AC = 6, / BAC的平分线交O O于点D , 过点D作DE丄AC交AC的延长线于点E.(1)求证:DE是O O的切线;⑵求DE的长.解:⑴证明:连接OD.•/ AD 平分/ BAC ,•/ DAE = Z DAB.•/ OA = OD ,•/ ODA =Z DAO.•/ ODA =Z DAE.•OD // AE.•/ DE 丄AC ,•OD 丄DE.•DE是O O切线.⑵过点O作OF丄AC于点F.•AF = CF = 3.•OF = OA2- AF2= 52- 32= 4.•••/ OFE = Z DEF = Z ODE = 90° ,•四边形OFED是矩形.•DE = OF = 4.12. (2015桂林)如图,四边形ABCD是O O的内接正方形,AB = 4, PC, PD是O O的两条切线,C, D为切点.(1)如图1,求O O的半径;⑵如图1,若点E是BC的中点,连接PE,求PE的长度;⑶如图2,若点M是BC边上任意一点(不含B , C),以点M为直角顶点,在BC的上方作/ AMN = 90° ,交直线CP于点N,求证:AM = MN.图I 图2解:⑴连接0D, OC.••• PC, PD是O O的两条切线,C, D为切点,•••/ ODP = Z OCP= 90°.•••四边形ABCD是O O的内接正方形,•••/ DOC = 90° , OD = OC.•四边形DOCP是正方形.•/ AB = 4, / ODC =Z OCD = 45° ,DO = CO = DC- si n45°==2 2.⑵连接EO, OP.•••点E是BC的中点,•••OE 丄BC , / OCE= 45 ° ,则/ EOP= 90° .•EO = EC = 2, OP = 2CO = 4.•PE = OE2+ OP2= 2 5.⑶证明:在AB上截取BF = BM.•/ AB = BC , BF = BM ,•AF = MC , / BFM =Z BMF = 45°.•••/ AMN = 90° ,•/ AMF +Z NMC = 45° , / FAM +Z AMF = 45°.•/ FAM =Z NMC.•••由⑴得PD = PC , / DPC = 90° ,.•./ DCP = 45° .•/ MCN = 135° .•••/AFM = 180° -Z BFM = 135° ,Z FAM =Z CMN ,在厶AFM 和厶MCN 中,AF = MC ,.Z AFM =Z MCN ,•△ AFM 也厶MCN(ASA).•AM = MN.。
最新中考总复习圆的切线专题

题型专项(八)与切线有关的证明与计算类型1与全等三角形有关1.(2016·梧州)如图,过⊙O上的两点A,B分别作切线,交于BO,AO的延长线于点C,D,连接CD,交⊙O于点E,F,过圆心O作OM⊥CD,垂足为点M.求证:(1)△ACO≌△BDO;(2)CE=DF.证明:(1)∵AC,BD分别是⊙O的切线,∴∠A=∠B=90°.又∵AO=BO,∠AOC=∠BOD,∴△ACO≌△BDO.(2)∵△ACO≌△BDO,∴OC=OD.又∵OM⊥CD,∴CM=DM.又∵OM⊥EF,点O是圆心,∴EM=FM.∴CM-EM=DM-FM.∴CE=DF.2.(2016·玉林模拟)如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB 的垂线与AC的延长线交于点Q,过点C的切线CD交PQ于点D,连接OC.(1)求证:△CDQ是等腰三角形;(2)如果△CDQ≌△COB,求BP∶PO的值.解:(1)证明:由已知得∠ACB=90°,∠ABC=30°.∴∠Q=30°,∠BCO=∠ABC=30°.∵CD是⊙O的切线,CO是半径,∴CD⊥CO.∴∠DCQ=∠BCO=30°.∴∠DCQ=∠Q.故△CDQ是等腰三角形.(2)设⊙O的半径为1,则AB=2,OC=1,BC= 3.∵等腰三角形CDQ与等腰三角形COB全等,∴CQ=CB= 3.∴AQ =AC +CQ =1+ 3. ∴AP =12AQ =1+32.∴BP =AB -AP =3-32.∴PO =AP -AO =3-12. ∴BP ∶PO = 3.3.(2016·柳州)如图,AB 为△ABC 外接圆⊙O 的直径,点P 是线段CA 的延长线上一点,点E 在弧上且满足PE 2=PA ·PC ,连接CE ,AE ,OE 交CA 于点D. (1)求证:△PAE ∽△PEC ; (2)求证:PE 为⊙O 的切线;(3)若∠B =30°,AP =12AC ,求证:DO =DP.证明:(1)∵PE 2=PA·PC , ∴PE PC =PA PE. 又∵∠APE =∠EPC ,∴△PAE ∽△PEC.(2)∵△PAE ∽△PEC ,∴∠PEA =∠PCE. ∵∠PCE =12∠AOE ,∴∠PEA =12∠AOE.∵OA =OE ,∴∠OAE =∠OEA.∵∠AOE +∠OEA +∠OAE =180°, ∴∠AOE +2∠OEA =180°, 即2∠PEA +2∠OEA =180°. ∴∠PEA +∠OEA =90°. ∴PE 为⊙O 的切线.(3)设⊙O 的半径为r ,则AB =2r.∵∠B =30°,∠PCB =90°,∴AC =r ,BC =3r. 过点O 作OF ⊥AC 于点F , ∴OF =32r.∵AP =12AC , ∴AP =r 2.∵PE 2=PA·PC ,∴PE =32r.在△ODF 与△PDE 中,⎩⎨⎧∠ODF =∠PDE ,∠OFD =∠PED ,OF =PE ,∴△ODF ≌△PDE.∴DO =DP. 类型2 与相似三角形有关4.(2016·泰州)如图,在△ABC 中,∠ACB =90°,在D 为AB 上一点,以CD 为直径的⊙O 交BC 于点E ,连接AE 交CD 于点P ,交⊙O 于点F ,连接DF ,∠CAE =∠ADF. (1)判断AB 与⊙O 的位置关系,并说明理由; (2)若PF ∶PC =1∶2,AF =5,求CP 的长.解:(1)AB 是⊙O 切线. 理由:∵∠ACB =90°,∴∠CAE +∠CEA =90°.∵∠CAE =∠ADF ,∠CDF =∠CEA ,∴∠ADF +∠CDF =90°. ∴AB 是⊙O 切线. (2)连接CF.∵∠ADF +∠CDF =90°,∠PCF +∠CDF =90°, ∴∠ADF =∠PCF. ∴∠PCF =∠PAC. 又∵∠CPF =∠APC , ∴△PCF ∽△PAC.∴PC PA =PFPC .∴PC 2=PF·PA.设PF =a ,则PC =2a. ∴4a 2=a(a +5). ∴a =53.∴PC =2a =103.5.(2015·北海)如图,AB ,CD 为⊙O 的直径,弦AE ∥CD ,连接BE 交CD 于点F ,过点E 作直线EP 与CD 的延长线交于点P ,使∠PED =∠C. (1)求证:PE 是⊙O 的切线; (2)求证:ED 平分∠BEP ;(3)若⊙O 的半径为5,CF =2EF ,求PD 的长.解:(1)证明:连接OE. ∵CD 是圆O 的直径, ∴∠CED =90°. ∵OC =OE , ∴∠C =∠OEC. 又∵∠PED =∠C ,∴∠PED =∠OEC.∴∠PED +∠OED =∠OEC +∠OED =90°,即∠OEP =90°. ∴OE ⊥EP.又∵点E 在圆上,∴PE 是⊙O 的切线.(2)证明:∵AB ,CD 为⊙O 的直径, ∴∠AEB =∠CED =90°.∴∠AEC =∠DEB(同角的余角相等). 又∵∠PED =∠C ,AE ∥CD , ∴∠PED =∠DEB , 即ED 平分∠BEP.(3)设EF =x ,则CF =2x. ∵⊙O 的半径为5,∴OF =2x -5.在Rt △OEF 中,OE 2=EF 2+OF 2,即52=x 2+(2x -5)2,解得x =4, ∴EF =4.∴BE =2EF =8,CF =2EF =8. ∴DF =CD -CF =10-8=2. ∵AB 为⊙O 的直径, ∴∠AEB =90°. ∵AB =10,BE =8,∴AE =6.∵∠BEP =∠A ,∠EFP =∠AEB =90°, ∴△EFP ∽△AEB. ∴PF BE =EF AE ,即PF 8=46. ∴PF =163. ∴PD =PF -DF =163-2=103.6.(2014·桂林)如图,△ABC 为⊙O 的内接三角形,P 为BC 延长线上一点,∠PAC =∠B ,AD 为⊙O 的直径,过点C 作CG ⊥AD 于点E ,交AB 于点F ,交⊙O 于点G. (1)判断直线PA 与⊙O 的位置关系,并说明理由;(2)求证:AG 2=AF·AB ;(3)若⊙O 的直径为10,AC =25,AB =45,求△AFG 的面积.解:(1)PA 与⊙O 相切. 理由:连接CD.∵AD 为⊙O 的直径,∴∠ACD =90°.∴∠D +∠CAD =90°. ∵∠B =∠D ,∠PAC =∠B ,∴∠PAC =∠D.∴∠PAC +∠CAD =90°,即DA ⊥PA. ∵点A 在圆上,∴PA 与⊙O 相切. (2)证明:连接BG .∵AD 为⊙O 的直径,CG ⊥AD , ∴AC ︵=AG ︵.∴∠AGF =∠ABG . ∵∠GAF =∠BAG ,∴△AGF ∽△ABG . ∴AG ∶AB =AF ∶AG .∴AG 2=AF·AB. (3)连接BD.∵AD 是直径,∴∠ABD =90°.∵AG 2=AF·AB ,AG =AC =25,AB =45, ∴AF =AG 2AB= 5.∵CG ⊥AD ,∴∠AEF =∠ABD =90°. ∵∠EAF =∠BAD ,∴△AEF ∽△ABD. ∴AE AB =AF AD ,即AE 45=510,解得AE =2. ∴EF =AF 2-AE 2=1. ∵EG =AG 2-AE 2=4, ∴FG =EG -EF =4-1=3. ∴S △AFG =12FG·AE =12×3×2=3.类型3 与锐角三角函数有关7.(2014·梧州)如图,已知⊙O 是以BC 为直径的△ABC 的外接圆,OP ∥AC ,且与BC 的垂线交于点P ,OP 交AB 于点D ,BC ,PA 的延长线交于点E. (1)求证:PA 是⊙O 的切线;(2)若sin ∠E =35,PA =6,求AC 的长.解:(1)证明:连接OA.∵AC ∥OP ,∴∠AOP =∠OAC ,∠BOP =∠OCA. ∵OA =OC ,∴∠OCA =∠OAC.∴∠AOP =∠BOP. 又∵OA =OB ,OP =OP ,∴△AOP ≌△BOP.∴∠OAP =∠OBP.∵BP ⊥CB ,∴∠OAP =∠OBP =90°.∴OA ⊥PA. ∴PA 是⊙O 的切线.(2)∵PB ⊥CB ,∴PB 是⊙O 的切线. 又∵PA 是⊙O 的切线, ∴PA =PB =6.又∵sin E =PB EP =AO EO =35,∴AO =3.在Rt △OPB 中,OP =62+32=3 5. ∵BC 为⊙O 直径,∴∠CAB =90°.∴∠CAB =∠OBP =90°,∠OCA =∠BOP. ∴△ACB ∽△BOP.∴AC BO =CBOP .∴AC =CB·BO OP =1835=655.8.(2015·来宾)已知⊙O 是以AB 为直径的△ABC 的外接圆,OD ∥BC 交⊙O 于点D ,交AC 于点E ,连接AD ,BD ,BD 交AC 于点F.(1)求证:BD 平分∠ABC ;(2)延长AC 到点P ,使PF =PB ,求证:PB 是⊙O 的切线; (3)如果AB =10,cos ∠ABC =35,求AD.解:(1)证明:∵OD ∥BC , ∴∠ODB =∠CBD. ∵OB =OD , ∴∠OBD =∠ODB. ∴∠CBD =∠OBD. ∴BD 平分∠ABC.(2)证明:∵⊙O 是以AB 为直径的△ABC 的外接圆, ∴∠ACB =90°.∴∠CFB +∠CBF =90°. ∵PF =PB ,∴∠PBF =∠CFB. 由(1)知∠OBD =∠CBF ,∴∠PBF +∠OBD =90°.∴∠OBP =90°. ∴PB 是⊙O 的切线.(3)∵在Rt △ABC 中,∠ACB =90°,AB =10, ∴cos ∠ABC =BC AB =BC 10=35.∴BC =6,AC =AB 2-BC 2=8.∵OD ∥BC ,∴△AOE ∽△ABC ,∠AED =∠OEC =180°-∠ACB =90°. ∴AE AC =OE BC =AO AB ,AE 8=OE 6=510. ∴AE =4,OE =3. ∴DE =OD -OE =5-3=2.∴AD =AE 2+DE 2=42+22=2 5.9.(2016·柳州模拟)如图,已知:AC 是⊙O 的直径,PA ⊥AC ,连接OP ,弦CB ∥OP ,直线PB 交直线AC 于点D ,BD =2PA.(1)证明:直线PB 是⊙O 的切线;(2)探究线段PO 与线段BC 之间的数量关系,并加以证明; (3)求sin ∠OPA 的值.解:(1)证明:连接OB. ∵BC ∥OP ,OB =OC , ∴∠BCO =∠POA ,∠CBO =∠POB ,∠BCO =∠CBO.∴∠POA =∠POB.又∵PO =PO ,OB =OA , ∴△POB ≌△POA.∴∠PBO =∠PAO =90°. ∴PB 是⊙O 的切线.(2)2PO =3BC.(写PO =32BC 亦可)证明:∵△POB ≌△POA ,∴PB =PA. ∵BD =2PA ,∴BD =2PB.∵BC ∥PO ,∴△DBC ∽△DPO. ∴BC PO =BD PD =23.∴2PO =3BC. (3)∵CB ∥OP ,∴△DBC ∽△DPO.∴DC DO =BD PD =23,即DC =23OD. ∴OC =13OD.∴DC =2OC.设OA =x ,PA =y.则OD =3x ,OB =x ,BD =2y.在Rt △OBD 中,由勾股定理得(3x)2=x 2+(2y)2,即2x 2=y 2. ∵x >0,y >0,∴y =2x ,OP =x 2+y 2=3x. ∴sin ∠OPA =OA OP =x 3x =13=33.类型4 与特殊四边形有关10.(2016·玉林)如图,AB 是⊙O 的直径,点C ,D 在圆上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,分别交OA 延长线与OC 延长线于点E ,F ,连接BF.(1)求证:BF 是⊙O 的切线;(2)已知圆的半径为1,求EF 的长. 解:(1)证明:连接OD. ∵EF 为⊙O 的切线,∴∠ODF =90°.∵四边形AOCD 为平行四边形, ∴AO =DC ,AO ∥DC. 又∵DO =OC =OA , ∴DO =OC =DC.∴△DOC 为等边三角形. ∴∠DOC =∠ODC =60°. ∵DC ∥AO ,∴∠AOD =∠ODC =60°.∴∠BOF =180°-∠COD -∠AOD =60°. 在△DOF 和△BCF 中,⎩⎨⎧DO =BO ,∠DOF =∠BOF ,OF =OF ,∴△DOF ≌△BOF.∴∠ODF =∠OBF =90°. ∴BF 是⊙O 的切线.(2)∵∠DOF =60°,∠ODF =90°, ∴∠OFD =30°.∵∠BOF =60°,∠BOF =∠CFD +∠E ,∴∠E=∠OFD=30°.∴OF=OE.又∵OD⊥EF,∴DE=DF.在Rt△ODF中,∠OFD=30°.∴OF=2OD.∴DF=OF2-OD2=22-12= 3.∴EF=2DF=2 3.11.(2016·宁波)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.解:(1)证明:连接OD.∵AD平分∠BAC,∴∠DAE=∠DAB.∵OA=OD,∴∠ODA=∠DAO.∴∠ODA=∠DAE.∴OD∥AE.∵DE⊥AC,∴OD⊥DE.∴DE是⊙O切线.(2)过点O作OF⊥AC于点F.∴AF=CF=3.∴OF=OA2-AF2=52-32=4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形.∴DE=OF=4.12.(2015·桂林)如图,四边形ABCD是⊙O的内接正方形,AB=4,PC,PD是⊙O的两条切线,C,D为切点.(1)如图1,求⊙O的半径;(2)如图1,若点E是BC的中点,连接PE,求PE的长度;(3)如图2,若点M是BC边上任意一点(不含B,C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.解:(1)连接OD ,OC.∵PC ,PD 是⊙O 的两条切线,C ,D 为切点, ∴∠ODP =∠OCP =90°.∵四边形ABCD 是⊙O 的内接正方形, ∴∠DOC =90°,OD =OC. ∴四边形DOCP 是正方形.∵AB =4,∠ODC =∠OCD =45°, ∴DO =CO =DC·sin 45°=4×22=2 2. (2)连接EO ,OP.∵点E 是BC 的中点,∴OE ⊥BC ,∠OCE =45°, 则∠EOP =90°.∴EO =EC =2,OP =2CO =4.∴PE =OE 2+OP 2=2 5.(3)证明:在AB 上截取BF =BM.∵AB =BC ,BF =BM ,∴AF =MC ,∠BFM =∠BMF =45°.∵∠AMN =90°,∴∠AMF +∠NMC =45°,∠FAM +∠AMF =45°. ∴∠FAM =∠NMC.∵由(1)得PD =PC ,∠DPC =90°,∴∠DCP =45°.∴∠MCN =135°.∵∠AFM =180°-∠BFM =135°,在△AFM 和△MCN 中,⎩⎨⎧∠FAM =∠CMN ,AF =MC ,∠AFM =∠MCN ,精品文档∴△AFM≌△MCN(ASA).∴AM=MN.精品文档。
期末复习专题---圆的切线

期末考试专题复习--------圆的切线一、切线性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
二、切线的判定定理:过半径外端且垂直于半径的直线是切线;口诀:有切点,连切点证垂直;无切点,做垂直证半径三、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
1.如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE,BE是△DEC外接圆的切线.(1)求∠C.(2)若CD=2,求BE.2.如图,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BDE=60°,PD=,求PA的长.3. 如图,AB、CD 为⊙O 的直径,弦A E∥CD,连接BE 交C D 于点F,过点E作直线E P 与C D 的延长线交于点P,使∠PED=∠C.(1)求证:PE 是⊙O 的切线;(2)求证:ED 平分∠BEP.4.如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.5.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.期末考试专题复习--------圆的切线课下练习1.如图,△内接于,弦于,是直径,为的中点,求证:平分.2.如图,在△ABC中,∠ABC=90°,∠C=30°,AC的垂直平分线交BC于点D,交AC于点E.(1)判断BE与△DCE的外接圆⊙O的位置关系,并说明理由;(2)若BE=,BD=1,求△DCE的外接圆⊙O的直径.3.如图,已知△ABC内接于⊙O,A B为⊙O的直径,BD⊥AB,交AC的延长线于点D.(1)E为BD的中点,连结CE,求证:CE是⊙O的切线.(2)若AC=3,CD=1,求图中阴影部分的面积.4.如图,已知四边形ADBC是⊙O的内接四边形,AB是直径,AB=10cm,BC=8cm,CD平分∠ACB.(1)求AC与BD的长;(2)求四边形ADBC的面积.5. 如图,D为半圆上一点,,CE⊥BD于点E.(1)求证:C是CE与半圆O的切点;(2)已知AB=10,BC=8,求EC的长.。
专题 切线与切点弦问题-高考数学大一轮复习

专题36 切线与切点弦问题【方法技巧与总结】1、点()00 M x y ,在圆222x y r +=上,过点M 作圆的切线方程为200x x y y r +=.2、点()00 M x y ,在圆222x y r +=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为200x x y y r +=.3、点()00 M x y ,在圆222x y r +=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为直线200x x y y r +=.4、点()00 M x y ,在圆222()()x a y b r -+-=上,过点M 作圆的切线方程为()()200()()x a x a y b y b r --+--=.5、点()00 M x y ,在圆222()()x a y b r -+-=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()()200()()x a x a y b y b r --+--=.6、点()00 M x y ,在圆222()()x a y b r -+-=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为()()200()()x a x a y b y b r --+--=.7、点()00 M x y ,在椭圆2222x y a b +=1(0)a b >>上,过点M 作椭圆的切线方程为00221x x y y a b +=.8、点()00 M x y ,在椭圆2222x y a b +=1(0)a b >>外,过点M 作椭圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为00221x x y ya b+=. 9、点()00 M x y ,在椭圆2222x y a b+=1(0)a b >>内,过点M 作椭圆的弦AB (不过椭圆中心),分别过A B ,作椭圆的切线,则两条切线的交点P 的轨迹方程为直线02x x a +021y yb=. 10、点()00 M x y ,在双曲线2222x y a b -=1(0 0)a b >>,上,过点M 作双曲线的切线方程为00221x x y y a b -=.11、点()00 M x y ,在双曲线22x a-221(0 0)y a b b =>>,外,过点M 作双曲线的两条切线,切点分别为A B ,,则切点弦AB 的直线方程为00221x x y ya b-=. 12、点()00 M x y ,在双曲线22x a -221(0 0)y a b b =>>,内,过点M 作双曲线的弦AB (不过双曲线中心),分别过 A B ,作双曲线的切线,则两条切线的交点P 的轨迹方程为直线00221x x y ya b-=. 13、点()00 M x y ,在抛物线2y =2(0)px p >上,过点M 作抛物线的切线方程为()00y y p x x =+.14、点()00 M x y ,在抛物线2y =2(0)px p >外,过点M 作抛物线的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()00y y p x x =+.15、点()00 M x y ,在抛物线2y =2(0)px p >内,过点M 作抛物线的弦AB ,分别过 A B ,作抛物线的切线,则两条切线的交点P 的轨迹方程为直线()00y y p x x =+.【题型归纳目录】 题型一:切线问题 题型二:切点弦过定点问题题型三:利用切点弦结论解决定值问题 题型四:利用切点弦结论解决最值问题 题型五:利用切点弦结论解决范围问题 【典例例题】 题型一:切线问题例1.已知平面直角坐标系中,点(4,0)到抛物线21:2(0)C y px p =>准线的距离等于5,椭圆22222:1(0)x y C a b a b+=>>,且过点. (1)求1C ,2C 的方程;(2)如图,过点(E m ,0)(2)m >作椭圆2C 的切线交1C 于A ,B 两点,在x 轴上取点G ,使得AGE BGE ∠=∠,试解决以下问题:①证明:点G 与点E 关于原点中心对称;②若已知ABG ∆的面积是椭圆2C 四个顶点所围成菱形面积的16倍,求切线AB 的方程.【解析】(1)解:因为点(4,0)到抛物线1C 的准线2px =-的距离等于5, 所以452p +=,解得2p =,所以抛物线1C 的方程为24y x =; 因为椭圆2C,且过点,所以222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪-=⎪⎪⎩,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=;(2)①证明:因为2m >,且直线AB 与椭圆2C 相切, 所以直线AB 的斜率存在,设直线AB 的方程为()y k x m =-, 联立22()14y k x m x y =-⎧⎪⎨+=⎪⎩,得22222(41)8440k x k mx k m +-+-=, 因为直线AB 与椭圆2C 相切,所以△42222644(41)(44)0k m k k m =-+-=,即2214k m =-,联立2()4y k x m y x=-⎧⎨=⎩,得2440ky y km --=,设1(A x ,1)y ,2(B x ,2)y ,则12124,4y y y y m k+==-;设(,0)G t ,因为AGE BGE ∠=∠,所以0AG BG k k +=, 则12120y yx t x t+=--,即211212()0x y x y t y y +-+=, 即121212()()04y y y y t y y +-+=,又120y y +≠,所以124y y t m ==-,即(,0)G m -, 即点G 与点E 关于原点中心对称;②解:椭圆2C 四个顶点所围成菱形面积为122242S a b ab =⨯⨯==,所以ABG ∆的面积为16464⨯=,则1211||||222ABG S GE y y ∆=-=⨯==,令64,即22(4)256m m m -+=, 即42342560m m m -+-=,即42(256)(4)0m m m -+-=, 即22(4)[(16)(4)]0m m m m -+++=, 即32(4)(51664)0m m m m -+++=,因为2m >,所以4m =,2211412k m ==-,k =所以直线AB 的方程为4)y x =-. 例2.某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性质:椭圆2222:1(0)x y C a b a b +=>>在任意一点0(M x ,0)y 处的切线方程为00221xx yy a b+=.现给定椭圆22:143x y C +=,过C 的右焦点F 的直线l 交椭圆C 于P ,Q 两点,过P ,Q 分别作C 的两条切线,两切线相交于点G . (1)求点G 的轨迹方程;(2)若过点F 且与直线l 垂直的直线(斜率存在且不为零)交椭圆C 于M ,N 两点,证明:11||||PQ MN +为定值.【解析】(1)解:设直线PQ 为1x ty =+,1(P x ,1)y ,2(Q x ,2)y , 易得在P 点处切线为11143x x y y +=,在Q 点处切线为22143x x y y+=, 由11221,431,43x x y yx x y y ⎧+=⎪⎪⎨⎪+=⎪⎩得2112214()y y x x y x y -=-,又111x ty =+,221x ty =+,可得4x =,故点G 的轨迹方程4x =.(2)证明:联立l 的方程与C 的方程221,1,43x ty x y =+⎧⎪⎨+=⎪⎩消去x ,得22(34)690t y ty ++-=.由韦达定理,得122634t y y t +=-+,122934y y t =-+,所以2212(1)||34t PQ t +==+, 因为PQ MN ⊥,将t 用1t -代,得222112(1)12(1)||13434t t MN t t ++==+⋅+, 所以22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++. 例3.已知圆222:(0)O x y r r +=>.(1)求证:过圆O 上点0(M x ,0)y 的切线方程为200x x y y r +=.类比前面的结论,写出过椭圆2222:1(0)x y C a b a b+=>>上一点0(N x ,0)y 的切线方程(不用证明). (2)已知椭圆22:143x y C +=,Q 为直线4x =上任一点,过点Q 作椭圆C 的切线,切点分别为A 、B ,求证:直线AB 恒过定点.【解析】(1)证明:因为圆222:O x y r +=, 故圆心(0,0)O ,半径为r , 又0(M x ,0)y , 所以0OM y k x =, 因为0(M x ,0)y 在圆上, 所以过M 的圆的切线斜率0x k y =-,所以过M 的圆的切线方程为0000()x y y x x y -=--,① 又因为22200x y r +=,② 由①②整理得,为200x x y y r +=.所以过圆O 上点0(M x ,0)y 的切线方程为200x x y y r +=.过椭圆2222:1(0)x y C a b a b +=>>上一点0(N x ,0)y 的切线方程为00221x x y ya b+=;(2)设(4,)Q t ,()t R ∈,1(A x ,1)y ,2(B x ,2)y , 由(1),则直线QA 的方程11143x x y y +=, 因为Q 在QA 上,所以1113ty x +=,① 同理可得2213ty x +=,② 由①②可得直线AB 的方程为13tx y +=,令0y =,得1x =, 所以直线AB 恒过点(1,0).变式1.已知点(1,0)A -,(1,0)B ,动点P 满足||||4PA PB +=,P 点的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)已知圆222x y R +=上任意一点0(P x ,0)y 处的切线方程为:200x x y y R +=,类比可知椭圆:22221x y a b+=上任意一点0(P x ,0)y 处的切线方程为:00221x x y ya b+=.记1l 为曲线C 在任意一点P 处的切线,过点B 作BP 的垂线2l ,设1l 与2l 交于Q ,试问动点Q 是否在定直线上?若在定直线上,求出此直线的方程;若不在定直线上,请说明理由.【解析】解:(Ⅰ)由椭圆的定义知P 点的轨迹为以A ,B 为焦点,长轴长为4的椭圆,设椭圆方程为2222:1x y a b +=,则241a c =⎧⎨=⎩,∴2a b =⎧⎪⎨=⎪⎩曲线C 的方程为22143x y +=.(Ⅱ)设0(P x ,0)y ,由题知直线1l 的方程为00:143x x y y+=, 当01x ≠时,001PB y k x =-,2l ∴的斜率为0201x k y -=,0201:(1)x l y x y -=-,1l 与2l 的方程联立00001(1)143x y x y x x y y -⎧=-⎪⎪⎨⎪+=⎪⎩,消y 得000034(1)(1)120(4)4(4)x x x x x x x +---=⇒-=-, 4x ∴=.动点Q 在定直线4x =上, 当01x =时,032y =±,1:142x yl ±=, 2:0l y =,(4,0)Q ,Q 在直线4x =.综上所述,动点Q 在定直线4x =上.变式2.下面是某同学在学段总结中对圆锥曲线切线问题的总结和探索,现邀请你一起合作学习,请你思考后,将答案补充完整.(1)圆222:O x y r +=上点0(M x ,0)y 处的切线方程为 .理由如下: .(2)椭圆22221(0)x y a b a b+=>>上一点0(x ,0)y 处的切线方程为 ;(3)(,)P m n 是椭圆22:13x L y +=外一点,过点P 作椭圆的两条切线,切点分别为A ,B ,如图,则直线AB的方程是 .这是因为在1(A x ,1)y ,2(B x ,2)y 两点处,椭圆L 的切线方程为1113x xy y +=和2213x x y y +=.两切线都过P 点,所以得到了1113x m y n +=和2213x my n +=,由这两个“同构方程”得到了直线AB 的方程;(4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-,由22()33y n k x m x y -=-⎧⎨+=⎩,得222(13)6()3()30k x k n km x n km ++-+--=, 化简得△0=得222(3)210m x mnk n -++-=.若PA PB ⊥,则由这个方程可知P 点一定在一个圆上,这个圆的方程为 . (5)抛物线22(0)y px p =>上一点0(x ,0)y 处的切线方程为00()y y p x x =+;(6)抛物线2:4C x y =,过焦点F 的直线l 与抛物线相交于A ,B 两点,分别过点A ,B 作抛物线的两条切线1l 和2l ,设1(A x ,1)y ,2(B x ,2)y ,则直线1l 的方程为112()x x y y =+.直线2l 的方程为222()x x y y =+,设1l 和2l 相交于点M .则①点M 在以线段AB 为直径的圆上;②点M 在抛物线C 的准线上. 【解析】解:(1)圆222:O x y r +=上点0(M x ,0)y 处的切线方程为200y y x x r +=. 理由如下:①若切线的斜率存在,设切线的斜率为k ,则001OM OM k k y k x⋅=-⎧⎪⎨=⎪⎩,所以0x k y =-, 又过点0(M x ,0)y , 由点斜式可得,0000()x y y x x y -=--, 化简可得,220000y y x x x y +=+, 又22200x y r +=,所以切线的方程为200y y x x r +=; ②若切线的斜率不存在,则(,0)M r ±, 此时切线方程为x r =±.综上所述,圆222:O x y r +=上点0(M x ,0)y 处的切线方程为200y y x x r +=. (3)在1(A x ,1)y ,2(B x ,2)y 两点处,椭圆L 的切线方程为1113x x y y +=和2213x xy y +=, 因为两切线都过P 点(,)m n , 所以得到了1113x m y n +=和2213x my n +=, 由这两个“同构方程”得到了直线AB 的方程为13mxny +=; (4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-, 由22()33y n k x m x y -=-⎧⎨+=⎩,可得222(13)6()3()30k x k n km x n km ++-+--=, 由△0=,可得222(3)210(*)m k mnk n -++-=, 因为PA PB ⊥, 则1PA PB k k ⋅=-,所以(*)式中关于k 的二次方程有两个解且其乘积为1-,则2122113n k k m-⋅==--, 可得224m n +=,所以圆的半径为2,且过原点,其方程为224x y +=. 故答案为:(1)200y y x x r +=,理由见解析; (3)13mxny +=; (4)224x y +=.题型二:切点弦过定点问题例4.定义:若点0(P x ,0)y 在椭圆22221(0)x y a b a b +=>>上,则以P 为切点的切线方程为:00221x x y ya b+=.已知椭圆22:132x y C +=,点M 为直线260x y --=上一个动点,过点M 作椭圆C 的两条切线MA ,MB ,切点分别为A ,B ,则直线AB 恒过定点( ) A .11(,)23-B .11(,)23-C .12(,)23-D .12(,)23-【解析】解:因为M 在直线260x y --=上,则可设点M 的坐标为(26,)t t +,t R ∈, 设1(A x ,1)y ,2(B x ,2)y ,所以直线MA ,MB 的方程分别为: 11221,13232x x y y x x y y +=+=,显然点M 的坐标适合两个方程, 代入可得:1122(26)132(26)132x t y tx t y t +⎧+=⎪⎪⎨+⎪+=⎪⎩,则直线AB 的方程为:(26)132x t yt++=,即2(26)360t x yt ++-=, 即(43)612x y t x +=-,令4306120x y x +=⎧⎨-=⎩,解得12,23x y ==-,所以直线AB 过定点12(,)23-,故选:C .例5.已知经过圆2221:C x y r +=上点0(x ,0)y 的切线方程是200x x y y r +=.(1)类比上述性质,直接写出经过椭圆22222:1(0)x y C a b a b+=>>上一点0(x ,0)y 的切线方程;(2)已知椭圆22:16x E y +=,P 为直线3x =上的动点,过P 作椭圆E 的两条切线,切点分别为A 、B ,①求证:直线AB 过定点. ②当点P 到直线AB时,求三角形PAB 的外接圆方程. 【解析】解:(1)切线方程为:00221x x y ya b+=. (2)设切点为1(A x ,2)y ,2(B x ,2)y ,点(3,)P t ,由(1)的结论的AP 直线方程:1116x x y y +=,BP 直线方程:2216x xy y +=, 通过点(3,)P t ,∴有1122316316x y t x y t ⨯⎧+⨯=⎪⎪⎨⨯⎪+⨯=⎪⎩,A ∴,B 满足方程:12x ty +=,∴直线AB 恒过点:1020xy ⎧-=⎪⎨⎪=⎩即直线AB 恒过点(2,0).又已知点(3,)P t 到直线AB.∴22|354t t t-=+ 425410t t ⇒--=,22(51)(1)0t t +-=,1t ∴=±.当1t =时,点(3,1)P ,直线AB 的方程为:220x y +-=. 2222066x y x y +-=⎧⎨+=⎩求得交点121(0,1),(,),(3,1)55A B P -. 设PAB ∆的外接圆方程为:220x y Dx Ey F ++++=,代入得131012529E F D E F D E F +=-⎧⎪++=-⎨⎪-+=-⎩,解得:PAB ∆的外接圆方程为223210x y x y +--+= 即PAB ∆的外接圆方程为:2239()(1)24x y -+-=.例6.已知抛物线2:2C x py =的焦点为F ,抛物线上一点(A m ,2)(0)m >到F 的距离为3. (1)求抛物线C 的方程和点A 的坐标;(2)设直线l 与抛物线C 交于D ,E 两点,抛物线C 在点D ,E 处的切线分别为1l ,2l ,若直线1l 与2l 的交点恰好在直线2y =-上,证明:直线l 恒过定点. 【解析】(1)解:由题意知232p +=,得2p =,所以抛物线C 的方程为24x y =. 将点(A m ,2)(0)m >代入24xy =,得m =,所以点A 的坐标为.(2)证明:设221212(,),(,)44x x D x E x ,由题意知.直线l 的斜率存在,设直线l 的方程为y kx n =+, 联立方程24y kx nx y=+⎧⎨=⎩,得2440x kx n --=,所以△216160k n =+>,124x x k +=,124x x n =-,24x y =,即24x y =, 则2xy '=,所以抛物线C 在点D 处的切线1l 的方程为2111()24x x y x x =-+,化简得21124x x y x =-,同理直线2l 的方程为22224x x y x =-,联立方程2112222424x x y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得121224x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩. 又因为直线1l 与2l 的交点恰好在直线2y =-上,所以1224x x =-,即128x x =-. 所以1248x x n =-=-.解得2n =.故直线l 的方程为2y kx =+,所以直线l 恒过定点(0,2).题型三:利用切点弦结论解决定值问题例7.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为(1,0)F,且点P 在椭圆C 上,O 为坐标原点(1)求椭圆C 的标准方程(2)过椭圆22122:153x y C a b +=-上异于其顶点的任一点Q ,作圆224:3O x y +=的切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 的横纵截距分别为m ,n ,求证:22113m n+为定值 【解析】解:(1)由题意得:1c =,所以221a b =+,又因为点P 在椭圆C 上,所以223314a b+=, 可解得24a =,23b =,所以椭圆标准方程为22143x y +=.(2)证明:由题意:2213:144x y C +=,设点1(Q x ,1)y ,2(M x ,2)y ,3(N x ,3)y ,因为M ,N 不在坐标轴上,所以1QM OMk k =-,直线QM 的方程为2222()x y y x x y -=-, 化简得:2243x x y y +=,① 同理可得直线QN 的方程为3343x x y y +=,② 把Q 点的坐标代入①、②得212131314343x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以直线MN 的方程为1143x x y y +=---------------③, 令0y =,得143m x =,令0x =得143n y =,所以143x m=,143y n =,又点Q 在椭圆1C 上,所以2244()3()433m n+=, 即22113m n+为定值. 例8.已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,且右焦点2F 的坐标为(1,0),点P 在椭圆C 上,O 为坐标原点. (1)求椭圆C 的标准方程;(2)若过点2F 的直线l 与椭圆C 交于A ,B两点,且||AB =l 的方程; (3)过椭圆C 上异于其顶点的任一点Q ,作圆22:1O x y +=的两条切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 在x 轴、y 轴上的截距分别为m 、n ,那么2212m n +是否为定值?若是,求出此定值;若不是,请说明理由.【解析】解:(1)椭圆C 的右焦点2F 的坐标为(1,0),∴椭圆C 的左焦点1F 的坐标为(1,0)-,由椭圆的定义得12||||2PF PF a +=,2a ∴=a ∴=,22a =由题意可得1c =,即2221b a c =-=,即椭圆C 的方程为2212x y +=;(2)直线l 与椭圆C 的两个交点坐标为1(A x ,1)y ,2(B x ,2)y , ①当直线l 垂直x轴时,易得||AB = ②当直线l 不垂直x 轴时,设直线:(1)l y k x =-联立2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩,消y 得,2222(12)4220k x k x k +-+-=,①则2122421k x x k +=+,21222221k x x k -=+,222222222121222224228(1)||(1)[()4](1)[()24]2121(21)k k k AB k x x x x k k k k -+∴=++-=+-⨯==+++,解得1k =±,∴直线方程l 的方程为10x y --=或10x y +-=(Ⅲ)设点0(Q x ,0)y ,3(M x ,3)y ,4(N x ,4)y ,连接OM ,ON , 0M MQ ⊥,ON NQ ⊥,M ,N 不在坐标轴上,303M y k x ∴=,404N y k x =-, ∴直线MQ 的方程为3333()y y y x x x -=-,即331xx yy +=,⋯① 同理直线NQ 的方程为441xx yy +=,⋯②, 将点Q 代入①②,得0303040411x x y y x x y y +=⎧⎨+=⎩,显然3(M x ,3)y ,4(N x ,4)y 满足方程001xx yy +=,∴直线MN 的方程为001xx yy +=,分别令0x =,0y =,得到01n x =,01m y =. 01y m ∴=,01x n=, 0(Q x ,0)y 满足2212x y +=;∴221112m n+=,即22122m n +=题型四:利用切点弦结论解决最值问题例9.已知抛物线22x py =上一点0(M x ,1)到其焦点F 的距离为2. (1)求抛物线的方程;(2)如图,过直线:2l y =-上一点A 作抛物线的两条切线AP ,AQ ,切点分别为P ,Q ,且直线PQ 与y 轴交于点N .设直线AP ,AQ 与x 轴的交点分别为B ,C ,求四边形ABNC 面积的最小值.【解析】解:(1)由||122pMF =+=,得2p =, 所以抛物线的方程为24x y =. (2)设1(P x ,1)y ,2(Q x ,2)y , 由12y x '=可得在P 处的切线方程为2111()42x x y x x -=-,整理可得112()x x y y =+,同理在Q 处的切线方程为222()x x y y =+,又因为两切线都过(,2)A t -,∴11222(2)2(2)tx y tx y =-⎧⎨=-⎩,即可得直线PQ 的方程为2(2)tx y =-,所以直线过点(0,2),即(0,2)N , 又1(2x B ,0),2(2xC ,0), ∴四边形ABNC 的面积122||||ABC NBC S S S BC x x ∆∆=+==-,联立122()4tx y y x y =+⎧⎨=⎩,可得2280x tx --=,122x x t ∴+=,128x x =-所以12||3242S x x =-.(当0t =时取等号),∴四边形ABNC 面积的最小值为例10.已知(,1)T m 为抛物线2:2(0)C x py p =>上一点,F 是抛物线C 的焦点,且||2TF =. (1)求抛物线C 的方程;(2)过圆22:(2)1E x y ++=上任意一点G ,作抛物线C 的两条切线1l ,2l ,与抛物线相切于点M ,N ,与x 轴分别交于点A ,B ,求四边形ABNM 面积的最大值.【解析】解:(1)||2TF =,由抛物线定义知,122p +=,2p ∴=,24x y ∴=. (2)设1(M x ,1)y ,2(N x ,2)y ,0(G x ,0)y ,0[3y ∈-,1]-, 切线11:2()AM x x y y =+,因此:11122A y x x x ==, 切线22:2()AN x x y y =+,因此:22222B y x x x ==, 另一方面,点0(G x ,0)y 在两切线上,从而满足:011020202()2()x x y y x x y y =+⎧⎨=+⎩,因此切点弦MN 的方程为:002()x x y y =+,直线MN 与抛物线24x y =进行方程联立:200240x x x y -+=, 从而1202x x x +=,1204x x y =,且||MN ==, ABMN GMN GAB S S S ∆∆=-212011||||2222x x y =⋅-33222220001200111[(4)||](4)242x y y x x x y =---=-2200000(4)(73)x y y y y =-+=---, 当0[3y ∈-,1]-1323=, 2200073773[()]924y y y ---=-++,∴93ABMN S ,当且仅当03y =-时,取到最大值.题型五:利用切点弦结论解决范围问题例11.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为6,C 上一点M 关于原点O 的对称点为N ,F 为C 的右焦点,若MF NF ⊥,设MNF α∠=,且3sin()44πα+=.(1)求椭圆C 的标准方程;(2)经过圆22:10O x y+=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,求AOB ∆面积的取值范围.【解析】解:(1)由26a =,即3a =,又22122cos 2sin )4c c e a c c πααα====++所以c =2221b a c =-=,则椭圆的方程为2219x y +=;(2)设1(A x ,1)y ,2(B x ,2)y , 则直线PA 的方程为1119x x y y +=,直线PB 的方程为2219x xy y +=, 因为0(P x ,0)y 在直线PA ,PB 上, 所以101019x x y y +=,202019x x y y +=,所以直线AB 的方程为0019x xy y +=, 由00221999x xy y x y ⎧+=⎪⎨⎪+=⎩消去y ,结合220010x y +=,和220010x y =-,可得22200(810)1881810y x x x y +-+-=, △242018(8)y y =+,120|||AB x x -=0=202018108y y +=+,又点O 到直线AB的距离为d ==,2020018119||922108y S AB d y +=⋅=⋅=+,又2010y,记[1t ,9],所以9[6t t +∈,10], 所以9[10S ∈,3]2.例12.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点1(F 0),点Q 在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆22:5O x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点. (ⅰ)求证:0OM ON +=; (ⅱ)求OAB ∆的面积的取值范围.【解析】解:(Ⅰ)由题意可得c =221314a b+=,222a b c =+,解得24a =,21b =, 所以椭圆的方程为:2214x y +=;(Ⅱ)()i 证明:设0(P x ,0)y ,①当直线PA ,PB 的斜率都存在时,设过P 与椭圆相切的直线方程为00()y k x x y =-+, 联立直线与椭圆的方程0022()440y k x x y x y =-+⎧⎨+-=⎩, 整理可得2220000(14)8()4()40k x k y kx x y kx ++-+--=,△2222000064()4(14)[4()4]k y kx k y kx =--+--,由题意可得△0=,整理可得222000(4)210x k x y k y -++-=, 设直线PA ,PB 的斜率分别为1k ,2k ,所以20122014y k k x -=-,又2205x y +=,所以220022001(5)4144x x x x ---==---, 所以PM PN ⊥,即MN 为圆O 的直径,所以0OM ON +=; ②当直线PA 或PB 的斜率不存在时,不妨设(2,1)P , 则直线PA 的方程为2x =,所以(2,1)M -,(2,1)N -,也满足0OM ON +=; ()ii 设点1(A x ,1)y ,2(B x ,2)y ,当直线PA 的斜率存在时,设直线PA 的方程为:111()y k x x y =-+,联立直线PA 与椭圆的方程11122()440y k x x y x y =-+⎧⎨+-=⎩,消y 可得2221111111(14)8()4()40k x k y k x x y k x ++-+--=,△22221111111164()4(14)[4()4]k y k x k y k x =--+--, 由题意△0=,整理可得222111111(4)210x k x y k y -++-=, 则11111122111444x y x y x k x y y -=-==--, 所以直线PA 的方程为:1111()4x y x x y y =--+, 化简可得22111144x x y y y x +=+, 即1114x xy y +=, 经验证,当直线PA 的斜率不存在时,直线PA 的方程为2x =或2x =-也满足1114x xy y +=,同理可得直线PB 的方程2214x xy y +=, 因为0(P x ,0)y 在直线PA ,PB 上,所以101020201414x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以可得直线AB 的方程为0014x x y y +=,而P 在圆225x y +=上,所以22005x y +=, 联立直线AB 与椭圆的方程为00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,整理可得22200(35)816160y x x x y +-+-=, 020853A B x x x y +=+,2020161653A B y x x y -=+, 所以O 到直线AB的距离d =,弦长0|||A B AB x x - 又点O 到直线AB的距离d ==,令t ,[1t ∈,4],则2144||424OAB t S d AB t t t∆=⋅==++,而4[4t t+∈,5],所以OAB ∆的面积的取值范围是4[5,1].例13.椭圆2222:1(0)x y C a b a b+=>>的两焦点分别为1F ,2F ,椭圆与y轴正半轴交于点Q ,122QF F S =.(1)求曲线C 的方程;(2)过椭圆C 上一动点P (不在x 轴上)作圆22:1O x y +=的两条切线PC 、PD ,切点分别为C 、D ,直线CD 与椭圆C 交于E 、G 两点,O 为坐标原点,求OEG ∆的面积S 的取值范围.【解析】解:(1)椭圆与y轴正半轴交于点Q ,122QF F S=.可得121222QF F b Sc b bc ==⨯⨯==,∴2c a ==, ∴椭圆方程为22142x y +=.(2)设0(P x ,0)y ,线段OP 的中点为00(,)22x y ,22222000001,2(1)24242x y x x y +==-=-,2004x <, 以OP以OP 为直径的圆的方程为22220000()()224x y x y x y +-+-=,即00()()0x x x y y y -+-=,又圆22:1O x y +=, 两式相减00:1CD x x y y +=,由0022124x x y y x y +=⎧⎨+=⎩,消去y 并化简得22220000(2)4240x y x x x y +-+-=, ∴22222220000000164(2)(24)8(412)x x y y y x y =-+-=-+22222000008[41(4)]24(1)y x x y x =-+-=+,0000||EG ==O EG d -=∴200000001||2222S EG d x =⋅====+-=由于2004x <,所以20115x +<,2011x +<对于函数211()3(15),()30h t t t h t tt '=+<=->,()h t在上递增.(1)4,h h ===所以20431x +<1114<,62<,∴62S <.S ∈. 变式3.已知椭圆22122:1(0)x y C a b a b+=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得01290F PF ∠=的点P 恰有两个,动点P 到焦点1F的距离的最大值为2+(1)求椭圆1C 的方程;(2)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求||ABCD的取值范围.【解析】解:(1)动点P 在椭圆上,且使得01290F PF ∠=的点P 恰有两个,b c ∴=, 动点P 到焦点1F 的距离的最大值为2+∴2a c +=+可得2a =,b c =所以椭圆1C 的方程为:22142x y +=;(2)圆2C 的方程为224x y +=,设直线x =-T 的坐标为)t ,设1(A x ,1)y ,2(B x ,2)y ,则直线AT 的方程为114x x y y +=,直线BT 的方程为224x x y y +=,又)T t 在直线AT 和BT上,即112244ty ty ⎧-+=⎪⎨-+=⎪⎩,故直线AB 的方程为4ty -+=.由原点O 到直线AB的距离d =得||AB =联立224142ty x y ⎧-+=⎪⎨+=⎪⎩,消去x 得22(16)8160t y yt +--=,设3(C x ,3)y ,4(D x,4)y ,则343422816,1616t y y y y t t -+==++,从而222(8)16t CD t +==+记28(8)t m m +=,则||AB CD =11(0)8y y m =<,则||AB CD =11(0)8y y m =<,所以||AB CD3()112256f y y y =+-, 所以由2()127680f y y y '=-=得18y =, 所以3()112256f y y y =+-在1(0,]8上单调递增,()(1f y ∴∈,2]即||ABCD∈. 变式4.已知椭圆22122:1(0)x y C a b a b+=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得1290F PF ∠=︒的点P 恰有两个,动点P 到焦点1F 的距离的最大值为2+(Ⅰ)求椭圆1C 的方程;(Ⅱ)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求弦||CD 长的取值范围.【解析】解:()I 由使得1290F PF ∠=︒的点P 恰有两个可得,b c a ==;动点P 到焦点1F 的距离的最大值为2+2a c +=2,a c ==所以椭圆1C 的方程是22142x y +=⋯(4分)()II 圆2C 的方程为224x y +=,设直线x =-T 的坐标为()t -设1(A x ,1)y ,2(B x ,2)y ,则直线AT的方程为114x x y y+=,直线BT的方程为224x x y y+=,又()t-在直线AT和BT上,即112244tyty⎧-+=⎪⎨-+=⎪⎩,故直线AB的方程为4ty-+=⋯(6分)联立224142tyx y⎧-+=⎪⎨+=⎪⎩,消去x得22(16)8160t y yt+--=,设3(C x,3)y,4(D x,4)y.则343422816,1616ty y y yt t-+==++,⋯(8分)从而21224(8)|||(16)tCD y yt+=-=⋯+(10分)232416t-=++,又21616t +,从而2322016t--<+,所以||[2CD∈,4)⋯(12分)变式5.已知椭圆22122:1(0)x yC a ba b+=>>的离心率为12,且直线1:1x yla b+=被椭圆1C截得的弦长为.()I求椭圆1C的方程;()II以椭圆1C的长轴为直径作圆2C,过直线2:4l y=上的动点M作圆2C的两条切线,设切点为A,B,若直线AB与椭圆1C 交于不同的两点C,D,求||||CD AB的取值范围.【解析】解:()I线1:1x yla b+=,经过点(,0)a,(0,)b,被椭圆1C227a b+=.又12ca=,222a b c=+,解得:24a=,23b=,1c=.∴椭圆1C的方程为22143x y+=.()II由()I可得:圆2C的方程为:224x y+=.设(2,4)M t,则以OM为直径的圆的方程为:222()(2)4x t y t-+-=+.与224x y+=联立可得:直线AB的方程为:2440tx y+-=,设1(C x,1)y,2(D x,2)y,联立222440143tx yx y+-=⎧⎪⎨+=⎪⎩,化为:22(3)480t x tx+--=,则12243tx xt+=+,12283x xt-=+,2236||43tCDt+==+.又圆心O到直线AB的距离d==||AB∴===,22222364||||243t tAB CD tt t+∴=+⨯=+令233t m+=,则||||8AB CD=3m,可得3233m-<,可得:2||||83AB CD<变式6.如图,已知点P在半圆22:(2)4(2)Q x y y++=-上一点,过点P作抛物线2:2(0)C x py p=>的两条切线,切点分别为A,B,直线AP,BP,AB分别与x轴交于点M,N,T,记TNB∆的面积为1S,TMA∆的面积为2S.(Ⅰ)若抛物线C的焦点坐标为(0,2),求p的值和抛物线C的准线方程;(Ⅱ)若存在点P,使得128SS=,求p的取值范围.【解析】解:(Ⅰ)22p=,4p=.准线方程为直线2y=-.(Ⅱ)设1(A x,1)y,2(B x,2)y,过点A的切线方程11:()Al x x p y y=+,于是1(,0)2xM;过点B的切线方程22:()Bl x x p y y=+,于是2(,0)2xN;点(P x,)y在两条切线上,所以10012002()()x x p y yx x p y y=+⎧⎨=+⎩,可得点P坐标为1212(,)22x x x xPp+.1212:()22ABx x x xl x p yp+=+,于是12112112121212()(,0).||||||22()x x x x x x x xT TMx x x x x x-=-=+++,2222121212()||||||22()x x x x x x TN x x x x -=-=++, 而23122111||||2||81||||2TN y S x S x TM y ⋅===⋅,所以212x x =-. 于是点211(,)2x x P p --,点P 的轨迹方程为24px y =-,问题转化为抛物线24p x y =-与半圆22:(2)4(2)Q x y y ++=-有交点. 记24()f x x p =-,则4(2)42f p=-⨯-,又因为0p >, 解得:08p <.所以p 的取值范围为(0,8].变式7.如图,设抛物线2:4C y x =的焦点为F ,点P 是半椭圆221(0)4y x x +=<上的一点,过点P 作抛物线C 的两条切线,切点分别为A 、B ,且直线PA 、PB 分别交y 轴于点M 、N . (Ⅰ)证明:FM PA ⊥; (Ⅱ)求||||FM FN ⋅的取值范围.【解析】解:(Ⅰ)设点P 的坐标为0(x ,0)y ,直线PA 方程为00()(0)x m y y x m =-+≠.令0x =,可知点M 的坐标为00(0,)x y m-. 由,消去x 得2004440y my my mx -+-=. 因为直线与抛物线只有一个交点, 故△0=,即2000m y m x -+=. 因为点F 的坐标为(1,0), 故00(1,)x FM y m =--,00(,)xPM x m=--.则20002()0x FM PM m y m x m⋅=-+=. 因此FM PM ⊥,亦即FM PA ⊥.(Ⅱ)设直线PB 的方程为00()(0)x n y y x n =-+≠. 由(1)可知,n 满足方程2000n y n x -+=.故m ,n 是关于t 的方程2000t y t x -+=的两个不同的实根. 所以.由(1)可知:FM PA ⊥,同理可得FN PB ⊥. 故||FM ||FN =.则||||FM FN ⋅= 因为22001(0)4y x x +=<.因此,||||FM FN ⋅的取值范围是.。
圆的切线(复习课七星中学)

3 4
D
C
∟
E
B
一题多议
3、如图,AB为⊙O的直径, C为⊙O上一点, D AD⊥CD,AC平分∠DAB. C 4 求证: CD是⊙O的切线 1
A
2
3
O
B
有点连半径
一题多议
变式1
如图,AB为⊙O的直径, C为⊙O上一点, AC平分 ∠DAB ,CD是⊙O的切线. D 求证: AD⊥CD 证明: 连结OC 4 ∵CD是⊙O的切线 ∴OC⊥CD , ∠3+∠4=90° ∵ AC平分∠DAB ∴ ∠1=∠2 又∵OA=OC ∴∠2=∠3 ∴∠1=∠3 则∠1+∠4=90° 即∠D=90° ∴ AD⊥CD
C
E
A
O
D
C
O A D B
F
推论2 半圆(或直径)所对的圆周角是90°; 90°的圆周角所对的弦是直径。 推论3 如果三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
C E D A O B
• 什么时候圆周角是直角? 反过来呢? • 直角三角形斜边中线有什 么性质?反过来呢?
二、过三点的圆及外接圆
E 弧AE=弧BF C O
A
D B
推论1 同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所对的弧相等。
思考: 1、“同圆或等圆”的条件能否去掉? 2、判断正误:在同圆或等圆中,如果两个 圆心角、两条弧、两条弦、两条弦心距、两个 圆周角中有一组量相等,那么它们所对应的 其余各组量也相等。
B
9cm练习如图有一圆锥形粮堆其正视图为边长是6m的正三角形abc粮堆的母线ac的中点p处有一老鼠正在偷吃粮食此时小猫正在b处它要沿圆锥侧面到达p处捕捉老鼠则小猫所经过的最短路程是
初中数学中考专题复习之圆专题01切线长定理

专题01切线长定理切线长定理(Theorem of length of tangent),是初等平面几何的一个定理。
它指出,从圆外一点引圆的两条切线,它们的切线长相等。
即如图,AB、AC切圆O于B、C,切线长AB=AC。
1.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为1,△PCD的周长等于2,则线段AB的长是()A.B.3 C.2D.3解析:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB,∵△PCD的周长等于2,∴PA+PB=2,∴PA=PB=,连接PA和AO,∵⊙O的半径为1,∴tan∠APO===,∴∠APO=30°,∴∠APB=60°,∴△APB是等边三角形,∴AB=PA=PB=.选A.2.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5 B.7 C.8 D.10解析:∵PA、PB分别切⊙O于点A、B,∴PB=PA=4,∵CD切⊙O于点E且分别交PA、PB于点C,D,∴CA=CE,DE=DB,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,选C.3.如图,PA、PB、CD与⊙O相切于点为A、B、E,若PA=7,则△PCD的周长为()A.7 B.14 C.10.5 D.10解析:∵PA、PB、CD与⊙O相切于点为A、B、E,∴PB=PA=7,CA=CE,DE=DB,∴△PCD的周长=PC+CD+PB=PC+CE+DE+PD=PC+CA+DB+PD=PA+PB=14,选B.4.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O 的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.解析:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.选D.5.如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D 两点,则△PCD的周长是()A.8 B.18 C.16 D.14解析:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,∴PB=PA=8,CA=CE,DB=DE,∴△PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=16.选C.6.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD的周长和∠COD分别为()A.5,(90°+∠P)B.7,90°+C.10,90°﹣∠P D.10,90°+∠P解析:∵PA、PB切⊙O于A、B,CD切⊙O于E,∴PA=PB=10,ED=AD,CE=BC;∴△PCD的周长=PD+DE+PC+CE=2PA,即△PCD的周长=2PA=10,;如图,连接OA、OE、OB.由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,易证△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∴∠AOB=180°﹣∠P,∴∠COD=90°﹣∠P.选C.7.P是⊙O外一点,PA、PB分别与⊙O相切于点A、B,点C是劣弧AB上任意一点,经过点C作⊙O的切线,分别交PA、PB于点D、E.若PA=4,则△PDE的周长是()A.4 B.8 C.12 D.不能确定解析:根据题意画出图形,如图所示,由直线DA和直线DC为圆O的切线,得到AD=DC,同理,由直线EC和直线EB为圆O的切线,得到EC=EB,又直线PA和直线PB为圆O的切线,所以PA=PB=4,则△PDE的周长C=PD+DE+PE=PD+DC+EC+PE=PD+DA+EB+PE=PA+PB=4+4=8.选B.8.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20 B.30 C.40 D.50解析:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.选C.9.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC =35°,∠P的度数为()A.35°B.45°C.60°D.70°解析:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°﹣∠BAC=90°﹣35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.选D.10.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.解析:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.11.如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF的延长线交AB于点P,连DE.以下结论:①DE∥OF;②AB+CD=BC;③PB=PF;④AD2=4AB•DC.其中正确的是()A.①②③④B.只有①②C.只有①②④D.只有③④解析:∵BA,BE是圆的切线.∴AB=BE,BO是△ABE顶角的平分线.∴OB⊥AE∵AD是圆的直径,∴DE⊥AE,∴DE∥OF,故①正确;∵CD=CE,AB=BE,∴AB+CD=BC,故②正确;∵OD=OF,∴∠ODF=∠OFD=∠BFP若PB=PF,则有∠PBF=∠BFP=∠ODF而△ADP与△ABO不一定相似,故PB=PF不一定成了,故③不正确;连接OC.可以证明△OAB∽△CDO∴,即:OA•OD=AB•CD∴AD2=4AB•DC,故④正确.故正确的是:①②④.选C.12.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.解析:如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=.13.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD 的周长为.解析:∵四边形ABCD是⊙O的外切四边形,∴AD+BC=AB+CD=22,∴四边形ABCD的周长=AD+BC+AB+CD=44,故答案为:44.14.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA=cm.解析:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.15.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC 以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.解析:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14,故答案为:14.16.如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC 分别相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.解析:连接OE、OF,设AD=x,由切线长定理得AF=x,∵⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,∴OE⊥BC,OF⊥AC,∴四边形OECF为正方形,∵r=2,BC=5,∴CE=CF=2,BD=BE=3,∴由勾股定理得,(x+2)2+52=(x+3)2,解得,x=10,∴△ABC的周长为12+5+13=30,故答案为30.17.如图,AB、BC、CD分别与⊙O相切于点E、F、G,若∠BOC=90°,(1)求证:AB∥CD;(2)若OB=3,OC=4,求由BE、BC、CG、及弧EFG围成图形的面积(即图中阴影部分).解析:(1)∵∠BOC=90°,∴∠OBC+∠OCB=90°,又BE与BF为圆O的切线,∴BO为∠EBF的平分线,∴∠OBC=∠OBF,同理可得∠OCB=∠OCG,∴∠OBF+∠OCG=90°,∴∠OBC+∠OCB+∠OBE+∠OCG=180°,即∠ABF+∠DCF=180°,∴AB∥CD;(2)连接OE,OF,OG,如图所示:由BE和BF为圆的切线,可得OE⊥AB,OF⊥BC,即∠OEB=∠OFB=90°,∴BE=BF,又OB=OB,∴Rt△OEB≌Rt△OFB(HL),∴∠BOE=∠BOF,S△OEB=S△OFB,∴S扇形OEM=S扇形OFM,∴S△OEB﹣S扇形OEM=S△OFB﹣S扇形OFM,即S阴影BEM=S阴影BFM,同理S阴影NFC=S阴影NCG,由∠BOC=90°,OB=3,OC=4,根据勾股定理得:BC=5,∵BC为圆的切线,∴OF⊥BC,∴OB•OC=BC•OF,即OF=,∴S△BOC=OB•OC=6,S扇形OMN==,则阴影部分面积S=2(S阴影BFM+S阴影NFC)=2(S△BOC﹣S扇形OMN)=12﹣18.如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.解析:(1)∵PA,PB是⊙O的切线,∴AP=BP,∵∠P=60°,∴∠PAB=60°,∵AC是⊙O的直径,∴∠PAC=90°,∴∠BAC=90°﹣60°=30°.(2)连接OP,则在Rt△AOP中,OA=2,∠APO=30°,∴OP=4,由勾股定理得:,∵AP=BP,∠APB=60°,∴△APB是等边三角形,∴.19.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).解析:(Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°﹣∠BAC=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵c o s∠BAC=,∴AC=AB•c o s∠BAC=2c o s30°=.∵△PAC为等边三角形,∴PA=AC,∴PA=.20.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.解析:(1)方法1:过D作DF⊥BC于F在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6∴DC2=62+82=100,即DC=10设AD=x,则DE=AD=x,EC=BC=x+6∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC,即:x(x+6)=16,解得x1=2,x2=﹣8,(舍去)∴AD=2,BC=2+6=8(2)存在符合条件的P点设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况①△ADP∽△BCP时,∴y=②△ADP∽△BPC时,∴y=4故存在符合条件的点P,此时AP=或4。
初中考数学专题总复习《圆》切线判定的常见方法

第1题解图
2. 如图,已知AB是O的直径,C是O上的点,点D在AB的延长线上,∠BCD= ∠BAC. 求证:CD是O的切线.
证明:如解图,连接OC,
∵AB是O的直径, ∴∠ACB=90°, ∴∠BAC+∠ABC=90°,
第2题图
∵OB=OC, ∴∠OBC=∠OCB, ∵∠BCD=∠BAC, ∴∠BCD+∠OCB=∠BAC+∠ABC=90°, ∴OC⊥CD. ∵OC是O的半径, ∴CD是O的切线.
第4题解图
∴△BOE ≌△BOC(AAS). ∴EO=CO, ∵CO是O的半径, ∴EO是O的半径. ∴AB为O的切线.
第4题解图
切线判定的常见方法
微专题 切线判定的常见方法
方法1 连半径,证垂直
方法解读 当直线与圆的公共点已知时,常连接圆心与直线和圆的公共点,证所连半径与直 线垂直,简记:“连半径,证垂直”; (1)图中没有90°角需构造 构造一:若图中已知直径,则利用直径所对的圆周角是90°,构造直角. 构造二:若图中有等腰三角形,则利用等腰三角形“三线合一”的性质构造直角. (2)图中有90°角:①利用等角代换证得垂直;②利用平行线性质证得垂直;③利 用三角形全等证得垂直.
方法应用
1. (2020云南省卷节选)如图,AB为O的直径,C为O上一点,AD⊥CE,垂足为D, AC平分∠DAB. 求证: CE是O的切线.
证明:如解图,连接OC.
∵AD⊥CE, ∴∠ADC=90°.
第1题图
∵OA=OC,AC平分∠DAB, ∴∠CAO=∠ACO,∠DAC=∠CAO, ∴∠DAC=∠ACO, ∴OC∥AD, ∴∠OCE=∠ADC=90°. 又∵OC是O的半径, ∴CE是O的切线.
第2题解图
方法2 作垂直,证半径
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、如图,AB 是O O 的直径,/ A = 30°,延长 OE 到D,使BD= OB (OCB
是否是等边三角形?说明你的理由;
圆与特殊角度
1.已知,如图,在△ ADC 中, 长线
上,连接BF,交AD 于点E
(1)求证:BF 是eO 的切线;
ADC 90,以DC 为直径作半圆eO ,交边AC 于点F ,点B 在CD 的延 BED 2 C .
(2)若BF FC , AE 3,求eO 的半径.
3 .如图,AB 是O O 的直径,点 D 在O O 上,OC/ AD 交O O 于E ,
(1)求证:
;
2)求证:CD 是O O 的切线• 证明:
点F 在CD 延长线上,且 BOC ADf =90 .
4.如图,在O O 中,弦 AE BC 于 D, BC 6 , AD 7 , BAC 45
(1) 求O O 的半径。
(2)
求DE 的长。
19.如图,已知直线 PA 交O O 于A 、B 两点,AE 是O O 的直径,C 为O O 上一 点,
且AC 平分/ PAE 过点C 作CDL PA 于D. (1) 求证:CD 是O O 的切线;
(2)
若 AD DG 1: 3, AB=8,求O O 的半径.
C
B
O
P ZI C
O
D A
32•已知:如图,AB 是O O 的直径,BD 是O O 的弦,延长BD 到点C,使DGBR 连结AC 过点D 作D 巳 AC,垂足为E .
21•如图,已知 △ ABC ,以BC 为直径,O 为圆心的半圆交 AC 于点F ,点E 为弧CF 的中点,连接BE 交AC 于点
M , AD ABC 勺角平分线,且 AD BE ,垂足为点H . (1) 求证:AB 是半圆O 的切线; (2) 若 AB 3, BC 4,求 BE 的长.
圆与三角函数
22.如图,在△ ABC 中,/ 0=90° , AD 是/ BAC 的平分线,
(1) 求证:B0是O O 切线; (2) 若 BB 5, DO3,求 AC 的长. 解:
O 是AB 上一点,以OA 为半径的O O 经过点D
(1)求证:ABAC
⑵求证:DE 为O O 的切线;
A A
A
19 •如图,AB BF 分别是O O 的直径和弦,弦 CD 与AB BF 分别相交于点 E 、G,过点F 的切线HF 与DC 的
延长线相交于点 H,且HF = HG
(1) 求证:AB 丄CD
3
(2) 若sin / HG 三 ,BF = 3,求O O 的半径长.
4
20.如图,在△ ABC 中,点D 在AC 上, D A=DB / C =Z DBC 以AB 为直径•的O O 交AC 于点E , F 是O O 上 的
点,且 AF = BF. ■■-
(1)求证:B C 是O O 的切线;
3
!—
(2)若 sin C = -, AE=3 2,求sin F 的值和AF 的长.
5
20.已知:如图,点 A B 在O O 上,直线 AC 是O O 的切线,联结 AB 交O C 于点D, AOCD
(1)求证:OCL OB
20 .如图,AC BC 是O O 的弦,BC / AO AO 的延长线与过点C 的射线交于点D 且D=90 -2 A
(1)求证:直线CD 是O O 的切线;
1
(2)若BC 磔,tanD ,求CD 和AD 的长.
2
(2)如果 ODd , tan / OCA
求AC 的长.
B
A
D
20、如图,△ ABC内接于O O, AD是O O直径,E是CB延长线上一点,且/ BAE=/ C.
(1) 求证:直线AE是O O的切线;
4
(2) 若EB=AB cosE - , AE=24,求EB的长及O O的半径.
5
20.已知:如图,在Rt△ ABC中,/ C=90°,点E在斜边AB上,以AE为直径的O O与BC边相切于点D, 联结AD.
(1) 求证:AD是/ BAC的平分线;
3
(2) 若A(= 3 , tan B=—,求O O的半径.
4
19.(本题满分5分)
已知:如图,在△ ABC中,AB=BC D是AC中点, 过B、E两点,交BD于点G,交AB于点F.
(1)求证:AC与O O相切;
3
(2)当BD=6 sinC=兰时,求O O的半径.
5 BE平分/ ABD交AC于点E,点O是AB上一点,O O
O
C
B
O
21.已知:如图, AB 是O 0的直径,AC 是弦,/ BAC 的平分线与 O 0的交点为 D, DEL AC 与AC 的延长 线交于点E
(1)求证:直线DE 是O O 的切线;
4 DF
(2)若0E 与AD 交于点F , cos BAC 工,求 的值.
5 AF
圆与相似:
21.如图,以△ ABC 的边AB 为直径的O O 与边BC 交于点D,过点D 作DEL AC 垂足为E ,延长AB ED 交 于点F ,
AD 平分/ BAC
(1) 求证:EF 是O O 的切线;
(2) 若O O 的半径 为2, AE=3,求BF 的长.
20•如图,四边形 ABC 呐接于eO , BD 是eO 的直径,AE CD 于点E , DA 平分 BDE . (1) 求证:AE 是e O 的切线;
E
B
(2) 如果AB=4 , AE=2,求eO的半径.
A
O
5
⑵ 延长DE 交BA 的延长线于点F .若AB
sin B
求线段AF 的长.
/)
20.已知,如图,AB 是O O 的直径,点E 是心的中点,连结 BE 交AC 于点G BG 的垂直平分线 CF 交BG 于 H 交AB 于F 点. (1) 求证:BC 是O O 的切线; (2) 若 AB=8, BC=6,求 BE 的长.
22.如图,AB 为O O 的直径,BC 切O O 于点B, AC 交O O 于点D, E 为BC 中点•
求证:(1)
DE 为O O 的切线;(2)延长ED 交BA 的延长线于
F ,若DF=4, AF =2,求BC 的长.
圆,三角函数,相似
20.已知:如图,在△ ABC 中,AB AC •以AB 为直径的O O 交BC 于点D ,过点D 作DE 丄AC 于
点E .
(1)求证:DE 与O O 相切
;
D
E
G
A
O F
20.如图,O 0是厶ABC 是的外接圆,BC 为O 0直径,作/ CAD / B,且点□在 BC 的延长线上. ⑴求证:直线AD 是O
0的切线;
20 •如图,在△ ABC 中, AB=AC 以AC 为直径作O O 交BC 于点D,过点D 作FE ± AB 于点E ,交AC 的延长
线于点F .
(1) 求证:EF 与O O 相切;
3
(2)
若 AE=6, sin / CFD=,求 EB 的长.
5
21.如图,△ ABC 中,以BC 为直径的O O 交AB 于点D, CA 是O O 的切线,AE 平分/ BAC 交BC 于点E ,交
CD 于点F.
(1) 求证:CE=CF ;
3
(2) 若 sin B =3,求 DF : CF 的值.
5
20.如图,在△ ABC 中,AB=AC 以AB 为直径的OO 分别交
1 且.CBF CAB
2
⑴求证:直线BF 是eO 的切线;
■ ----
<5 ⑵ 若AB=5 sin CBF ,求BC 和BF 的长. 5
⑵若 sin / CAD= O 0的半径为 8,求CD 长.
AC BC 于点D 、E ,点F 在AC 的延长线上,
20.已知:如图,AB是O O的直径,C是O O上一点,OD丄BC于点D,过点C作O O的切线,交OD 的延长线于点E,连结BE .
(1)求证:BE与O O相切;
(2)连结AD并延长交BE于点F,若OB 9 , sin ABC
20 .如图,AB是O O的直径,PA PC分别与O O相切于点A, C, PC交AB的延长线于点D,
DEL PO交PO
的延长线于点E。
(1)求证:/ EPD=/ EDO
3
(2)若PC=6 tan / PDA二,求OE的长。
4。