3.1定量分析中的误差
化学分析中误差及分析数据的处理

xi x 100% x
精密度是几次平行测定结果之间相互接 近的程度。
偏差(deviation)是指单次测定结果与几次 测定结果的平均值之间的差值。
●当绝对偏差di相同时,被测物测定结果 的平均值x越大,相对偏差Er 就越小,表 示测定结果的精密度越高。
(4) 准确度和精密度的关系
以打靶为例:三人打靶,每人打十发子弹。
(1)系统误差偏低。重复测定时,它会重复出现。
① 方法误差(method error) ② 仪器误差(instrumental error) ③ 试剂误差(reagent error) ④ 主观误差(personal error)
(2)偶然误差特点:随机发生,难以控制。
由一些难以控制的因素造成的误差。 ●测量时环境温度、压力的变化。 ●仪器的不稳定。 ●操作时的不当心。 ●天气的阴、晴、雨、雪变化。
总体与样本:总体亦称母体,是指随机变量xi
的全体。样本(或子样)是指从总体中随机抽取 的一组数据。 样本平均值:对某试样平行测定n次的算术平均值。
(1)真实值、平均值与中位数
总体平均值:在消除系统误差后,对某试样平行 测定无穷多次的算术平均值。用于代表(但不一 定是)真实值 ③中位数(xm): 一组按大小顺序排好的测量数据的中间数据既为 xm。当n为偶数时,中位数为中间相邻的两个数 据的平均值。
2、误差产生原因
系统误差(可测误差)(determinate error)
由某种固定因素造成的误差。
偶然误差(随机误差或未定误差)(random error)
由某些偶然因素造成的误差。
过失误差(粗差)(mistake)
由于工作上粗枝大叶、不遵守操作规程 等造成的误差。
特点:使测定结果系统偏高或系统
定量分析中的误差

定量分析中的误差
误误差的分类及产生原因 误差的表示方法 误差的减免方法
有效数字及运算规则 分析结果的数据处理
第一节 误差的分类及产生原因
一、 系统误差
(1) (1)仪器误差。仪器误差主要是仪器本 身不够准确或未经校准所引起的。
(2) (2)试剂误差。试剂误差主要是由于 试剂不纯或蒸馏水中含有微量杂质引起 的误差。
绝对误差和相对误差都有正负值,正值表示分析结果偏高, 负值表示分析结果偏低。
第二节 误差的表示方法
【例2-1】
测定某食盐中氯化钠的含量时,测定结果为98.66%,真实 值是98.77%,测定结果的绝对误差和相对误差各为多少?
解:绝对误差为E=x-T=98.66%-98.77%=-0.11% 负值表示测定值比真实值少0.11%。 相对误差为Er=(-0.11/98.77)×100%=-0.11%
绝对偏差d为
(2-3)
相对偏差dr为
(2-4)
第二节 误差的表示方法
一、 精密度与偏差
平均偏差 为
相对平均偏差 为
或
(2-4) (2-5)
第二节 误差的表示方法
【例2-2】
平行测定某盐酸的浓度,三次测定结果分别为:0.1025 mol·L-1 、0.1024 mol·L-1、0.1022 mol·L-1,[JP]求测定结果平均值( )、 绝对偏差(d)、平均偏差( )和相对平均偏差( )。
(2-7)
式中,xi为每次的测定值;x-为测定总体的平均值;n为测定次 数。
第二节 误差的表示方法
【例2-3】
两名分析人员测定铁矿石中铁含量时,结果如下:
分别计算两组分析结果的相对平均偏差和相对标准偏差。 解:用式(2-5)、式(2-6)、式(2-7)计算结果为
定量分析测定中的误差(精)

第一章定量分析测定中的误差本章教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。
2、掌握系统误差和偶然误差的概念。
3、掌握有效数字的概念及运算规则,并能在实践中灵活运用。
教学重点与难点:准确度和精密度表示方法;误差来源;有效数字及运算法则。
教学内容:第一节定量分析中的误差教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。
2、掌握系统误差和偶然误差的概念。
教学重点:误差、偏差的概念和计算方法,准确度和精密度表示方法教学难点:误差来源实验引题:1、每位同学测自己20秒的脉搏,测6次,记录每次脉动次数。
2、投影屏开启4~5次,记录每次所需时间。
设问:1、同一块表测得的脉动次数或开启时间相同吗?2、不同的表(定时)测得的脉动次数或开启时间相同吗?引入内容:在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等方面的限制,使测得的结果不可能和真实含量完全一致;即使是技术很熟练的分析工作者,用最完善的分析方法和最精密的仪器,对同一样品进行多次测定,其结果也不会完全一样。
这说明客观上存在着难于避免的误差。
一、真实值、平均值与中位值1.真实值(x T)物质中各组分的真实数值,称为该量的真实值。
显然,它是客观存在的。
一般来说,真实值是末知的,但下列情况可认为其真实值是已知的。
(1)理论真实值 如某种化合物的理论组成等。
(2)相对真实值 认定精度高一个数量级的测定值作为低一级测量值的真实值,这种真实 值是相对比较而言的。
如分析实验室中标准试样及管理试样中组分的含量等。
2.平均值(1) 算术平均值(x ) 几次测量数据的算术平均值为12311nni i x x x x x x nn =++++==∑ (1-1) (2) 总体平均值(u ) 表示总体分布集中趋势的特征值。
定量分析的误差和数据处理

查表:P 0.95, f 6 1 5时,t表 2.57
t计算 t表说明 x与差异异著,有系统误差
1.4.2 两组数据平均值的比较
为了比较两组数据 x1、s1、n1与 x2、s2、n2间是
否存在显著性差异,需首先用F检验法检验两 组测定结果的精密度s1、s2之间是否差异显著。
定量分析的误差和数据处理
测定结果的两个特征
准确度:即人、仪器、方法 所得结果也不可能绝对准确。
结论:定量分析中误差是不可避免的,定量分析的结 果只能是真值的近似值。误差是客观存在的。真值是 测不出的。
测定结果的第二个特征
精确度:同一个人、同一样品、相同条件下、多次平 行测定,所得结果也不可能完全相同 这是一个自然规律
标准偏差s也影响置信区间。“做多次平行测定 取平均值以减少随机误差对准确度的影响” 的前提是必须保证测定的精密度。
1.3.3 可疑值的取舍
(1)由过失引起必须舍弃; (2)非过失引起,必须根据统计学原理决定其
取舍。
取舍的意义:
无限次平行测定,随机误差遵从态分布规律, 可大可小,且绝对值相等的正负差出现机会相 同,故任一测定结果,不论偏差小都不应舍 弃;
相对标准偏差。
解: x 10.43%
d di 0.18% 0.036%
n
5
d 100% 0.036% 100% 0.35%
x
10.43%
s
d
2 i
8.610 7 4.610 4 0.046%
n 1
4
s 100% 0.046% 100% 0.44%
英国化学家W.Gosset(戈赛特)根据统计学原理,提出 t—分布,描述有限数据分布规律
定量分析中的误差及数据处理

(3)试剂误差 所用试剂纯度差,有杂质。
例:去离子水不合格 试剂级别不合适
(4)主观误差 操作人员主观因素造成。
例:指示剂颜色辨别偏深或偏浅 滴定管读数位置不正确
2. 偶然误差产生的原因 (1)偶然因素 (2)滴定管读数
平均偏差:
d
1 n
n
| xi
i 1
x
|
相对平均偏差: d 100 % x
特点:简单
缺点:大偏差得不到应有反映
2. 标准偏差 标准偏差的计算分两种情况:
(1) 当测定次数趋于无穷大时:
总体标准偏差 : X 2 / n
μ 为无限多次测定 的平均值(总体平均值), 即
lim
n
1 n
n i 1
3. 过失误差产生的原因
(三) 误差减免方法 1. 系统误差的减免 方法误差—— 采用标准方法,对比实验 仪器误差—— 校正仪器 试剂误差—— 作空白实验 2. 偶然误差的减免 增加平行测定的次数
思考题:
1.下列叙述错误的是:
A.方法误差属于系统误差 B.系统误差包括操作误差 C.系统误差又称可测误差 D.系统误差呈正态分布 E. 系统误差具有单向性
定量分析中的误差和数据处理
分析测试的误差与偏差 误差产生的原因及其减免方法 分析结果的数据处理 分析测试结果准确度的的评价 有效数字及其运算规则
一、分析测试的误差与偏差
误差和准确度 偏差和精密度 准确度和精密度的关系
1.误差和准确度
准确度: 测定值与真实值的接近程度。 准确度的高低用误差来衡量。
C 20.6,20.9,21.1,21.0 D 20.8,20.6
分析化学中的误差分析及数据处理

例2:
用一种新方法来测定试样含铜量,用含量为11.7 mg/kg的标准试样,进行 5次测定,所得数据为:
10.9, 11.8, 10.9, 10.3, 10.0
判断该方法是否可行?(是否存在系统误差)。
解:计算平均值 = 10.8,标准偏差 S = 0.7,n=5,μ=11.7
x n 10.8 11.7 5
CYJ 21
特点:
1)不具单向性(大小、正负不定) 2)不可消除(原因不定)
但可减小(测定次数↑) 3) 分布服从统计学规律(正态分布)
随机误差
多次测量取平均值
CYJ 22
系统误差与随机误差的比较
项目
系统误差
随机误差
产生原因 固定因素,有时不存在 不定因素,总是存在
分类
方法误差、仪器与试剂 环境的变化因素、主
25.0 20.0
15.0
y
10.0
5.0
0.0 15.80 15.90 16.00 16.10 16.20
x
CYJ 24
分析结果表示:
置信度和置信区间
– 测定值或误差出现的概率称为置信度
– 真实值在指定概率下,分布在某一个区间,
这个区间称为置信区间
μ x
ts n 不确定度
x
ts n
,x
ts n
测量点
平均值
真值
CYJ 13
准确度和精密度——分析结果的衡量指标。
(1) 准确度──分析结果与真实值的接近程度 准确度的高低用误差的大小来衡量; 误差一般用绝对误差和相对误差来表示。
(2) 精密度──几次平行测定结果相互接近程度 精密度的高低用偏差来衡量, 偏差是指个别测定值与平均值之间的差值。
定量分析中的误差及数据处理
多元线性回归
总结词
多元线性回归是定量分析中常用的方法,用于探索多个自变量与一个因变量之 间的线性关系。
详细描述
多元线性回归通过最小二乘法拟合一个平面或一个超平面,使得因变量的观测 值与预测值之间的残差平方和最小。这种方法可以帮助我们了解多个自变量对 因变量的影响程度和方向,并可进行预测和控制。
对各种不确定度进行量化评估,计算其对最终测量结 果的影响。
不确定度报告
将不确定度评估结果整合到测量报告中,为用户提供 完整的数据分析结果。
04
回归分析
一元线性回归
总结词
一元线性回归是定量分析中常用的方法,用于探索一个因变量与一个自变量之间的线性 关系。
详细描述
一元线性回归通过最小二乘法拟合一条直线,使得因变量的观测值与预测值之间的残差 平方和最小。这种方法可以帮助我们了解自变量和因变量之间的关联程度和方向,并可
Box-Cox变换
离散化
是一种通用的数据变换方法,通过选择适当 的λ值,使数据达到最合适的形式。
将连续变量转换为离散变量,便于分类或 决策树算法的使用。
数据插值与外推
线性插值
基于已知的数据点,通过线性函数进行插值, 得到未知点的值。
样条插值
通过样条函数进行插值,可以更好地处理数 据的弯曲程度。
多项式插值
05
数据分析与可视化
描述性统计
总结词
描述性统计是定量分析的基础,用于 概括和描述数据的特征。
详细描述
通过均值、中位数、众数、标准差等 统计量,描述数据的集中趋势和离散 程度。此外,还包括数据的频数分布 、偏度、峰度等描述性统计指标。
推断性统计
总结词
推断性统计基于样本数据推断总体特征 ,通过样本信息对总体进行估计和预测 。
定量分析中的误差
定量分析中的误差定量分析中的误差,也称为测量误差,是指实际测量结果与真实值之间的差异。
在定量分析领域中,对误差的准确定义和评估是非常重要的,因为它直接影响到数据的可靠性和结果的准确性。
本文将探讨定量分析中的误差的类型、产生原因以及如何评估和控制误差。
1.系统误差是由于测量方法、仪器或实验条件等固有的偏倚或倾斜引起的误差。
这种误差是有方向性的,通常是持续的,会导致测量结果偏离真实值的固定量。
系统误差的产生原因包括:-仪器漂移:由于仪器老化、磨损或使用不当等,仪器的测量性能会逐渐下降,导致系统误差。
-校准不准确:如果仪器的校准不准确,或者校准曲线的拟合不好,都会产生系统误差。
-环境条件:例如温度、湿度等环境条件的变化,会影响到实验条件,进而产生系统误差。
-人为因素:操作员的技术水平、操作规范等因素也可能引起系统误差。
2.随机误差是由于各种随机因素所引起的误差,其大小和方向都是无规律的,因此也称为无偏差误差。
这种误差会导致在多次重复测量中,得到不同结果,形成结果的分布。
随机误差的产生原因包括:-个体差异:不同个体之间的差异,包括实验对象的差异和人体感知的差异等,会导致随机误差。
-实验条件的不确定性:例如仪器的读数精度、样品的异质性等,都会产生随机误差。
-测量误差的传播:由于测量值之间的运算和计算过程中的近似或舍入,误差会被传递到结果中,导致随机误差。
在定量分析中,我们需要对误差进行评估和控制,以保证数据的准确性和可靠性。
评估误差的方法包括:1.校准和验证:通过与已知标准值的比较,来评估仪器的准确性和正误差大小。
2.重复测量:通过多次重复测量同一样品,来评估测量值的离散程度,即随机误差的大小。
3.数据处理和统计分析:使用合适的统计方法,对测量数据进行处理和分析,以评估误差的大小和分布。
控制误差的方法包括:1.合理设计实验:在实验过程中,根据实验目的和特点,合理设计实验方案,减少系统误差和随机误差的产生。
定量分析中的误差
如在计算机应用前,用核磁共振(C13谱)测一 些有机物含量时,因为C13丰度本身就小(1.1%), 再加上有机物含量不大,因而测量信号往往被“噪音” 掩盖而测不出来。
目前解决办法是连续进样,计算机进行成千上 万次的处理,则噪音信号(即偶然误差)被相互抵 消,从而使被测信号明显地显示出来。
但精密度高的也不一定准确度高,好的结果应 是精密度和准确度都高。
三、误差产生的原因及避免方法
在分析化学实验中,我们可以将误差分为系统 误差、随机误差和过失误差。
1 .系统误差(systematic errors)
由某种固定因素所引起的误差,使测量 结果系统偏高或偏低。当重复进行测量时, 它会重复出现。系统误差的大小理论上是可 以测定的,所以系统误差又称确定误差或可 测误差。
特点:
1) 非确定误差。
2) 服从统计规律:当测定次数足够多时,即 绝对值相近而符号相反的误差出现的机会 相同,大误差出现的机会少而小误差出现 的机会多,个别特大误差出现的机会特别 少。
3) 随机误差完全符合正态分布规律,即
68.3%;2 95.5%;3 99.7%。
减免的方法
3. 过失误差(gross mistake)
对于初学者,除了产生上述两类误差外,往往 还可能由于工作上的粗枝大叶,不遵守操作规程等 而造成过失误差。如器皿不洁净、丢失溶液、加错 试剂等,这些都属于不应有的过失,会对分析结果 带来严重影响,必须避免。
d1 = -0.20 d 2 = 0.15 dr1 = -0.28% dr2 = 0.21%
d3 = 0.05 dr3 = 0.07%
二、准确度和精密度的关系以 Nhomakorabea靶为例来说明:三人打靶,每人打五发。
定量分析中误差及数据处理
CLICK HERE TO ADD A TITLE
学习目的
原始测量数据如:m、V……
有效数字
测量误差 客观存在
测量结果:x1、x2、x3……
应记录几位数字?
计算公式
应保留几位数字?
误差的分类、特点及消除或减小
如何用测量值x1、x2、x3科学的表达样品真值
置信区间
可疑数值判断
=真值
和分别决定了正态曲线的位置与形状
描述了测量值x出现在某一位置的概率密度或出现在某一区域内的概率(如:出现在+内的概率为1)
反映数据集中趋势
反映数据分散趋势
3-4 随机误差的分布规律(2)
测量平均值 的分布规律
即一系列测定的平均值 (m)的分布规律(其中任一平均值均是n(有限)次测定平均结果)
01
系统误差(Systematic Error)
02
具有单向性、重现性、为可测误差,理论上可消除
03
随机误差(Random Error),亦称偶然误差
04
由不确定因素引起—服从统计规律(见3-4)
05
过失误差(mistake)
06
由粗心大意引起,可以避免,通常不算入误差范畴
误差的分类
3-1 误差的基本概念(4)
0.01 mL
0.02 mL
解:
常量滴定分析时,通常要求由滴定管读数引起的误差在0.1%以内,同时要求节约试剂,因此滴定体积一般应控制在2030 mL范围内(25 mL)
例5:滴定分析中称样质量的控制 万分之一分析天平的精度? 称取一份试样的绝对误差? 计算称样质量分别为20.0和200.0 mg时相对误差。
0.1 mg
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 定量分析中的误差
一、 准确度和精密度 误差的种类、 二、 误差的种类、性 质、产生的原因及减免
2010-10-16
一、准确度和精密度
分析结果的衡量指标。 1.准确度和精密度——分析结果的衡量指标。 分析结果的衡量指标 准确度── ──分析结果与真实值的接近程度 ( 1) 准确度──分析结果与真实值的接近程度 准确度的高低用误差的大小来衡量; 准确度的高低用误差的大小来衡量; 的大小来衡量 误差一般用绝对误差和相对误差来表示。 误差一般用绝对误差和相对误差来表示。 (2) 精密度──几次平行测定结果相互接近程度 精密度──几次平行测定结果相互接近程度 ── 精密度的高低用偏差来衡量, 精密度的高低用偏差来衡量, 偏差是指个别测定值与平均值之间的差值。 偏差是指个别测定值与平均值之间的差值。 (3) 两者的关系 精密度是保证准确度的先决条件; 精密度是保证准确度的先决条件; 精密度高不一定准确度高; 精密度高不一定准确度高; 两者的差别主要是由于系统误差的存在。 两者的差别主要是由于系统误差的存在。
误差只有理论上的意义,而偏差则可从实验结果计算得到
2010-10-16
偏差
(1)绝对偏差 :单次测量值与平均值之差 )
(2)相对偏差:绝对偏差占平均值的百分比 )相对偏差:
(3)平均偏差:各测量值绝对偏差的算术平均值 平均偏差:
(4)相对平均偏差:平均偏差占平均值的百分比 相对平均偏差:
(5)标准偏差: 标准偏差:
2010-10-16
准确度与误差
5g
500g
495g
1%
5g 绝对误差= 测量值 – 理论值
2010-10-16
15g
10g 相对误差 = 绝对误差/理论值
33%
误差的计算
绝对误差: 495g - 500g = 5g
真实值是无法知道的. 真实值是多少?
相对误差: 5g ÷ 500g
2010-10-16
2010-10-16
二、误差的种类、性质、产生的原因及减免 误差的种类、性质、 1. 系统误差
(1) 特点
a.对分析结果的影响比较恒定; b. 在 同 一 条 件 下 , 重 复 测 定 , 重复出现; c.影响准确度,不影响精密度; d.可以消除。 产生的原因? 产生的原因
2010-10-16
(2) 产生的原因
μ已知
μ未知
(6)相对标准偏差(变异系数) 相对标准偏差(变异系数)
(7) 极差(全距)R 极差(全距) R = Xmax-Xmin
准确度与精密度的关系
哪个结果好?
准确度好,精密度好 √ 准确度差,精密度好 准确度差,精密度差 准确度好,精密度差
平均值
2010-10-16
真实值
平均值
真实值
精密度差条件下的高准确度是偶然的, 精密度差条件下的高准确度是偶然的,因 此结果是不可靠的
Sx , S y , Sz
标准差法
1.加减法计算 2.乘除法计算
练习
例:设天平称量时的标准偏差 s = 0.10mg,求称量试样 时的标准偏差sm 。 解:
练习
例:用移液管移取NaOH溶液25.00mL,以0.1000mol/L的 HCL溶液滴定之,用去30.00mL,已知用移液管移 取溶液的标准差s1=0.02mL,每次读取滴定管读数的 标准差s2=0.01mL,假设HCL溶液的浓度是准确 的,计算标定NaOH溶液的标准偏差?
例:对指示剂颜色辨别偏深或偏浅; 滴定管读数不准。
2010-10-16
2. 偶然误差
( 1) 特点 a.不恒定 b.难以校正 c.服从正态分布(统计规律) ( 2) 产生的原因 a.偶然因素 b.滴定管读数
3. 过失误差 4. 公差
2010-10-16
偶然误差的分布规律
频率
σ=
3σ 2σ 1σ 0 1σ 2σ 3σ
2 × 00001 . ∵RE% = × 100% ≤ 01% . w
w ≥ 0.2000g
续前 2)滴定 例:滴定管一次的读数误差为0.01mL,两次的读数误差为 0.02mL,RE% 0.1%,计算最少移液体积?
2 × 001 . ∵RE% = × 100% ≤ 01% . V
V ≥ 20差 绝对误差:测量值与真实值之差 绝对误差 (2)相对误差 相对误差:绝对误差占真实值的百分比 相对误差
注:μ未知,δ已知,可用χ代替μ 未知, 已知,可用χ代替μ 注:1)测高含量组分,RE可小;测低含量组分,RE可大 测高含量组分,RE可小;测低含量组分,RE可大 可小 2)仪器分析法——测低含量组分,RE大 仪器分析法——测低含量组分,RE大 ——测低含量组分 化学分析法——测高含量组分,RE小 化学分析法——测高含量组分,RE小 ——测高含量组分
精密度与偏差
称量结果: 495g 497g 502g 499g 504g 平均值 = (495g+497g+502g+499g+504g)/5 = 499.4g
2010-10-16
偏差的计算
真实值→平均值 误差→偏差
绝对偏差: 495g - 499.4g = 4.4g
平均值
相对偏差: 4.4g ÷ 499.4g = 0.9%
分析结果与真值的关系
1. 分析结果并不是真值 2. 分析结果的好坏可用准确度和精密度表示 3. 精密度是保证准确度的先决条件
2010-10-16
四、误差的传递 (一)系统误差的传递
R = f (x, y, z)
δR ,δx ,δy ,δz
1.加减法计算 2.乘除法计算
(二)偶然误差的传递
R = f (x, y, z)
a.方法误差——选择的方法不够完善
例: 重量分析中沉淀的溶解损失; 滴定分析中指示剂选择不当。
b.仪器误差——仪器本身的缺陷
例: 天平两臂不等,砝码未校正; 滴定管,容量瓶未校正。
c.试剂误差——所用试剂有杂质
例:去离子水不合格; 试剂纯度不够 (含待测组份或干扰离子)。
d.主观误差 d.主观误差——操作人员主观因素造成
3.增加平行测定次数,一般测3~4次以减小偶然误差 增加平行测定次数,一般测 ~ 次以减小偶然误差 增加平行测定次数 4.消除测量过程中的系统误差 . 1)校准仪器:消除仪器的误差 )校准仪器: 2)空白试验:消除试剂误差 )空白试验: 3)对照实验:消除方法误差 )对照实验: 4)回收实验:加样回收,以检验是否存在方法误差 )回收实验:加样回收,
∑ (x )
n
2
正态分布图
2010-10-16
三、误差的减免
1. 系统误差的减免
(1) 方法误差—— 采用标准方法,对比实验 (2) 仪器误差—— 校正仪器 (3) 试剂误差—— 作空白实验
2. 偶然误差的减免
——增加平行测定的次数
2010-10-16
提高分析结果准确度的方法
1.选择合适的分析方法 例:测全Fe含量 K2Cr2O7法 40.20% ±0.2%×40.20% 比色法 40.20% ±2.0%×40.20% 2.减小测量误差 1)称量 例:天平一次的称量误差为 0.0001g,两次的称量误差为 0.0002g,RE% 0.1%,计算最少称样量?
解:
内容选择
第一节 定量分析中的误差 第二节 有效数字与运算规则 第三节 数据评价方法 第四节 分析结果的数据处理
结束
2010-10-16