第二十七章圆章末测试

合集下载

华师版九年级下册数学第27章 圆 阶段综合训练【范围:27

华师版九年级下册数学第27章 圆 阶段综合训练【范围:27
【点拨】如图,连结OA,OC,OD,CE,DB. 在圆内接四边形ABCE中,有∠ABC+∠AEC=180°; 由圆周角定理知∠AOC=2∠AEC, ∴∠ABC+ ∠AOC=180°. 同理得∠AED+ ∠AOD=180°.
1 2
1 2
1 1 两式相加得230°+ ∠AOC+ ∠AOD=360°,
2 ∴∠AOC+∠AOD=260°.
A.35° B.38° C.40° D.42°
C
9.小明将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高AC为160mm
,直角顶点到轮胎与地面接触点的距离AB为320mm,轮胎的直径为( )
A.350mm
B.700mm
C.800mm
D.400mm
【点拨】如图,连结OB,OC,作CD⊥OB于D,则易知四边形ABDC为矩 形.设⊙O的半径为xmm, 则OD=OB-BD=(x-160)mm,CD=AB=320mm, 在Rt△OCD中,由勾股定理得,(x-160)2+3202=x2,解得x=400, ∴2x=800,即轮胎的直径为800mm.
PPAB=PPDC.
∴1y0=x3,∴y=3x0. 【答案】y=3x0
20.【中考·自贡】如图,⊙O中,弦AB与CD相交于点E,AB=CD,连结AD、 BC.求证:
(1)A︵D=B︵C; 证明:∵AB=CD, ∴A︵B=C︵D,即A︵D+A︵C=B︵C+A︵C, ∴A︵D=B︵C.
(2)AE=CE.
,∴∠COD=∠COE.
A︵C=B︵C ∵OA=OB,AD=BE,∴OD=OE.
又∵OC=OC,∴△COD≌△COE,∴CD=CE.
(2)A︵M=B︵N.
证明:如图,连结OM,ON. ∵△COD≌△COE,∴∠CDO=∠CEO,∠OCD=∠OCE. ∵OC=OM=ON,∴∠OCM=∠OMC,∠OCN=∠ONC, ∴∠OMD=∠ONE. ∵∠ODC=∠DMO+∠MOD,∠CEO=∠CNO+∠EON, ∴∠MOD=∠NOE,∴

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.82.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm 3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.76.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2 9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________.(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________cm时,四边形ABCN的面积最大,最大面积为_________cm2.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________(写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=_________.(用含n的式子表示)20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.28.(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)参考答案与解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm考点:相似三角形的判定与性质;平行四边形的性质.分析:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm.故选B.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.专题:压轴题.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.专题:压轴题.分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△AB F∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.专题:压轴题.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB 的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB(AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为4s.(填出一个正确的即可)考点:圆周角定理;垂径定理;相似三角形的判定与性质.专题:压轴题;开放型.分析:根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF 是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF 是直角三角形.解答:解:∵AB是⊙O的直径,∴∠C=90°,而∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵F是弦BC的中点,∴当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,即AE=AO=4cm,∴t==4(s).故答案为4s.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.专题:压轴题.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.考点:相似三角形的应用.分析:根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.解答:解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.专题:压轴题.分析:设BM=xcm,则MC=1﹣xcm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.解答:解:设BM=xcm,则MC=1﹣xcm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C∴△ABM∽△MCN,则,即,解得CN==x(1﹣x),∴S四边形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,∵﹣<0,∴当x=﹣=cm时,S四边形ABCN最大,最大值是﹣×()2+×+=cm2.故答案是:,.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ 与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④点评:此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.考点:相似三角形的判定与性质.专题:压轴题.分析:(1)过点P作l3∥BC交AC于Q,则△APQ∽△ABC,l3是第3条相似线;(2)按照相似线的定义,找出所有符合条件的相似线.总共有4条,注意不要遗漏.解答:解:(1)存在另外 1 条相似线.如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;故答案为:1;(2)设P(l x)截得的三角形面积为S,S=S△ABC,则相似比为1:2.如图2所示,共有4条相似线:①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;②第2条l2,此时P为斜边AB中点,l2∥BC,∴=;③第3条l3,此时BP与BC为对应边,且=,∴==;④第4条l4,此时AP与AC为对应边,且=,∴==,∴=.故答案为:或或.点评:本题引入“相似线”的新定义,考查相似三角形的判定与性质和解直角三角形的运算;难点在于找出所有的相似线,不要遗漏.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是①③.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形.专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)考点:相似三角形的判定与性质.专题:压轴题;规律型.分析:由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.解答:解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.点评:此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A nB n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,。

华师版九年级数学下册教学课件(HS) 第27章 圆 第27章 小结与复习

华师版九年级数学下册教学课件(HS) 第27章 圆 第27章 小结与复习
(4)中心角:正多边形每一条边对应所对的外接圆的圆心角都相等, 叫做正多边形的中心角.
二、与圆有关的位置关系 1.点与圆的位置关系 判断点与圆的位置关系可由点到圆心的距离d与圆的半径r比较得到. 设☉O的半径是r,点P到圆心的距离为d,则有
d<r
点P在圆内;
[注意]点与圆的位置关系可以转 化为点到圆心的距离与半径之间
d=r
点P在圆上;
的关系;反过来,也可以通过这
种数量关系判断点与圆的位置关
d>r
点P在圆外.
系.
2.直线与圆的位置关系 设r为圆的半径,d为圆心到直线的距离
直线与圆的
位置关系
相离
相切
图形
d与r的关系 公共点个数 公共点名称 直线名称
பைடு நூலகம்
d>r 0个
d=r 1个 切点 切线
相交
d<r 2个 交点 割线
三、 圆的基本性质 1. 圆的对称性 圆是轴对称图形,它的任意一条_______所在的直直径线都是它的对称轴.
(3)边长a,边心距r的正n边形的面积为
S
1 nar 2
1 lr. 2
其中l为正n边形的周长.
考点一 圆周角定理
例1 在图中,BC是☉O的直径,AD⊥BC,若∠D=36°,则∠BAD的度数是
()
B
A. 72° B.54° C. 45° D.36 °
A
B
C
D
针对训练
1.如图a,四边形ABCD为☉O的内接正方形,点P为劣弧BC上的任意一
3.与切线相关的定理 (1)判定定理:经过圆的半径的外端且垂直于这条半径的直线是圆 的切线.
(2)性质定理:圆的切线垂直于经过切点的半径.
(3)切线长定理:经过圆外一点所画的圆的两条切线,它们的切线 长相等.这一点和圆心的连线平分这两条切线的夹角.

2020年华师大新版数学下册九年级《第27章 圆》单元综合评价试卷含解析

2020年华师大新版数学下册九年级《第27章 圆》单元综合评价试卷含解析

2020年华师大新版数学下册九年级《第27章圆》单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共12小题)1.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2B.3C.4D.52.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=3,则⊙O的直径为()A.8B.10C.15D.203.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm4.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④长度相等的两条弧是等弧.A.3个B.2个C.1个D.4个5.如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A等于()A.33°B.57°C.67°D.66°6.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若∠BAD=100°,则∠DCE 的大小是()A.115°B.105°C.100°D.95°7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP =QO,则的值为()A.B.C.D.8.已知⊙O的半径r=3,PO=,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定9.下列说法正确的是()A.半圆是弧,弧也是半圆B.三点确定一个圆C.平分弦的直径垂直于弦D.直径是同一圆中最长的弦10.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面半径是()A.B.C.2D.11.如图,已知⊙O圆心是数轴原点,半径为1,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()A.﹣1≤x≤1B.﹣≤x≤C.0≤x≤D.x>12.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=50°,则∠ABC的度数为()A.20°B.25°C.40°D.50°二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)14.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为cm.15.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.16.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.17.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠BCD=40°,则∠ABD的度数为.18.如图,四边形ABCD为⊙O的内接四边形,若四边形ABCO为平行四边形,则∠ADB =.19.一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这个圆的半径是.20.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.三.解答题(共8小题)21.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?22.⊙O的直径AB和弦CD相交于点E,已知AE=1,EB=5,∠DEB=60°,求CD的长.23.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB 与车轮内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,求这个车轮的外圆半径长.24.如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.25.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.26.如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.27.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.28.已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N 不重合.(1)线段MN与BD是否垂直?请说明理由;(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN的长.2020年华师大新版数学下册九年级《第27章圆》单元测试卷参考答案与试题解析一.选择题(共12小题)1.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2B.3C.4D.5【分析】弦是连接圆上任意两点的线段,根据定义作答.【解答】解:由图可知,点A、B、E、C是⊙O上的点,图中的弦有AB、BC、CE,一共3条.故选:B.【点评】本题考查了圆的认识,熟记连接圆上任意两点的线段叫弦是解题的关键.2.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=3,则⊙O的直径为()A.8B.10C.15D.20【分析】连结OC,设⊙O的半径为R,则OE=OB﹣BE=R﹣3,先根据垂径定理得到CE=CD=6,然后在Rt△OCE中,利用勾股定理可计算出R,从而得到⊙O的直径.【解答】解:连结OC,如图,设⊙O的半径为R,则OE=OB﹣BE=R﹣3,∵CD⊥AB,∴CE=DE=CD=×12=6,在Rt△OCE中,OE=R﹣3,OC=R,∴OE2+CE2=OC2,∴(R﹣3)2+62=R2,解得R=,∴⊙O的直径为15.故选:C.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.3.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.4.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④长度相等的两条弧是等弧.A.3个B.2个C.1个D.4个【分析】①和④、没有前提;②、注意不是直径的弦;③、注意对称轴是直线.【解答】解:①和④、错误,应强调在同圆或等圆中;②、错误,应强调不是直径的弦;③、错误,应强调过圆心的直线才是它的对称轴.故选D.【点评】在叙述命题时注意要强调命题成立的条件.5.如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A等于()A.33°B.57°C.67°D.66°【分析】连结CD,如图,根据半圆(或直径)所对的圆周角是直角得到∠BCD=90°,则利用互余可计算出∠D=57°,然后根据圆周角定理即可得到∠A的度数.【解答】解:连结CD,如图,∵BD是⊙O的直径,∴∠BCD=90°,而∠DBC=33°,∴∠D=90°﹣33°=57°,∴∠A=∠D=57°.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若∠BAD=100°,则∠DCE 的大小是()A.115°B.105°C.100°D.95°【分析】由圆的内接四边形的性质,可得∠BAD+∠BCD=180°,又由邻补角的定义可得:∠BCD+∠DCE=180°,可得∠DCE=∠BAD.【解答】解:∵∠BAD=100°,∴∠BCD=180°﹣∠BAD=80°,∴∠DCE=180°﹣∠BCD=100°.故选:C.【点评】此题考查了圆的内接四边形的性质.此题比较简单,注意掌握数形结合思想的应用.7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP =QO,则的值为()A.B.C.D.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.【点评】本题考查了相交弦定理,即“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.熟记并灵活应用定理是解题的关键.8.已知⊙O的半径r=3,PO=,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=>3,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】本题考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.9.下列说法正确的是()A.半圆是弧,弧也是半圆B.三点确定一个圆C.平分弦的直径垂直于弦D.直径是同一圆中最长的弦【分析】利用圆的有关定义分别判断后即可确定正确的选项.【解答】解:A、半圆是弧,但弧不一定是半圆,故本选项错误;B、不在同一直线上的三点确定一个圆,故本选项错误;C、当被平分的弦为直径时,两直径不一定垂直,故本选项错误;D、直径是同一圆中最长的弦,故本选项正确,故选:D.【点评】本题考查了圆的认识,了解圆中有关的概念是解答本题的关键,难道不大.10.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面半径是()A.B.C.2D.【分析】根据题意得出△ABC的外接圆的圆心位置,进而利用勾股定理得出能够完全覆盖这个三角形的最小圆面的半径.【解答】解:如图所示:点O为△ABC外接圆圆心,则AO为外接圆半径,故能够完全覆盖这个三角形的最小圆面的半径是:.故选:A.【点评】此题主要考查了三角形的外接圆与外心,得出外接圆圆心位置是解题关键.11.如图,已知⊙O圆心是数轴原点,半径为1,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()A.﹣1≤x≤1B.﹣≤x≤C.0≤x≤D.x>【分析】首先作出圆的切线,求出直线与圆相切时的P的取值,再结合图象可得出P的取值范围,即可得出答案.【解答】解:∵半径为1的圆,∠AOB=45°,过点P且与OA平行的直线与⊙O有公共点,∴当P′C与圆相切时,切点为C,∴OC⊥P′C,CO=1,∠P′OC=45°,OP′=,∴过点P且与OA平行的直线与⊙O有公共点,即0≤x≤,同理点P在点O左侧时,0∴0≤x≤.故选:C.【点评】此题主要考查了直线与圆的位置关系,作出切线找出直线与圆有交点的分界点是解决问题的关键.12.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=50°,则∠ABC的度数为()A.20°B.25°C.40°D.50°【分析】先利用切线的性质得到∠OAP=90°,则利用互余和计算出∠AOP=40°,再利用等腰三角形的性质和三角形外角性质可计算出∠B的度数.【解答】解:∵直线PA与⊙O相切于点A,∴OA⊥PA,∴∠OAP=90°,∴∠AOPP=90°﹣∠P=40°,∵∠AOP=∠B+∠OCB,而OB=OC,∴∠B=∠AOP=20°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB =90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器所求弧所对的圆心角为70°,因而P在小量角器上对应的度数为70°.故答案为:70°;【点评】本题主要考查了直径所对的圆周角是90度.能把实际问题转化为数学问题是解决本题的关键.14.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为8cm.【分析】连接OA,由OC垂直于弦AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由OA与OC的长,利用勾股定理求出AC的长,即可得出AB的长.【解答】解:连接OA,∵OC⊥AB,∴C为AB的中点,即AC=BC,在Rt△AOC中,OA=5cm,OC=3cm,根据勾股定理得:AC===4cm,∴AB=2AC=8cm.故答案为:8.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是10cm.【分析】先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【解答】解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.【点评】此题主要考查了垂径定理的应用,勾股定理,构造出直角三角形是解本题的关键.16.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是5cm.【分析】根据题意得到MN=BC,当正方形纸片卷成一个圆柱时,EF卷成一个圆,线段卷成圆上一段弧,该段弧所对的圆心角为×360°,要求圆柱上M,N两点间的距离即求弦MN的长.【解答】解:根据题意得:EF=AD=BC,MN=2EM=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段EF形成一直径为10cm的圆,线段EF为圆上的一段弧.所对的圆心角为:×360°=120°,所以圆柱上M,N两点间的距离为:2×5×sin60°=5cm.故答案为:5.【点评】此题实质考查了圆上弦的计算,需要先找出圆心角再根据弦长公式计算,熟练掌握公式及性质是解本题的关键.17.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠BCD=40°,则∠ABD的度数为50°.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,∠ACB的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,求得∠ABD的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=40°,∴∠ACD=90°﹣∠BCD=50°,∴∠ABD=∠ACD=50°.故答案为:50°.【点评】此题考查了圆周角定理.此题难度不大,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.18.如图,四边形ABCD为⊙O的内接四边形,若四边形ABCO为平行四边形,则∠ADB =30°.【分析】根据圆内接三角形的性质得到∠ADC+∠ABC=180°,根据平行四边形的性质的∠AOC=∠ABC,根据圆周角定理得到∠ADC=∠AOC,计算即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠ADC+∠ABC=180°,∵四边形ABCO为平行四边形,∴∠AOC=∠ABC,由圆周角定理得,∠ADC=∠AOC,∴∠ADC+2∠ADC=180°,∴∠ADC=60°,∵OA=OC,∴平行四边形ABCO为菱形,∴BA=BC,∴=,∴∠ADB=∠ADC=30°,故答案为:30°.【点评】本题考查的是圆内接三角形的性质、平行四边形的性质、菱形的判定,掌握相关的性质定理和判定定理是解题的关键.19.一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这个圆的半径是 6.5cm或2.5cm.【分析】本题应分为两种情况来讨论,关键是得出:当点P在⊙O内时,直径=最近点的距离+最远点的距离;当点P在⊙O外时,直径=最远点的距离﹣最近点的距离.【解答】解:点P应分为位于圆的内部与外部两种情况讨论:①当点P在圆内时,最近点的距离为4cm,最远点的距离为9cm,则直径是4+9=13cm,因而半径是6.5cm;②当点P在圆外时,最近点的距离为4cm,最远点的距离为9cm,则直径是9﹣4=5cm,因而半径是2.5cm.故答案为6.5cm或2.5cm.【点评】本题考查了点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P 在圆内⇔d<r.注意到分两种情况进行讨论是解决本题的关键.20.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为5.【分析】根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.【点评】本题主要考查圆的确定,熟练掌握圆上各点到圆心的距离相等得出其外接圆是解题的关键.三.解答题(共8小题)21.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?【分析】连结OC、OD,由OA=OB,AE=BF,得到OE=OF,由CE⊥AB,DF⊥AB 得到∠OEC=∠OFD=90°,再根据“HL”可判断Rt△OEC≌Rt△OFD,则∠COE=∠DOF,所以AC弧=BD弧,AC=BD.【解答】解:AC与BD相等.理由如下:连结OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴=,∴AC=BD.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了直角三角形全等的判定与性质.22.⊙O的直径AB和弦CD相交于点E,已知AE=1,EB=5,∠DEB=60°,求CD的长.【分析】作OF⊥CD于点F,连接OD,直角△OEF中利用三角函数即可求得OF的长,然后在直角△ODF中利用勾股定理即可求得DF的长,然后根据垂径定理可以得到CD =2DF,从而求解.【解答】解:作OF⊥CD于点F,连接OD.∵AE=1,EB=5,∴AB=AE+BE=6,半径长是3.∵在直角△OEF中,OE=OA﹣AE=3﹣1=2,sin∠DEB=,∴OF=OE•sin∠DEB=2×=.在直角△ODF中,DF===,∴CD=2DF=2.【点评】本题考查了垂径定理、三角函数以及勾股定理,正确作出辅助线是关键.23.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB 与车轮内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,求这个车轮的外圆半径长.【分析】根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.【解答】解:如图,设点O为外圆的圆心,连接OA和OC,∵CD=10cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50.∴这个车轮的外圆半径长为50.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.24.如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【分析】(1)根据AAS证明:△BFG≌△CDG;(2)解法一:连接OF,设⊙O的半径为r,由CF=BD列出关于r的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.解法三:连接OC,根据垂径定理和三角形的中位线定理可得OH=1,证明△COE≌△BOH,并利用勾股定理可得结论.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.【点评】此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.25.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.【分析】(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r的方程,求出方程的解即可得到圆的半径r的值.【解答】(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.【点评】此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.26.如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.【分析】先根据圆内接四边形的性质推出∠ADC=50°,再根据圆周角定理推出∠AOC =100°,然后根据等腰三角形的性质及三角形内角和定理即可得出∠OAC的度数.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∵∠ABC=130°,∴∠ADC=180°﹣∠ABC=50°,∴∠AOC=2∠ADC=100°.∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=(180°﹣∠AOC)=40°.【点评】本题主要考查圆内接四边形的性质、圆周角定理、等腰三角形的性质及三角形内角和定理,关键在于求出∠AOC的度数.27.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.【分析】设OA交⊙O于C,连结B′C,如图2,根据新定义计算出OA′=2,OB′=4,则点A′为OC的中点,点B和B′重合,再证明△OBC为等边三角形,则B′A′⊥OC,然后在Rt△OA′B′中,利用正弦的定义可求A′B′的长.【解答】解:设OA交⊙O于C,连结B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了阅读理解能力.28.已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N 不重合.(1)线段MN与BD是否垂直?请说明理由;(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN的长.【分析】(1)根据题意画出图形,再作出辅助线构成等腰三角形,利用等腰三角形的性质进行证明;(2)注意要分二种情况讨论:即B、D在AC两侧和B、D在AC同侧.【解答】解:(1)线段MN与BD垂直.连接MB与MD,由直角三角形斜边上的中线等于斜边长的一半,可以知道MB=,MD=,所以MB=MD.三角形MBD中,N是底边上的中点,等腰三角形的性质可以说明:MN垂直BD.(2)如图一:连接BM、MD,延长DM,过B作DM延长线的垂线段BE,∵M是AC的中点,∴MD⊥AC,△BCM是等边三角形,∴在Rt△BEM中,∠EMB=30°,∵AC=4,∴BM=2,∴BE=1,EM=,MD=2,从而可知BD==2∴BN=.由Rt△BMN可得:MN==.如图二:连接BM、MD,延长AD,过B作垂线段BE,∵M、N分别是AC,BD中点,∴MD=AC,MB AC,∴MD=MB,∵∠BAC=30°,∠CAD=45°,∴∠BMC=60°,∠DMC=90°,∴∠BMD=30°,∴∠BDM==75°,∵∠MDA=45°∴∠EDB=180°﹣∠BDM﹣∠MDA=60°,令ED=x,则BE=x,AD=2,AB=2,∴由Rt△ABE可得:(2)2=(x)2+(x+2)2,解得x=,则BD=2,∵M、N分别是AC,BD中点,∴MD=2 DN=.由Rt△MND可得:MN==.【点评】本题综合考查了等腰三角形的性质和解直角三角形的方法,同时考查了分类讨论思想.。

冀教版数学九年级下第二十七章圆(一)检测题(B)

冀教版数学九年级下第二十七章圆(一)检测题(B)

九年级(上)第二十七章圆(一)章节检测题(B )一、选择题(本大题共10小题,每小题2分,共计20分。

在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在题后括号内。

)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) (A )4个 (B )3个 (C )2个 (D )1个 2.下列判断中正确的是( )(A )平分弦的直线垂直于弦(B )平分弦的直线也必平分弦所对的两条弧(C )弦的垂直平分线必平分弦所对的两条弧(D )平分一条弧的直线必平分这条弧所对的弦 3.(08山东枣庄)如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( )A .2.5 B.5.54.(08山东潍坊)如图,ABC △内接于圆O ,50A = ∠,60ABC =∠,BD 是圆O 的直径,BD 交AC 于点E ,连结DC ,则AEB ∠等于( )A .70B .110C .90D .1205、(08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有( )A 、2个B 、3个C 、4个D 、5个BA6.(08湖南益阳)如图所示,一个扇形铁皮OAB. 已知OA =60cm ,∠AOB =120°,小华将OA 、OB 合拢制成了一个圆锥形烟囱帽(接缝忽略不计),则烟囱帽的底面圆的半径为( ) A. 10cm B. 20cm C. 24cm D. 30cm 7、半径为1的⊙O 中,120°的圆心角所对的弧长是( )第3题图 120°O AB(第5题图)(第6题图)A 、π31B 、π32C 、πD 、π238.(08湖南永州)一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为 ( )A .38cmB .316cm C .3cmD .34cm9.(08广东肇庆)如图,AB 是⊙O 的直径,∠ABC =30°,则∠BAC =( ) A .90° B .60° C .45° D .30°10、(08山东烟台)如图,水平地面上有一面积为230cm π的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( )A 、20cm B 、24cm C 、10cm π D 、30cm π(第10题图)二、填空题(本大题共8个小题;每小题3分,共24分。

华师大版九年级下册数学第27章 圆含答案

华师大版九年级下册数学第27章 圆含答案

华师大版九年级下册数学第27章圆含答案一、单选题(共15题,共计45分)1、如图,半径为3的扇形AOB,∠AOB=120°,以AB为边作矩形ABCD交弧AB 于点E,F,且点E,F为弧AB的四等分点,矩形ABCD与弧AB形成如图所示的三个阴影区域,其面积分别为,,,则为()(取)A. B. C. D.2、AB是⊙O的弦,∠AOB=80°,则弦AB所对的圆周角是()A.40°B.140°或40°C.20°D.20°或160°3、⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定4、在中,,,,将绕边所在直线旋转一周得到一个圆锥,该圆锥的侧面积()A. B. C. D.5、如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为()A. B. C.1 D.26、如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.20°B.40°C.50°D.80°7、如图,⊙O的直径BC=12cm,AC是⊙O的切线,切点为C,AC=BC,AB与⊙O 交于点D,则的长是()A.πcmB.3πcmC.4πcmD.5πcm8、若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。

如图,如果扇形AOB与扇形是相似扇形,且半径(为不等于0的常数)那么下面四个结论:①∠AOB=∠ A1O1B1;②△AOB∽△ A1O1B1;③A 1B1=k;④扇形AOB与扇形 A1O1B1的面积之比为。

成立的个数为:()A.1个B.2个C.3个D.4个9、如图,△ABC是⊙O的内接三角形,半径OB=3,sinA= ,则弦BC的长为()A.3B.4C.5D.3.7510、如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为( )A. B. C. D.11、如图,AB为⊙O的直径,点C为⊙O上一点,连接CO,作AD OC,若CO =,AC=2,则AD=()A.3B.C.D.12、如图,⊙O的弦AB垂直于直径MN,C为垂足.若OA=5 cm,下面四个结论中可能成立的是()A.AB=12 cmB.OC=6 cmC.AC=3 cmD.MN=9 cm13、如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=1,则图中阴影部分的面积为A. B. C. D.14、如图,在△ABC中,(1)作AB和BC的垂直平分线交于点O;(2)以点O为圆心,OA长为半径作圆;(3)⊙O分别与AB和BC的垂直平分线交于点M,N;(4)连接AM,AN,CM,其中AN与CM交于点P.根据以上作图过程及所作图形,下列四个结论:① =2 ;②AB=2AM;③点P是△ABC的内心;④∠MON+2∠MPN=360°.其中正确结论的个数是()A.1B.2C.3D.415、如图,是⊙O的直径,的平分线交⊙O于点,连接,,给出下列四个结论:① ;② 是等腰直角三角形;③ ;④ .其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC=3,∠BAC=120°,以点A为圆心,1为半径作圆弧,分别交AB,AC于点D,E,以点C为圆心,3为半径作圆弧,分别交AC,BC于点A,F.若图中阴影部分的面积分别为S1, S2,则S1﹣S2的值为________.17、如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则的长为________.18、已知等腰内接于半径为5的,已知圆心O到的距离为3,则这个等腰中底边上的高可能是________.19、如图,在半径为3的⊙O中,随意向圆内投掷一个小球,经过大量重复投掷后发现,小球落在阴影部分的概率稳定在,则的长约为________.(结果保留)20、蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB 边如图所示,则△ABC是直角三角形的个数有________ .21、已知扇形的半径为3cm,圆心角为120°,则此扇形的弧长为________ cm,扇形的面积是________ cm2.(结果保留π)22、已知正六边形的边心距为,则这个正六边形的边长为________23、如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为________.24、如图,PA,PB是⊙O的切线,CD切⊙O于E,PA=6,则△PDC的周长为________.25、已知的三边a、b、c满足,则的内切圆半径=________.三、解答题(共5题,共计25分)26、已知:如图,四边形ABCD是⊙O的内接矩形,AB=4,BC=3,点E是劣弧上的一点,连接AE,DE.过点C作⊙O的切线交线段AE的延长线于点F,若∠CDE=30°,求CF的长.27、已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,若,求证:AB=AC28、已知:如图,⊙O1和⊙O2相交于A、B两点,动点P在⊙O2上,且在⊙1外,直线PA、PB分别交⊙O1于C、D,问:⊙O1的弦CD的长是否随点P的运动而发生变化?如果发生变化,请你确定CD最长和最短时P的位置,如果不发生变化,请你给出证明.29、已知如图:为测量一个圆的半径,采用了下面的方法:将圆平放在一个平面上,用一个含有30°角的三角板和一把无刻度的直尺,按图示的方式测量(此时,⊙O与三角板和直尺分别相切,切点分别为点C、点B),若量得AB=5cm,试求圆的半径以及的弧长.30、如图,CB是⊙O的直径,P是CB延长线上一点,PB=2,PA切⊙O于A点,PA=4.求⊙O的半径.参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、C5、B6、D7、B8、D9、B10、A11、D12、C13、A14、C15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。

华师版九年级下册数学第27章 圆 第27章达标测试卷 (3)

第27章达标测试卷一、选择题(每题3分,共30分)1.⊙O 的半径为6,点P 在⊙O 内,则OP 的长可能是( )A .5B .6C .7D .82.如图,在平面直角坐标系中,O 为原点,点A 的坐标为(3,0),点B的坐标为(0,4),⊙D 过A ,B ,O 三点,点C 为ABO ︵上一点(不与O ,A 两点重合),则cos C 的值为( ) A.34B.35C.43D.45(第2题) (第3题) (第5题)3.如图,一圆弧过方格的格点A ,B ,C ,若在方格中建立平面直角坐标系,使点A 的坐标为(-2,4),点B 的坐标为(-4,2),则该圆弧所在圆的圆心坐标是( ) A .(1,1)B .(-1,1)C .(2,1)D .(1,-1)4.已知圆锥的母线长为6 cm ,底面圆的半径为3 cm ,则此圆锥侧面展开图(扇形)的圆心角是( ) A .30°B .60°C .90°D .180°5.如图,AB ,AC 与⊙O 分别相切于B ,C 两点,∠A =50°,若点P 是圆上异于B ,C 的一动点,则∠BPC 的度数是( )A .65°B .115°C .65°或115°D .130°或50°6.如图,点O 是△ABC 的外心,连结OA ,AD ⊥BC 于点D ,若AB =48,AO=25,则sin ∠CAD 的值为( ) A.1225B.724C.725D.2425(第6题) (第7题) (第8题) (第9题)7.如图,在四边形ABCD 中,连结AC ,BD ,点O 为AB 的中点,若∠ADB=∠ACB =90°,则下面结论不一定正确的是( ) A .DC =CBB .∠DAC =∠DBCC .∠BCD +∠BAD =180°D .点A ,C ,D 到点O 的距离相等8.如图,半圆O 的直径AB =7,弦AC ,BD 相交于点E ,弦CD =72,且BD=5,则DE 等于( ) A .2 2B .4 2C.53D.529.如图,等腰三角形ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AB =AC =5,BC =6,则DE 的长是( ) A.3 1010B.3 105C.3 55D.6 5510.如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为( ) A.π4B.π2C.π6D.π3(第10题) (第12题) (第13题) 二、填空题(每题3分,共18分)11. 已知⊙O 的半径是3 cm ,点O 到直线l 的距离为4 cm ,则⊙O 与直线l 的位置关系是__________.12.如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 的直径,点D 为⊙O 上一点,若∠CAB =55°,则∠ADC 的大小为__________度. 13.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式:弧田面积=12(弦×矢+矢2).弧田由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理可以求解.现已知弦AB =8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为________平方米.14.如图,⊙O 与正五边形ABCDE 的边AB 、DE 分别相切于点B 、D ,则劣弧BD 所对的圆心角∠BOD 的大小为________度.(第14题) (第15题) (第16题)15. 如图,在扇形BOC 中,OB =2,∠BOC =60°,点D 是BC ︵的中点,点E ,F 分别为半径OC ,OB 上的动点,当△DEF 的周长最小时,图中阴影部分的面积为________.16.如图,已知AB 为⊙O 的直径,AB =2,AD 是⊙O 的切线,切点为A ,过圆上一点C 作⊙O 的切线CF ,交AD 于点M ,连结AC ,CB.若∠ABC =30°,则AM =__________.三、解答题(17~20题每题8分,21~22题每题10分,共52分) 17.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E.(第17题)(1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.18.如图,AB 为⊙O 的直径,C 为⊙O 上一点,连结AC ,D 是BC ︵上的一点,CD =BD ,连结BC 、AD 、OD ,BC 与AD 、OD 分别交于点E 、F.(第18题)(1)求证:∠CAB =∠DOB ; (2)求证:DA DC =DBDE;(3)若CE =34AC ,求sin ∠CDA 的值.19. 如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,作EG ⊥AB 于H ,交BC于F ,延长GE 交直线MC 于D ,且∠MCA =∠B ,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.(第19题)20.如图,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为A n(n为1~12的整数),过点A7作⊙O的切线交A1A11的延长线于点P.(1)通过计算比较直径和劣弧A7A11长度哪个更长;(2)连结A7A11,则A7A11和PA1有什么特殊的位置关系?请简要说明理由;(3)求PA7的长.(第20题)21. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,连结AC ,过 BD ︵上一点E 作EG ∥AC 交CD 的延长线于点G ,连结AE 交CD 于点F ,且EG =FG.(第21题)(1)求证:EG 是⊙O 的切线;(2)延长AB 交GE 的延长线于点M ,若tanG =12,AH =2,求EM 的长.22.如图①,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切于点F ,设⊙O 的半径为R ,⊙I 的半径为r ,外心O 与内心I 之间的距离OI =d ,则有d 2=R 2-2Rr.(第22题)下面是上述结论的证明过程(部分):连结AI ,并延长交⊙O 于点D ,过点I 作⊙O 的直径MN ,连结DM ,AN.∵∠D =∠N ,∠DMI =∠NAI ,∴△MDI ∽△ANI.∴IM IA =IDIN ,∴IA·ID=IM ·IN,①如图②,在图①(隐去MD ,AN)的基础上作⊙O 的直径DE ,连结BE ,BD ,BI ,IF.∵DE 是⊙O 的直径,∴∠DBE =90°.∵⊙I 与AB 相切于点F ,∴∠AFI =90°,∴∠DBE =∠IFA.∵∠BAD =∠E ,∴△AIF ∽△EDB ,∴IA DE =IFBD .∴IA·BD=DE·IF.②任务:(1)观察发现:IM =R +d ,IN =________(用含R ,d 的代数式表示); (2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5 cm ,内切圆的半径为2 cm ,则△ABC的外心与内心之间的距离为________cm.答案一、1.A 2.A 3.B 4.D 5.C :连结OC ,OB ,∵AB ,AC 与⊙O 分别相切于B ,C 两点, ∴∠ACO =90°,∠ABO =90°,∴∠BOC =360°-90°-90°-50°=130°.当点P 在优弧BC 上时,∠BPC =12∠BOC =65°;当点P 在劣弧BC 上时,∠BPC =180°-65°=115°. 6.C 7.A 8.A9.D :连结OA ,OE ,OB ,OD ,OB 交DE 于H ,如图.∵等腰三角形ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F , ∴AO 平分∠BAC ,OE ⊥BC ,OD ⊥AB , BE =BD. ∵AB =AC , ∴AO ⊥BC ,∴点A 、O 、E 共线,即AE ⊥BC , ∴BE =CE =3.在Rt △ABE 中,AE =AB 2-BE 2=52-32=4. ∵BD =BE =3, ∴AD =2.设⊙O 的半径为r ,则OD =OE =r ,AO =4-r ,在Rt △AOD 中,r 2+22=(4-r)2,解得r =32. 在Rt △BOE 中,OB =32+⎝ ⎛⎭⎪⎫322=3 52. ∵AB ,BC 为⊙O 的切线,∴BO 平分∠DBE ,BD =BE ,∴OB 垂直平分DE ,∴DH =EH.∵12HE·OB=12OE·BE, ∴HE =OE·BE OB =32×33 52=3 55, ∴DE =2EH =6 55.故选D.(第9题)10.A二、11.相离 12.3513.10 14.144 15.2π-33 16.33:由题意易得∠MAC =30°,AM =CM , ∴∠MCA =∠MAC =30°,∴∠AMC =120°.连结OM ,则∠AMO =12∠AMC =60°. ∴在Rt △AOM 中,tan 60°=OA AM, ∴AM =OA tan 60°=12AB 3=33. 三、17.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°,∴∠AOD =180°-∠OAD -∠D =40°.∵AB 是半圆O 的直径,∴∠C =90°.∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC.∴AD ︵=CD ︵,∴∠CAD =12∠AOD =20°. (2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4. 设OA =x ,则OE =OD -DE =x -2.在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5.∴AB =2OA =10.18.(1)证明:∵CD = BD ,∴CD ︵=BD ︵,∴∠CAD =∠BAD ,∴∠CAB =2∠BAD ,∵∠DOB =2∠BAD ,∴∠CAB =∠DOB.(2)证明:由(1)知CD ︵=BD ︵,∴∠CAD =∠DCB.又∵∠CDA =∠CDE ,∴△DAC ∽△DCE ,∴DA DC =DC DE. 又∵CD =BD ,∴DA DC =DB DE. (3)解:∵AB 是⊙O 的直径,∴∠ACB =∠ADB =90°,∵CE =34AC , ∴设CE =3k ,AC =4k(k≠0),∴AE =AC 2+CE 2=5k ,∵△DAC ∽△DCE ,∴DA DC =DC DE =AC CE =43, ∴DA =43DC ,DE =34DC , ∵AE =DA -DE =43DC -34DC =5k , ∴DC =607k , ∴DE =457k , ∵∠CAE =∠DBE ,∠ACE =∠BDE ,∴△ACE ∽△BDE ,∴AE BE =CE DE, ∴5k BE =3k 45k 7 ,∴BE =75k 7, ∴BC =3k +75k 7=967k , ∴AB =AC 2+BC 2= 16k 2+⎝ ⎛⎭⎪⎫96k 72=1007k , ∴sin ∠CDA =sin ∠ABC =AC AB =4k 1007k =725. 19. 证明:(1)连结OC ,如图,∵AB 是⊙O 的直径,∴∠ACB =90°,即∠2+∠3=90°.∵OB =OC ,∴∠B =∠3.∵∠1=∠B ,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM =90°.∴OC ⊥CM ,∴MC 是⊙O 的切线.(2)∵EG ⊥AB ,∴∠B +∠BFH =90°.∵∠BFH =∠4,∴∠4+∠B =90°.∵OC ⊥CM ,∴∠5+∠3=90°.∵∠3=∠B ,∴∠5+∠B =90°,∴∠4=∠5,∴DC =DF ,∴△DCF 是等腰三角形.(第19题)20.解:(1)连结A 11O ,A 7O.由题意易得∠A 7OA 11=120°,直径的长为12,∴劣弧A 7A 11的长=120π·6180=4π, ∵4π>12,∴劣弧A 7A 11的长比直径长.(2)PA 1⊥A 7A 11.理由:连结OA 1.由题易知点A 1,O ,A 7三点共线,即A 1A 7是⊙O 的直径,∴∠A7A11A1=90°,∴PA1⊥A7A11.(3)∵PA7是⊙O的切线,∴PA7⊥A1A7,∴∠PA7A1=90°,由题意易得∠PA1A7=60°,A1A7=12,∴PA7=A1A7·tan60°=12 3.21. (1)证明:连结OE,如图,∵EG=FG,∴∠GFE=∠GEF.而∠GFE=∠AFC,∴∠GEF=∠AFC.∵OA=OE,∴∠OEA=∠OAE.∵AB⊥CD,∴∠AFC+∠FAH=90°,∴∠GEF+∠OEA=90°,即∠GEO=90°,∴OE⊥GE,∴EG是⊙O的切线.(2)解:∵GE∥AC,∴∠G =∠ACH.在Rt △ACH 中,∵tan ∠ACH =AH CH =12, ∴CH =2AH =2×2=4.连结OC ,如图,设⊙O 的半径为r ,则OH =r -2.在Rt △OCH 中,(r -2)2+42=r 2,解得r =5,∵GE ∥AC ,∴∠M =∠CAH.易得Rt △OEM ∽Rt △CHA ,∴EM AH =OE CH ,即EM 2=54, ∴EM =52.(第21题)22. 解:(1)R -d(2)BD =ID ,理由如下:∵点I 是△ABC 的内心,∴∠BAD =∠CAD ,∠CBI =∠ABI.∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI,∴BD=ID.(3)由(2)知,BD=ID,∴IA·ID=DE·IF.又∵IA·ID=IM·IN,∴DE·IF=IM·IN,∴2R·r=(R+d)(R-d),∴2Rr=R2-d2,∴d2=R2-2Rr.(4) 5。

完整版华师大版九年级下册数学第27章 圆含答案

华师大版九年级下册数学第27章圆含答案一、单选题(共15题,共计45分)1、已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,PA=,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定2、如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形的周长为()A.32B.34C.36D.383、已知⊙O的半径为5,AB是弦,P是直线AB上的一点,PB=3, AB=8,则tan∠OPA的值为()A.3B.C. 或D.3或4、如图,是的弦,点在上,已知,则等于()A.40°B.50C.60°D.80°5、如图,在⊙O中,直径AB,弦CD,且AB⊥CD于点E,CD=4,OE=1.5,则⊙O 的半径是()A.2.5B.2C.2.4D.36、如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A. B. C. D.7、下列语句中,正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个8、点P为⊙O内一点,且OP=4,若⊙O的半径为6,则过点P的弦长不可能为()A.8B.10.5C.D.129、已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.45°B.40°C.50°D.65°10、如图,在△ABC中,AB=5,AC=4,BC=3,经过点C且与边AB相切的动圆与CA,CB分别相交于点P、Q,则线段PQ长度的最小值是()A.2B.C.D.11、如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.80°B.50°C.40°D.20°12、如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为()A.5B.C.D.13、下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等 C.同圆或等圆中,相等的圆心角所对的弧相等 D.经过切点且垂直于切线的直线必经过圆心14、如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内上的一点,若,则的度数是A.45°B.60°C.65°D.70°15、若刻度尺与⊙O按如图位置摆放,有刻度的一边与⊙O的两个交点处的读数如图所示(单位:cm),⊙O的半径是5cm,则圆心O到刻度尺的距离为()A.5cmB.4cmC.3cmD.2cm二、填空题(共10题,共计30分)16、用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为________.17、如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为________.18、如图,点P是⊙ 的直径BA的延长线上一点,PC切⊙ 于点C,若,PB=6,则PC等于 ________.19、如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为________20、如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO 上以4cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以3cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了________ s时,以C点为圆心,2cm为半径的圆与直线EF相切.21、如图,AE、AD、BC分别切⊙O于E、D、F,若AD=20,则△ABC的周长为________22、如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于________.23、如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长为________(保留π)24、如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器零刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒4度的速度旋转,CP与量角器的半圆弧交于点E,第18秒时,点E在量角器上对应的读数是________度.25、已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移10米,半圆的直径为2米,则圆心O所经过的路线长是________ 米.三、解答题(共5题,共计25分)26、计算高为4cm,底面半径为3cm的圆锥的体积.(圆锥的体积= ×底面积×高,π取3)27、阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,①连接OP,作线段OP的垂直平分线MN交OP于点C.②以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点.③作直线PA,PB.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________;由此可证明直线PA,PB都是⊙O的切线,写出依据.请写出证明过程.________28、如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.29、如图,A,B是⊙O上两点,∠AOB=120°,C为弧AB的中点,求证:四边形OACB是菱形.30、如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、A5、A6、A8、A9、B10、B11、A12、D13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

2021-2022学年最新华东师大版九年级数学下册第27章 圆章节测评试题(含详细解析)

华东师大版九年级数学下册第27章 圆章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AD 为O 的直径,8AD =,DAC ABC ∠=∠,则AC 的长度为( )A .B .C .4D .2、已知O 是正六边形ABCDEF 的外接圆,正六边形ABCDEF 形OAC 围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )A .1B .13 C .23 D .433、ABC 的边BC 经过圆心O ,AC 与圆相切于点A ,若20B ∠=︒,则C ∠的大小等于( )A .50︒B .25︒C .40︒D .20︒ 4、如图,AB 是O 的直径,CD 是O 的弦.50CAB ∠=,则∠D =( )度A .30B .40C .50D .605、如图,在33⨯的网格中,A ,B 均为格点,以点A 为圆心,AB 的长为半径作弧,图中的点C 是该弧与格线的交点,则tan BAC ∠的值是( )A .12BCD .236、如图,圆形螺帽的内接正六边形的面积为2,则圆形螺帽的半径是( )A .1cmB .2cmC .D .4cm7、如图,AB 是O 的直径,CD 是O 的弦,且CD AB ∥,12AB =,6CD =,则图中阴影部分的面积为( )A .18πB .12πC .6πD .3π8、如图,在矩形ABCD 中,2AB =,4BC =,以点B 为圆心,BC 为半径画弧,交AD 于点F ,则图中阴影部分面积为( ).(结果保留π).A .4π83- B .4π43-C .π83- D .π43- 9、如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若18ADB ∠=︒,则这个正多边形的边数为( )A.10 B.11 C.12 D.1310、如图,AB为O的直径,4AB=,CD=BC的长是劣弧BD长的2倍,则AC的长为()A.B.C.3 D.第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是 _____.2、如图,AB为O的直径,C、E为O上的点,连接AC、BC、CE、BE,D为AB延长线上一=.若O的半径为A到CD的距离为________.点,连接CD,且BCD E∠=∠,AB CD3、如图,矩形ABCD 中,1AB =,AD =,以BC 的中点E 为圆心的弧MPN 与AD 相切,则图中阴影部分的面积为__________.4、如图,AB 是半圆O 的直径,AB =4,点C ,D 在半圆上,OC ⊥AB ,2BD CD =,点P 是OC 上的一个动点,则BP +DP 的最小值为______.5、如图,在平行四边形ABCD 中,7AB =,3AD =,120A ︒∠=,以点B 为圆心,BC 为半径的圆弧交AB 于点E ,连接DE ,则图中黑色阴影部分的面积为________.(结果保留π)6、如图,在Rt △ABC 中,∠CAB =90°,AB =AC ,点D 为斜边BC 上一点,且BD =3CD ,将△ABD 沿直线AD 翻折,点B 的对应点为B ′,则sin ∠CB ′D =______.7、如图,在⊙O 中,AB 是⊙O 的内接正六边形的一边,BC 是⊙O 的内接正十边形的一边,则∠ABC =______°.8、如图,PA 是⊙O 的切线,A 是切点.若∠APO =25°,则∠AOP =___________°.9、在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1,如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′.则图中阴影部分的面积为_____.10、如图,PA ,PB 是O 的切线,切点分别为A ,B .若30OAB ∠=︒,3PA =,则AB 的长为______.三、解答题(5小题,每小题8分,共计40分)1、如图,已知P是⊙O外一点.用直尺和圆规作图.(1)过点P作一条直线l,使l与⊙O相切;(2)在⊙O上作一点Q,使∠OQP=60°.(要求:保留作图痕迹,不写作法)2、如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD,连结AC.(1)△ACD为等边三角形;(2)请证明:E是OB的中点;(3)若AB=8,求CD的长.3、如图,在⊙O 中,弦AC 与弦BD 交于点P ,AC =BD .(1)求证AP =BP ;(2)连接AB ,若AB =8,BP =5,DP =3,求⊙O 的半径.4、如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上(点M ,N 是格点).(1)画出线段AB 绕点N 顺时针旋转90°得到的线段11A B (点1A ,1B 分别为A ,B 的对应点);(2)在问题(1)的旋转过程中,求线段AB 扫过的面积.5、如图,在直角坐标系中,将△ABC 绕点A 顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积.-参考答案-一、单选题1、A【解析】【分析】连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出AC=【详解】解:连接CD∠=∠∵DAC ABC∴AC=DC又∵AD为O的直径∴∠ACD=90°∴222+=AC DC AD∴22=2AC AD∴8===AC AD故答案为:A.【点睛】本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.2、C【解析】【分析】根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可.【详解】如图,过点O作OG⊥AF,垂足为G,∵正六边形ABCDEF∴∠AOG=30°,OG∴OA=2AG,∴22-=,GA GA43解得GA=1,∴OA =2,设圆锥的半径为r ,根据题意,得2πr =1202180π⨯⨯, 解得r =23,故选C .【点睛】本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键.3、A【解析】【分析】连接OA ,根据圆周角定理求出AOC ∠,根据切线的性质得到90OAC ∠=︒,根据直角三角形的性质计算,得到答案.【详解】解:连接OA ,20B ︒∠=,240AOC B ∴∠=∠=︒, AC 与圆相切于点A ,90∴∠=︒,OAC∴∠=︒-︒=︒,904050C故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.4、B【解析】【分析】由AB是⊙O的直径,推出∠ACB=90°,再由∠CAB=50°,求出∠B=40°,根据圆周角定理推出∠D=40°.【详解】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=50°,∴∠B=40°,∴∠D=40°.故选:B.【点睛】本题主要考查圆周角定理,余角的性质,关键在于推出∠A的度数,正确的运用圆周角定理.5、B【解析】【分析】CD可得利用CD AB∥,得到∠BAC=∠DCA,根据同圆的半径相等,AC=AB=3,再利用勾股定理求解,tan ∠ACD =AD CD =. 【详解】解:如图, ∵CD AB ∥,∴∠BAC =∠DCA .∵同圆的半径相等, ∴AC =AB =3,而2,AD = 225,CDAC AD在Rt △ACD 中,tan ∠ACD =AD CD∴tan ∠BAC =tan ∠ACD . 故选B .【点睛】 本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键.6、D【解析】【分析】根据圆内接正六边形的性质可得△AOB 是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB 是正三角形,过O 作OM AB ⊥于,M设半径为r ,即OA =OB =AB =r ,OM =OA •sin∠OAB ,∵圆O 的内接正六边形的面积为cm 2),∴△AOB 的面积为13=436(cm 2), 即1432AB OM, 134322r r ,解得r =4,故选:D .【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.7、C【解析】【分析】如图,连接OC ,OD ,可知COD △是等边三角形,60n COD =∠=︒,6r =,2==360COD n r S S π阴影扇形,计算求解即可.【详解】解:如图连接OC ,OD∵12OC OD AB CD === ∴COD △是等边三角形∴60COD ∠=︒由题意知=ACD COD S S △△,22606==6360360COD n r S S πππ⨯⨯==阴影扇形 故选C .【点睛】本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.8、A【解析】【分析】连接BE .则阴影部分的面积=S 矩形ABCD -S △ABE -S 扇形BCE ,根据题意知BE =BC =4,则∠AEB =∠EBC =30°,AE =【详解】解:如图,连接BE ,则BE =BC =4,在Rt △ABE 中,AB =2、BE =4,∴∠AEB =∠EBC =30°,AE则阴影部分的面积=S 矩形ABCD -S △ABE -S 扇形BCE=2×4-12×2×2304360π⨯=8-43π, 故选:A .【点睛】本题主要考查了扇形面积求法,本题中能够将不规则图形的面积进行转换成规则图形的面积差是解题的关键.9、A【解析】【分析】作正多边形的外接圆,连接 AO ,BO ,根据圆周角定理得到∠AOB =36°,根据中心角的定义即可求解.【详解】解:如图,作正多边形的外接圆,连接AO ,BO ,∴∠AOB =2∠ADB =36°,∴这个正多边形的边数为36036=10. 故选:A .【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.10、D【解析】【分析】连接,,OC OD BC ,根据AB 求得半径,OC OD ,进而根据CD 的长,勾股定理的逆定理证明90COD ∠=︒,根据弧长关系可得60COB ∠=︒,即可证明COB △是等边三角形,求得2BC =,进而由勾股定理即可求得AC【详解】如图,连接,,OC OD BC ,4AB =2OC OD ∴==228OC OD +=,28CD =∴222OC OD CD +=OCD ∴是直角三角形,且90COD ∠=︒2CB DB ∴=23BC CD ∴= 2603BOC COD ∴∠=⨯∠=︒ OC OB =OBC ∴是等边三角形2BC OC ∴== AB 是直径,4AB =90ACB ∴∠=︒AC ∴=故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得BC 的长是解题的关键.二、填空题1、相切或相交【解析】【分析】本题需分类讨论,当直线上的点到圆心的连线垂直于直线AB时,直线于圆的位置关系为相切,当直线上的点到圆心的连线与直线AB不垂直时,直线到圆心的距离小于圆的半径,直线与圆相交.【详解】设直线AB上与圆心距离为4cm的点为C,当OC⊥AB时,OC=⊙O的半径,所以直线AB与⊙O相切,当OC与AB不垂直时,圆心O到直线AB的距离小于OC,所以圆心O到直线AB的距离小于⊙O的半径,所以直线AB与⊙O相交,综上所述直线AB与⊙O的位置关系为相切或相交,故答案为:相切或相交.【点睛】本题考查直线与圆的位置关系,本题需根据圆心与直线上一点的距离,分类讨论圆与直线的位置关系,利用分类讨论思想是解决本题的关键.2、2##2+【解析】【分析】连接OC,证明CD⊥OC;运用勾股定理求出OD=10,过点A作AF⊥DC,交DC延长线于点F,过点C作CG⊥AD于点G,在Rt△OCD中运用等积关系求出CD,同理,在△ACD中运用等积关系可求出AF【详解】解:连接OC,∵AB 是圆的直径,∴90ACB ∠=︒∴90ACO BCO ∠+∠=︒ ∵,BCD E A E ∠=∠∠=∠ ∴BCD E ∠=∠∵OA OC =∴OAC OAC ∠=∠∴90OAC OCB ∠+∠=︒∴90BCD BCO ∠+∠=︒,即OC ⊥CD∵O 的半径为∴AB =CD AB ==在Rt △OCD 中,222OC CD OD +=∴10OD∴10AD AO OD =+=过点A 作AF ⊥DC ,交DC 延长线于点F ,过点C 作CG ⊥AD 于点G , ∵1122OD CG OC CD =∴111022CG ⨯⨯=⨯CG 4=同理:1122AD CG AF CD =∴11(10422AF ⨯+⨯=⨯∴2AF =故答案为:2【点睛】 本题考查了切线的判定、三角形面积、勾股定理等知识,解题的关键是作辅助线,构造直角三角形.3、3π##13π 【解析】【分析】如图,连接,PE 证明四边形,ABEP 四边形PECD 都为矩形,可得扇形半径为1,再求解,,,MEB NEC MEN 再利用扇形的面积公式进行计算即可.【详解】解:如图,连接,PE扇形的弧MPN 与AD 相切,,PE AD矩形ABCD ,∴ 四边形,ABEP 四边形PECD 都为矩形,∴扇形半径1ME PE NE AB ====.在矩形ABCD 中,AD =E 为BC 的中点,∴在Rt BME △中,12BE AD ==.cos BE MEB ME ∠==, 30MEB ∴∠=︒,同理:30,NEC∴ 1802120MEN MEB ∠=︒-∠=︒.212013603S ππ⨯∴==阴影. 故答案为:3π 【点睛】 本题考查的是矩形的性质与判定,锐角三角函数的应用,扇形面积的计算,求解扇形的半径为1,及30MEB ∠=︒,30NEC ∠=︒是解本题的关键.4、【解析】【分析】如图,连接AD ,PA ,PD ,OD .首先证明PA =PB ,再根据PD +PB =PD +PA ≥AD ,求出AD 即可解决问题.【详解】解:如图,连接AD,PA,PD,OD.∵OC⊥AB,OA=OB,∴PA=PB,∠COB=90°,∵2BD CD,∴∠DOB=23×90°=60°,∵OD=OB,∴△OBD是等边三角形,∴∠ABD=60°∵AB是直径,∴∠ADB=90°,∴AD=AB•sin∠ABD∵PB+PD=PA+PD≥AD,∴PD+PB∴PD+PB的最小值为故答案为:【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题.532π 【解析】【分析】过点C 作CH AB ⊥于点H ,根据正弦定义解得CH 的长,再由扇形面积公式、三角形的面积公式解题即可.【详解】解:过点C 作CH AB ⊥于点H ,在平行四边形ABCD 中,120A ∠=︒18012060B ∴∠=︒-︒=︒=sin sin 603CH BC B AD ∴⋅=⨯︒=平行四边形ABCD 的面积为:7AB CH ⨯= 图中黑色阴影部分的面积为:()2216016037323602360BC AE CH ππ⋅⨯⋅⋅-=⨯-=32π,32π. 【点睛】 本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.6【解析】【分析】先证明A、B′、C、D四点共圆,推出∠CB′D=∠CAD,过点D作DE⊥AC于点E,利用平行线分线段成比例定理得到AE=3CE,由勾股定理得到AD,再由正弦函数即可求解.【详解】解:∵∠CAB=90°,AB=AC,∴∠ACB=∠B=45°,由折叠的性质得∠AB′D=∠B=45°,∴∠AB′D=∠ACD=45°,∴A、B′、C、D四点共圆,∴∠CB′D=∠CAD,过点D作DE⊥AC于点E,∵∠CAB=90°,∴DE∥AB,∵BD=3CD,∴AE=3CE,∵∠ACB=45°,∴△DEC是等腰直角三角形,∴DE =CE ,设DE =CE =a ,则AE =3CE =3a ,在Rt △ADE 中,AD =,∴sin ∠CB ′D = sin ∠CAD =DE AD ==. 【点睛】 本题考查了圆内接四边形的知识,正弦函数,折叠的性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.7、132°【解析】【分析】连接AO 、BO 、CO ,根据AB 是⊙O 的内接正六边形的一边,可得360606AOB ︒∠==︒ ,AO BO = ,从而得到∠ABO =60°,再由BC 是⊙O 的内接正十边形的一边,可得3603610BOC ︒︒∠== ,BO =CO ,从而得到72CBO ∠=︒,即可求解.【详解】解:如图,连接AO 、BO 、CO ,∵AB 是⊙O 的内接正六边形的一边,∴360606AOB ︒∠==︒ ,AO BO = , ∴()118060602ABO ∠=︒-︒=︒ , ∵BC 是⊙O 的内接正十边形的一边, ∴3603610BOC ︒︒∠== ,BO =CO , ∴()118036722CBO ∠=︒-︒=︒, ∴∠ABC =∠ABO + ∠CBO =60°+72°=132°.故答案为:132°【点睛】本题主要考查了圆的内接多边形的性质,等腰三角形的性质,熟练掌握圆的内接多边形的性质,等腰三角形的性质是解题的关键.8、65【解析】【分析】根据切线的性质得到OA ⊥AP ,根据直角三角形的两锐角互余计算,得到答案.【详解】解:∵PA 是⊙O 的切线,∴OA ⊥AP ,∴90APO AOP ∠+∠=︒,∵∠APO =25°,∴90902565AOP APO ∠=︒-∠=︒-︒=︒,故答案为:65.本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.9、2π【解析】【分析】利用勾股定理求出AC 及AB 的长,根据阴影面积等于AB C CAC DAB S S S''''--扇形扇形求出答案. 【详解】解:由旋转得,AB AB AC AC ''==,90CAC '∠=︒,B AC ''∠=∠BAC =30°,∵∠ABC =90°,∠BAC =30°,BC =1,∴AC =2BC =2,AB60CAB '∠=︒, ∴阴影部分的面积=AB C CAC DAB S S S ''''--扇形扇形2260902113603602ππ⨯⨯=--⨯=2π故答案为:2π.此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.10、3【解析】【分析】由切线长定理和30OAB ∠=︒,可得PAB ∆为等边三角形,则AB PA =.【详解】解:连接,OA OP ,如下图:PA ,PB 分别为O 的切线,PA PB ∴=,PAB ∴为等腰三角形,30OAB ∠=︒,60PAB ∴∠=︒,PAB ∴∆为等边三角形,AB PA ∴=,3PA =,3AB ∴=.故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)连接OP ,作线段PO 的垂直平分线MN ,MN 交PO 于点B ,以B 为圆心,OB 的长为半径作弧,交O 于点A ,过点,P A 作直线l ,则l 即为所求;(2)构造四点共圆,作120PDO ∠=︒,步骤如下,连接OP ,作OP 垂直平分线MN 与OP 交于点B ,分别以,B O 为圆心,OB 的长为半径作弧,两弧交于点C ,连接PC ,交MN 于点D ,则30CPO ∠=︒,连接OD ,则120PDO ∠=︒,作PDO △的外心,即作PD 的垂直平分线与MN 交于点E ,以EB 为半径作E ,交O 于点Q ,连接,OQ PQ ,则60OQP ∠=︒,点Q 即为所求.(1)连接OP ,作线段PO 的垂直平分线MN ,MN 交PO 于点B ,以B 为圆心,OB 的长为半径作弧,交O 于点A ,过点,P A 作直线l ,则l 即为所求;理由:,,P O A 三点共圆,PO 是直径,则PAO ∠是直角,即OA l ⊥,则l 为所求作的切线(2)如图,连接OP ,作OP 垂直平分线MN 与OP 交于点B ,分别以,B O 为圆心,OB 的长为半径作弧,两弧交于点C ,连接PC ,交MN 于点D ,则30CPO ∠=︒,连接OD ,则120PDO ∠=︒,作PDO △的外心,即作PD 的垂直平分线与MN 交于点E ,以EB 为半径作E ,交O 于点Q ,连接,OQ PQ ,则60OQP ∠=︒,点Q 即为所求,理由是:PQOD 是E 的内接四边形,120PDO ∠=︒,则60OQP ∠=︒【点睛】本题考查了尺规作图,作圆的切线,作圆周角,四点共圆,作特殊角,掌握基本作图是解题的关键.2、 (1)见解析(2)见解析(3)【解析】【分析】(1)根据垂直平分线的性质证明AC=AD=CD即可(2)要证明:E是OB的中点,只要求证OE=12OB=12OC,即证明∠OCE=30°即可;(3)在直角△OCE中,根据勾股定理就可以解得CE的长,进而求出CD的长.(1)证明:连接AC,如图∵直径AB垂直于弦CD于点E,∴AC AD,AC=AD,∵过圆心O的线CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即:△ACD是等边三角形,(2)△ACD是等边三角形,CF是AD的中垂线,∴FA FD=∴∠=∠=30°,ACF DCFOC,在R t△COE中,OE=12OB,∴OE=12∴点E为OB的中点;(3)解:在R t△OCE中,AB=8AB=4,∴OC=12又∵BE=OE,∴OE=2,∴CE∴CD=2CE=【点睛】本题考查了垂径定理、勾股定理、中垂线性质、30°所对的直角边是斜边的一半,等边三角形的判定和性质.解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.3、(1)证明见解析;(2.【解析】【分析】∠=∠,然后根据等腰三角形的判(1)连接AB,先证出AD BC=,再根据圆周角定理可得BAC ABD定即可得证;(2)连接PO ,并延长交AB 于点E ,连接,OA OB ,过O 作OF AC ⊥于点F ,先根据线段垂直平分线的判定与性质可得1,42PE AB AE AB ⊥==,再根据线段的和差、勾股定理可得4,1,3AF AE PF PE ====,然后根据直角三角形全等的判定定理证出Rt AOE Rt AOF ≅,根据全等三角形的性质可得OE OF =,最后在Rt POF △中,利用勾股定理可得OF 的长,从而可得OE 的长,在Rt AOE 中,利用勾股定理即可得.【详解】证明:(1)如图,连接AB ,AC BD =,AC BD ∴=,AC CD BD CD -=-∴,即AD BC =,ABD BAC ∴∠=∠,AP BP ∴=;(2)连接PO ,并延长交AB 于点E ,连接,OA OB ,过O 作OF AC ⊥于点F ,12AF AC ∴=, ,AP BP OA OB ==,∴PE 是AB 的垂直平分线,1,42PE AB AE AB ∴⊥==, 8,5,3,AB BP DP AC BD ====,8,5AC BD AB AP ∴====,4,1,3AF AE PF AP AF PE ∴===-===,在Rt AOE 和Rt AOF 中,AE AF OA OA =⎧⎨=⎩, ()Rt AOE Rt AOF HL ∴≅,OE OF ∴=,设(0)OE OF x x ==>,则3OP PE OE x =-=-,在Rt POF △中,222OF PF OP +=,即2221(3)x x +=-,解得43x =,在Rt AOE 中,OA ==即O . 【点睛】本题考查了圆周角定理、直角三角形全等的判定定理与性质、勾股定理、垂径定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键.4、(1)见解析;(2)21π4【解析】【分析】(1)根据旋转的性质:点B 和点1B ,点A 和点1A 到点N 的距离相等,且1190BNB ANA ∠=∠=︒即可; (2)线段AB 扫过的面积为()()111111NAB NA B NAA NBB NAA NBB S S S S S S +-+=-扇形扇形扇形扇形,由扇形面积公式计算即可.【详解】(1)如图所示:(2)如图,线段AB 扫过的面积=()()111111NAB NA B NAA NBB NAA NBB S S S S S S +-+=-扇形扇形扇形扇形22ππ21π444=-=.【点睛】本题考查旋转画图与扇形的面积公式,掌握不规则图形面积公式的求法是解题的关键.5、(1)作图见解析,1(2,3)B -、1(1,1)C --;(2)254π 【解析】【分析】(1)将ABC 绕点A 顺时针旋转90°得11AB C △,根据点A 、B 、C 坐标,即可确定出点1B 、1C 的坐标;(2)根据勾股定理求出AB 的长,由扇形面积公式即可得出答案.【详解】(1)将ABC 绕点A 顺时针旋转90°得11AB C △如图所示:∴1(2,3)B -、1(1,1)C --;(2)由图可知:5AB =,∴线段AB 在旋转过程中扫过的面积为12905253604ABBS ππ⋅==扇形. 【点睛】 本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.。

华师大版九年级数学下册《第27章圆》单元检测试卷(含答案解析)

华师大版九年级数学下册第27章圆单元检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断2.下列说法正确的是A. 相等的圆心角所对的弧相等B. 无限小数是无理数C. 阴天会下雨是必然事件D. 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k3.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A. 50°B. 80°C. 90°D. 100°4.如图,已知AB是⊙O的直径,CD是弦,AB⊥CD于点E,若AB=10,CD =6,则BE的长是()A. 4B. 3C. 2D. 15.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°6.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A. B. 5 C. D. 57.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A. B. C. D.8.如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB,OC.若∠BAC与∠BOC互补,则弦BC的长为()A. 4B. 3C. 2D.9.如果20个点将某圆周20等分,那么顶点只能在这20个点中选取的正多边形的个数有()A. 4个B. 8个C. 12个D. 24个10.如图,已知AB是⊙O的直径,CD是弦且CD⊥AB,BC=6,AC=8,则CD的值是()A. 5B. 4C. 4.8D. 9.6二、填空题(共10题;共30分)11.点A(O,3),点B(4,0),则点O(0,0)在以AB为直径的圆________(填内、上或外).12.在△ABC中,∠C=90°,AB=10,且AC=6,则这个三角形的内切圆半径为________.13.圆心角为120°的扇形的半径为3,则这个扇形的面积为________(结果保留π).14.三角形的一边是10,另两边是一元二次方程的x²-14x+48= 0的两个根,则这个三角形内切圆半径是________ .15.如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为________.16.(2011•扬州)如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=________17.如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则弧AD的度数是________度18.如图,⊙O中,∠AOB=110°,点C、D是上任两点,则∠C+∠D的度数是 ________°.19.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是________.20.如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=________.三、解答题(共8题;共60分)21.如图,直径是50cm圆柱形油槽装入油后,油深CD为15cm,求油面宽度AB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)
1 0
)
B
o
o
o
o
C
A
B
D )
D E
c
A
B
)
A 0 )
6 B
)
2
A D B
O
c
e
o
B
A 2
A 5 A 7 5cm 2
B . 8
3•将:沿弦BC 折叠,交直径 AB 于点
r 的圆形和一个半径为 R 的扇形,使之恰好围成图中所示
r=2cm ,扇形的圆心 D . 2 =
A . 3 -
则劣弧AB 的长为(
10.如图,在一张正方形纸片上剪下一个半径为 的圆锥,贝U R 与r 之间的关系是 __________
若AD=4 , DB=5,贝U BC 的长是
C . ,母线长为 C . 40 冗cm ABCDEF 的边长为 C —
D . 40°
则其侧面展开图的圆心角为(
150° D . 180 °
则这个圆锥的侧面积是( 2 D . 40cm
则图中阴影部分的面积为 2^3 ~ —
3
APB=60 °, O O 半径是 3 第二十七章圆章末测试
选择题(共8小题,每题3分)
如图,在O O 中,0D 丄BC , / BOD=60 °则/ CAD 的度数等于 15° B . 20° C . 25° D . 30 ° 从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是(
一 丿
B
4.如图,AB 是O 0的直径,点C 、D 在O 0上,且点C 、D 在AB 的异侧,连结AD 、0D 、0C .若/ AOC=70 且AD // 0C ,则/ A0D 的度数为(
) 70°
B . 60°
C . 50° 圆锥体的底面半径为 2,侧面积为8 n
90° B . 120° 已知圆锥的底面半径为 4cm 2 2 20 n cm
B . 20cm 如图,O 0的外切正六边形 .T - — B. 1
2 3 &如图,PA 切O 0于点A , PB BO 0于点B ,如果/ K
A .
B . n
C . 2 n
D . 4 n
二 .填空题(共6小题,每题3分)
9.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形 角0=120°,则该圆锥的母线长 I 为 cm . 若圆锥的底面圆的半径
11. 如图,已知A、B、C三点都在O O上,/ AOB=60 ° / ACB=_________________ .
12. _______________________________________________________________________ 如图,△ ABC是O O的内接三角形,如果/ AOC=100 °那么/ B= _____________________________________ 度.
13. 如图,/ APB=30 °点O是射线PB上的一点,OP=5cm,若以点O为圆心,半径为1.5cm的O O沿
BP方向移动,当O O与PA相切时,圆心O移动的距离为_________________ cm .
三.解答题(共10小题)
15. ( 6分)如图,在半径为
(1)求/ ABD的大小;
(2)求弦BD的长.
16 (6分).如图,已知O O的直径AB与弦CD相交于点E, AB丄CD , O O 的切
线BF与弦AD的延长线相交于点F.
(1)求证:CD // BF;
AB 丄CD 于点H,若/ D=30 ° CH=1cm,贝U AB=_____________ cm.
5cm的O O中,直径AB与弦CD相交于点P,

(2)若O O的半径为5, cos/ BCD=0.8,求线段AD与BF的长.
17. (6分)如图,平面直角坐标系中,以点 C ( 2,二)为圆心,以2为半径的圆与x轴交于A , B两点.
(1)求A , B两点的坐标;
一2
(2)若二次函数y=x +bx+c的图象经过点 A , B,试确定此二次函数的解析式.
18. ( 8分)如图,AB是O O的直径,弦CD交AB于点E, OF丄AC于点F,
(1)请探索OF和BC的关系并说明理由;
(2)若/ D=30 ° BC=1时,求
圆中阴影部分的面积. (结果保留n)
19 (8分).如图,CD为O O的直径,
(1)求/ C的大小;
(2)求阴影部分的面积.
20. ( 8分)已知:AB是O O的直径,直线CP切O O于点C,过点B作BD丄CP于D .
(1) 求证:△ ACB CDB ;
CD丄AB,垂足为点F, AO丄BC,垂足为点E, AO=1 .
(2) 若0 O的半径为1,Z BCP=30 °求图中阴影部分的面积.
21. (
8分)如图,以△ ABC的一边AB为直径作O 0,0 O与BC边的交点恰好为作O 0
的切线交AC于点E.
(1)求证:DE丄AC ;
(2)若AB=3DE,求tan/ ACB 的值.
22 ( 8分).如图,在Rt△ ABC中,/ ACB=90 °以AC为直径作O 0交AB于点D 点,连接
CD .
(1)求证:/ A= / BCD ;
(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与O 0相切?并说明理由.
23( 10分).如图,AB是O 0的弦,0P丄0A交AB于点P,过点B的直线交0P的延长线于点C,
且CP=CB .
(1) 求证:BC是O 0的切线;
(2) 若O 0的半径为匸,0P=1,求BC的长.
24. (10分)如图,已知AB是O 0的直径,弦CD丄AB,垂足为E, / A0C=60 °
0C=2 .
(1)求0E和CD的长;
(2)求图中阴影部分的面积.
心 D J
C
D。

相关文档
最新文档