山西省2018-2019学年第一学期七年级阶段三质量评估试题·数学(人教版)·试题+答案
人教版七年级上学期第三次质量检测数学试题含解析

人教版七年级上学期第三次质量检测数学试题含解析一、选择题1.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m+n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=2.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩3.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩4.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是() A .8374y x y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374y x y x -=-⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩5.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( ) A .2212100x y x y +=⎧⎨-=⎩B .226100x y x y +=⎧⎨-=⎩C .2224100x y x y +=⎧⎨-=⎩D .2212200x y x y +=⎧⎨-=⎩6.甲、乙两人共同解关于x ,y 的方程组,甲正确地解得乙看错了方程②中的系数c ,解得,则的值为( )A .16B .25C .36D .497.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有( ) A .2种B .3种C .4种D .5种8.某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x 人,生产螺母的有y 人,则可以列方程组( ) A .351624x y x y +=⎧⎨=⎩B .352416x y x y +=⎧⎨=⎩C .35 16224x y x y +=⎧⎨=⨯⎩ D .3521624x y x y +=⎧⎨⨯=⎩9.在解方程组2278ax by cx y +=⎧⎨+=⎩,时,甲同学正确解得32x y =⎧⎨=⎩,乙同学把c 看错了,而得到26x y =-⎧⎨=⎩,那么a ,b ,c 的值为( ) A .2a =-,4b =,5c = B .4a =,5b =,2c =- C .5a =,4b =,2c =D .不能确定10.已知实数a 、m 满足a >m ,若方程组325x y a x y a -=+⎧⎨+=⎩的解x 、y 满足x >y 时,有a >-3,则m 的取值范围是( ) A .m >-3 B .m≥-3 C .m≤-3 D .m <-3 二、填空题11.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____. 12.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.13.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.14.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.15.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 16.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.17.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.18.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满. 19.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组3()()162()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__.20.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .三、解答题21.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求st的值.22.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理. 你认为哪种方案既省时又省钱?试比较说明.23.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.24.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器 乙型机器 价格(万元/台) a b 产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.25.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份用水量(m3)收费(元)357.54927(1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.26.下图是小欣在“A超市”买了一些食品的发票.后来不小心发票被弄烂了,有几个数据看不清.(1)根据发票中的信息,请求出小欣在这次采购中,“雀巢巧克力”与“趣多多小饼干”各买了多少包;(2)“五一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.请问:①“五一”期间,小欣去哪家超市购物更划算?②“五一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.2.A解析:A【分析】根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答【详解】设这所学校现初中在校生x人,小学在校生y人,则30008%11%300010% x yx y+=⎧⎨+=⨯⎩故选A【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程3.C解析:C【分析】根据题中的等量关系即可列得方程组.【详解】设木头长为x尺,绳子长为y尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺,∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺,∴0.5y=x+1,故选:C.【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.4.B解析:B【分析】设该物品的价格是x钱,共同购买该商品的由y人,根据题意每人出8钱,则多3钱;每人出7钱,则差4钱列出二元一次方程组.【详解】设该物品的价格是x钱,共同购买该商品的由y人,依题意可得83 74y xy x-=⎧⎨-=-⎩故选:B【点睛】本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组.5.A解析:A【分析】设安排x个工人加工桌子,y个工人加工椅子,根据共有22人,一张桌子与4只椅子配套,列方程组即可.【详解】解:设安排x个工人加工桌子,y个工人加工椅子,由题意得:22 12100x yx y+=⎧⎨-=⎩故选A.【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解答本题的关键是挖掘隐含条件:一张课桌需要配四把椅子.6.B解析:B【解析】将x=2,y=﹣1代入方程组中,得到关于a与b的二元一次方程与c的值,将x=3,y=1代入方程组中的第一个方程中得到关于a与b的二元一次方程,联立组成关于a与b的方程组,求出方程组的解得到a与b的值,即可确定出a,b及c的值.【详解】把代入得:,解得:c=4,把代入得:3a+b=5,联立得:,解得:,则(a+b+c)2=(2﹣1+4)2=25.故选B.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.A解析:A【解析】【分析】设购买甲种笔记本x个,则乙种笔记本y个,利用购甲、乙两种笔记本共用70元得到x=14-3y,利用143yy-=14y–3为整数可判断y=1,2,7,14,然后求出对应x的值从而得到购笔记本的方案.【详解】设购买甲种笔记本x个,购买乙种笔记本y个,根据题意得5x+15y=70,则x=14–3y,因为143yy-为整数,而143yy-=14y–3,所以y=1,2,7,14,当y=1时,x=11;当y=2时,x=4;y=7和y=14舍去,所以购笔记本的方案有2种.故选A.【点睛】本题考查了二元一次方程的解,分析题意,找到关键描述语,找到合适的等量关系,特别是确定甲种笔记本数量和乙种笔记本数量关系,然后利用整除性确定方案.8.D解析:D【解析】【分析】首先设x人生产螺栓,y人生产螺母刚好配套,利用工厂有工人35人,每人每天生产螺栓16个或螺母24个,进而得出等式求出答案.设x人生产螺栓,y人生产螺母刚好配套,据题意可得,35 21624x yx y+=⎧⎨⨯=⎩.故选:D.【点睛】此题主要考查了二元一次方程组的应用,根据题意正确得出等量关系是解题关键.9.B解析:B【详解】由甲同学的解正确,可知3c+2×7=8,解得c=-2,且3a+2b=22①,由于乙看错c,所以-2x+6b=22②,解由①②构成的方程组可得a=4,b=5.故选B.10.C解析:C【解析】解:325x y ax y a-=+⎧⎨+=⎩①②,①+②得,3x=6a+3,得到:x=2a+1③,把③代入①得,2a+1-y=a+3,解得y=a﹣2,所以,方程组的解是212x ay a=+⎧⎨=-⎩,∵x>y,∴2a+1>a﹣2,解得a>﹣3.∵a>-3,a>m,∴m≤-3,故选C.点睛:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.二、填空题11.15%【分析】设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻解析:15%【分析】设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a亩,b亩,c亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩, 化简得30(1)2(2)501542(3)a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b =6a (4),把(2)和(4)都代入(3)得,300ax =15a +24a +6a , ∴x =15%, 故答案为15%. 【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.12.24 【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃解析:24 【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解. 【详解】解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:969620606030a b xa b x +⎧⎨+⎩== 解得:b=103x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天). 故答案为:24. 【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键.13.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:∴两式相加得:,即,把代入得到,,故此方程组的解为:.故答案为:.【点睛】本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.14.51【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积.【详解】解:设小长方形的长、宽分别为、,依题意得:解得:,,,解析:51【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y ,依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩, 解得:81x y =⎧⎨=⎩, 818S ∴=⨯=小长方形,729DC DE EC ∴=+=+=,11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.15.无数【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=解析:13x y =⎧⎨=⎩无数 【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.解:方程3x+8y=27,解得:3(98)x y-=,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13 xy=⎧⎨=⎩;∵当x、y是整数时,9-x是8的倍数,∴x可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13xy=⎧⎨=⎩;无数.【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.16.62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)解析:62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.【详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=346245y-,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴504xy=⎧⎨=⎩,269xy=⎧⎨=⎩,214xy=⎧⎨=⎩,∴x+y+2y=62或53或44.∵62>53>44,∴最多可以购买62件纪念品.故答案为:62.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.17.3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数解析:3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x,依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【详解】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x依题意可得,5919()121640191:3:4 3164x y x yx y y z x z⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+=⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①②由①得32x y =③将③代入②得38 z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202yzx y y y==++故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键18.【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 解析:3215【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 、y ,进一步代入求得答案即可.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得: 82375%23275%x y a x y a ()()-=⎧⎨-=⎩解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩. 则60%a ÷(2x -y )=60%a ÷(316a ×2332-a )=3215(小时). 故答案为3215. 【点睛】 本题考查了二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.19.【解析】分析:令x+y=a ,x-y=b ,根据已知,比较后得出a ,b 的值,从而得出结论. .详解:令x+y=a ,x-y=b ,则关于x 、y 的二元一次方程组变为:.∵二元一次方程组的解是,解析:52x y =⎧⎨=⎩【解析】分析:令x +y =a ,x -y =b ,根据已知,比较后得出a ,b 的值,从而得出结论. .详解:令x +y =a ,x -y =b ,则关于x 、y 的二元一次方程组316215x y m x y x y n x y ++-=⎧⎨++-=⎩()()()()变为:316215a mb a nb +=⎧⎨+=⎩.∵二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,∴73a b =⎧⎨=⎩,∴73x y x y +=⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 点睛:本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法,本题要注意整体思想的运用.20.48【解析】设小长方形的长为x cm ,宽为y cm ,根据图形可得①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm ,宽为y cm ,根据图形可得3124x y x y +=⎧⎨-=⎩,①,② ①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×10-6×2×6=482cm .故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键.三、解答题21.(1)(134)8F =;(2)325361s t =. 【分析】(1)由题意直接根据()F n 的定义把“相异数”任意两个数位上的数字对调后得到的三个不同的新三位数进行代入计算即可;(2)根据题意由“相异数”的定义进行分析,并根据()F n 的定义求出()F s 和()F t ,进而依据()()20F s F t +=建立不定方程进行分析即可求解.【详解】解:(1)(134)(314431143)1118F =++÷=;(2)∵s ,t 都是“相异数”,10025s x =+,360t y =+,∴()(2051052010052)1117F s x x x x =+++++÷=+, ()(6301006330610)1119F t y y y y =+++++÷=+.∵()()20F s F t +=,∴791620x y x y +++=++=,∴4x y +=,∵19x ≤≤,19y ≤≤,且x ,y 都是正整数,13x y =⎧⎨=⎩,22x y =⎧⎨=⎩,31x y =⎧⎨=⎩ ∵s 是“相异数”,∴2x ≠,5x ≠.∵t 是“相异数”,∴3y ≠,6y ≠.∴31x y =⎧⎨=⎩是符合条件的解 ∴100325325s =⨯+=,3601361t =+= ∴325361s t =. 【点睛】 本题属于材料阅读题,考查代数以及二元一次方程中不定方程的应用,读懂题干所给的定义和分析解决二元一次方程是解题的关键.22.(1)60天,40天;(2)方案③既省时又省钱.【分析】(1)设甲小组单独修完需要x 天,乙小组单独修完需要y 天,根据“甲小组单独修理这批桌凳比乙小组多用20天”,以及桌凳总数不变,便可建立方程组进行解答;(2)综合(1)所得求出这批旧桌凳的数目,然后求出三种方案的工作时间与实际花费,再进行比较即可.【详解】解:(1)设甲小组单独修理这批桌凳需要x 天,乙小组单独修理这批桌凳需要y 天. 根据题意,得()16168,20.x y x y ⎧=+⎨-=⎩解得60,40.x y =⎧⎨=⎩答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天.(2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5400(元);方案②:学校需付费用为40×(120+10)=5200(元);方案③:学校需付费用为()96016168++×(120+80+10)=5040(元). 比较知,方案③既省时又省钱.故答案为(1)60天,40天;(2)方案③既省时又省钱.【点睛】解答本题的关键是读懂题意,找到等量关系,正确列出方程,再求解.23.(1)α∠和β∠的度数分别为70︒和110︒;(2)见解析;(3)40C ∠=︒【分析】根据2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,解二元一次方程组,求出α∠和β∠的度数;根据平行线判定定理,判定//AB CD ;由“AE 是CAB ∠的平分线”:2CAB α∴∠=∠,再根据平行线判定定理,求出C ∠的度数.【详解】解:(1)①+②,得5350α∠=︒,70α∴∠=︒,代入①得110β∠=︒α∴∠和β∠的度数分别为70︒和110︒.(2)180αβ∠+∠=︒//AB EF ∴//CD EF ,//AB CD ∴(3)AE ∵是CAB ∠的平分线2140CAB α∴∠=∠=︒//AB CD ,180C CAB ∴∠+∠=︒40C ∴∠=︒【点睛】本题运用二元一次方程组给出已知条件,熟练掌握二元一次方程组的解法以及平行线相关定理是解题的关键.24.(1)3018a b =⎧⎨=⎩;(2)有 4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器. (3)最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【解析】【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x 台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x 的取值范围,再分别求出对应的成本即可解题.【详解】(1)解:由题意得12236a b a b -=⎧⎨-=⎩, 解得,3018a b =⎧⎨=⎩; (2)解:设买了x 台甲种机器由题意得:30+18(10-x)≤216解得:x ≤3∵x 为非负整数∴x =0、1、2、3∴有 4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)解:由题意得:240+180(10-x )≥1890解得:x ≥1.5∴1.5≤x ≤ 3∴整数 x =2 或 3当 x =2 时购买费用=30×2+18×8=204(元) 当 x =3 时购买费用=30×3+18×7=216(元) ∴最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【点睛】本题考查了利润的实际应用,二元一次方程租的实际应用,一元一次不等式的实际应用,难度较大,认真审题,找到等量关系和不等关系并建立方程组和不等式组是解题关键.25.(1) 1.56a c =⎧⎨=⎩;0≤x≤6时,y=1.5x ; x >6时,y=6x-27;(2)该户5月份水费是21元. 【解析】【分析】(1)根据3、4两个月的用水量和相应水费列方程组求解可得a 、c 的值;当0≤x≤6时,水费=用水量×此时单价;当x >6时,水费=前6立方水费+超出部分水费,据此列式即可;(2)x=8代入x >6时y 与x 的函数关系式求解即可.【详解】解:(1)根据题意,得:()57.56a 96c 27a =⎧⎨+-=⎩,解得:1.56ac=⎧⎨=⎩;当0≤x≤6时,y=1.5x;当x>6时,y=1.5×6+6(x-6)=6x-27;(2)当x=8时,y=6x-27=6×8-27=21.答:若某户5月份的用水量为8米3,该户5月份水费是21元.【点睛】本题主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.26.(1)买了雀巢巧克力1包,趣多多小饼干4包;(2)如果购物在50元以内,去两家购物都一样;如果购物在50元至150元之间,则去A超市更划算;如果购物等于150元,去两家购物都一样;如果购物超过150元,则去B超市更划算;②小欣在“B超市”至少购买9包“雀巢巧克力”时,平均每包价格不超过20元.【解析】分析:(1)设雀巢巧克力买了x包,趣多多小饼干买了y包.等量关系:两种食品的购买数量=30-20-5;两种食品的购买费用之和=100-18-52;(2)①小欣的购物金额为z(z>100)元,分别计算在A超市和在B超市购买物品需要的金额;然后再分类讨论;②设小欣在“B超市”购买了m包“雀巢巧克力”时,平均每包的价格不超过20元.根据题意列出不等式,通过解不等式来求m的值.详解:(1)设买了雀巢巧克力x包,趣多多小饼干y包,依题意得30-20-5222100-18-52.x yx y+=⎧⎨+=⎩,解得14.xy=⎧⎨=⎩,答:买了雀巢巧克力1包,趣多多小饼干4包.(2)①设小欣累计购物额为a元.当a≤50时,A、B两超市都不能享受到优惠,所以在任意两家购物都一样;当50<a≤100时,在A超市可以享受到优惠;而在B超市享受不到优惠,所以选择在A超市购物更划算;当a>100时,若在A超市购物花费少,则50+0.9(a-50)<100+0.8(a-100),解得a<150.若在B超市购物花费少,则50+0.9(a-50)>100+0.8(a-100),解得a>150;若在两超市购物花费一样多,则a=150.综上可得:如果购物在50元以内,去两家购物都一样;如果购物在50元至150元之间,则去A超市更划算;如果购物等于150元,去两家购物都一样;如果购物超过150元,则去B超市更划算.②设小欣在“B超市”购买了b包“雀巢巧克力”时,平均每包价格不超过20元,据题意可得100+(22b-100)×0.8≤20b.。
山西省 人教版 2018-2019 七年级数学上 期中测试卷

…○………………内………………○………………装………………○………………订………………○………………线………………○……………○………………外………………○………………装………………○………………订………………○………………线………………○…………… 学校:______________姓名:_____________班级:_______________考号:______________________2018-2019学年上学期期中卷七年级数学(考试时间:100分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版七上第1~2章。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.−(−2)的相反数是A . 2B .21-C .21D .-2 2.温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1300000000用科学记数法表示为 A .13×108B .1.3×108C .1.3×109D .1.393.若3a 2b c m 为6次单项式,则m 的值为 A .3B .4C .5D .74.x –(2x –y )的运算结果是 A .–x +yB .–x –yC .x –yD .3x –y5.已知数轴上的点A 到原点的距离是5,那么在数轴上到点A 的距离是5所表示的数有 A .4个B .3个C .2个D .1个6.下列计算正确的是A .2527a a a +=B .523a b ab -=C .523a a -=D .3332ab ab ab -+=7.下列说法正确的是 A .0是最小的整数 B .若|a |=|b |,则a =bC .互为相反数的两数之和为零D .数轴上两个有理数,较大的数离原点较远 8.已知|x |=5,|y |=2,且|x +y |=–x –y ,则x –y 的值为 A .±3B .±3或±7C .–3或7D .–3或–79.若a 、b 互为相反数,c 为最大的负整数,d 的倒数等于它本身,则2a +2b –cd 的值是 A .1B .–2C .–1D .1或–110.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是A .37B .39C .41D .43二、填空题(本大题共6小题,每小题3分,共18分)11.一个数既不是正数,也不是负数,这个数是 . 12.比较大小:−|−4|________−(−2)2(填“>”,“<”或“=”) 13.近似数0.03086是精确到__________分位.14.一个多项式与x 2–2x +1的和是2x –3,则这个多项式为__________.15.若n 为整数,则1(1)(1)2n n +-+-=__________.16.若|a -1|+|b +3|=0,则a +b = ..三、解答题17.计算:(1)−42+|4−5|−49÷23×32. (2)−24(112−16−13)−12016.…○………………内………………○………………装………………○………………订………………○………………线………………○……………○………………外………………○………………装………………○………………订………………○………………线………………○…………… 学校:______________姓名:_____________班级:_______________考号:______________________18.化简:(1)2(2a –b )–(2b –3a );(2)8xy +y 2–2(4xy –y 2+1). .19.定义新运算:对于任意实数a ,b (其中a ≠0),都有a ※b =1a –a b a-,等式右边是通常的加法、减法及除法运算,比如:2※1=12–212-=0. (1)求5※4的值;(2)求32※2=1的值.20.一辆汽车在一东西走向的街道上修路灯,以车站为出发点,向东走记为正,向西走记为负(单位:千米),以先后次序记录如下:–3、+4、–5、+10、+5、–8.试回答下列问题: (1)最后一次修完路灯后,汽车在出发点的哪一边,距离出发点多远?(2)如果汽车每走10千米耗油1升,汽车上的人修完路灯后,回出发点之前共用了多少油?21.小明买了一套小户型的经济适用房,地面结构如图所示(注:x =a ,y =b ;单位:m ).(1)请用含a 、b 的式子表示出地面的总面积.(2)如果小明想将卧室和客厅全部铺上木地板,卫生间和厨房全部铺上瓷砖,已知木地板80元/m 2,瓷砖35元/m 2,则小明一共要花多少钱?(用含a 、b 的式子表示)22.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且AB =14.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数__________,点P 表示的数__________(用含t 的代数式表示); (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若M 为AP 的中点,N 为PB 的中点.点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.。
2018-2019学年山西省七年级阶段一教学质量评估(数学试卷)

! " (4)0.25-
1 8
-
-
7 8
+
3 4
.
17.( % 本题 8 分)
把下列各数表示在数轴上,并用“<”把它们连接起来.
2, -(-4),
1 2
, 0, -3.5.%
18.(本题 9 分) 下面是小强与妈妈的对话,根据对话,解答下列问题:
上星期我给你 30 元零用钱,你 是怎么花的?
我买了一本笔记本,花 了 1.2 元;还买了两支圆 珠笔,花了 7.5 元;乘公 共汽车一共花了 4.5 元.
例如:3306 用算筹表示就是
,则用算筹
所表示的数为
.
三、解答题(本大题共 8 小题,共 75 分,解答应写出文字说明、证明过程或演算步骤)
16.%计算:(本题共 4 小题,每小题 4 分,共 16 分)
(1)(-3)+ -5 ;
(2)-4+17+(-26);
(3)3+(-4)-(-9)-(+2);
+0.2
+0.3
折
县(市、区)
叠
哈尔滨-20℃
北京-10℃
武汉 5℃
上海 0℃
A. 哈尔滨
B. 北京
C. 武汉
D. 上海
3. 如图所示的平面图形,经过折叠可以围成一个棱柱的是
A. 7.7 千克
B. 7.9 千克
C. 8.1 千克
D. 8.3 千克
10. 巴黎与北京的时差为-7 时(正数表示同一时刻巴黎比北京时间早).王老师在北京时
+82,-25,+90.
(1)此时他们登上顶峰了吗? 如果没有,那么他们离顶峰还差多少米?
山西省2018-2019学年第一学期七年级阶段四质量评估试题·数学(人教版)·试题

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.5的相反数是A.-15 B.15 C.-5D.52.已知∠O =32°,那么∠O 的余角等于A.32°B.58°C.90°D.148°3.如图所示,一块直角三角板的直角顶点落在直线l 上,则∠1+∠2=A.45°B.60°C.90°D.135°4.如图,∠AOB =90°,OC ,OD 是∠AOB 内部两条不同的射线,以O 为顶点的锐角共有A.6个B.5个C.4个D.3个5.如图是正方体的表面展开图,则与“美”字相对的字是A.建 B.设C.山D.西6.首届中国国际进口博览会于2018年11月10日闭幕,新华社记者从当日召开的新闻通气会上获悉,本届进口博览会交易采购成果丰硕,按一年计,累计成交578亿美元,这个数据用科学记数法表示为A.5.78×109 B.0.578×1010 C.57.8×109 D.5.78×10107.如图,点A 是有理数a 在数轴上对应的点.下面关于a ,-a ,1的大小关系表示正确的是A.a <1<-aB.-a <a <1C.a <-a <1D.1<-a <a8.下面四个生产生活现象,可以用“两点之间,线段最短”来解释的是A.用两颗钉子就可以把木条固定在墙上B.从A 地到B 地架设电线沿线段AB 来架设C.植树时定出两棵树的位置后确定同一行树所在的直线D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上9.某工程,甲单独完成需12天,乙单独完成需8天,现由甲先做3天,乙再参加与甲合作,求完成这项工程一共所需的时间.若设完成此项工程一共用了x 天,则下列方程正确的是A.x 12+x 8=1B.x+312+x 8=1C.x 12+x-38=1 D.x+312+x-38=110.用棋子摆出下列一组图形:按照这种规律摆下去,第10个图形用的棋子个数为A.33B.30C.29D.10第Ⅱ卷非选择题(共90分)二、填空题(本大题共5小题,每小题3分,共15分)11.计算-38+-158∠∠的值为.12.比较大小:36°36′36.36°.(填“>”“<”或“=”)A 七年级数学(人教版)第1页(共4页)注意事项:1.本试卷共4页,满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.沿此线折叠七年级数学(人教版)第2页(共4页)姓名准考证号第Ⅰ卷选择题(共30分)扫描二维码关注考试信息山西省2018-2019学年第一学期七年级阶段四质量评估试题数学(人教版)ABCD建设美丽山西3102设美西山建丽a 112...Ol-1ABCDE O13.如图,图中共有条线段.14.如图所示,将一个长方形纸片ABCD 剪去两个完全相同的长方形,若被剪掉的长方形的长比宽多6,剩余的阴影纸片周长为28,则阴影纸片的面积为.15.像4x 3+x 2y -2xy 2这样各项次数都相同的多项式叫做等次多项式,若某个等次多项式为4次多项式,它的每项含有字母m 、n 中的一个或两个(不含有其他字母),则合并同类项之后它的项数最多为.三、解答题(本大题共8小题,共75分.解答题应写出文字说明、证明过程或演算步骤)16.(本题共10分)(1)计算:[112×23-(-5)]÷-32+6;(2)化简:12x -2x -23y 2+-32x +13y2.17.(本题6分)解方程:x -13+x =3x +12.18.(本题9分)已知平面上三点A ,B ,C ,用刻度尺按下列要求画出图形:①画直线AB ,线段BC ,射线CA ;②取线段BC 的中点D ,连接AD ;③延长线段BC 至点E ,使得CE=CB ,并连接AE .19.(本题9分)7.6觶,-2,12,-4.1,5,-73.(1)将以上有理数按从小到大的顺序排列,并用“<”连接;(2)将以上有理数按一定的分类标准分成若干类.20.(本题9分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等,第一次他们取出这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取出,连同第一次打包剩下的书一起,刚好又打了9个包,那么每包书有多少本?这批书共有多少本?21.(本题10分)有两个如图所示的曲尺形框,框1和框2,用它们分别可以框住下表中的三个数(如图所给示例),(1)若被框1框住的三个数中最小的数为a .若这三个数的和是48,问a 的值是否存在?若存在,求出a 的值;若不存在,说明理由;(2)若被框2框住的三个数中最小的数为b .若这三个数的和是48,问b 的值是否存在?若存在,求出b 的值;若不存在,说明理由.22.(本题10分)如图,已知线段AB =6,延长线段AB 到点C ,使BC =2AB ,点D 是AC 的中点,求:(1)线段AC 的长;(2)线段BD 的长.23.(本题12分)已知∠AOB 中,射线OC 在∠AOB 内部,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线.(1)若∠AOB =90°,如图1,求∠DOE 的度数;(2)若∠AOB 在(1)的基础上增加了m °(0<m <90),如图2,求∠DOE 的度数;(3)若射线OC 在∠AOB 的外部,∠AOB=a °,如图3(OC 与OA 在直线OB 的同侧),求∠DOE 的度数.ABC DOE图3图1图2ADECBO12345678910111213141516171819202122232425262728框1框2七年级数学(人教版)第4页(共4页)七年级数学(人教版)第3页(共4页)CABDB CAOQJPDB CA。
山西省2018-2019学年第二学期七年级阶段三质量评估试题·数学(人教版)试题+答案

A. ±姨 5
B. 姨 5
C. ±25
D. 25
2. 点 M(3,-1)向右平移两个单位长度得到的坐标为
A.(5,-1)
B.(1,-1)
C.(0,1)
D.(3,-3)
3. 如图,下列条件不能判断直线 a∥b 的是
A. ∠2=∠5
B. ∠1=∠4
C. ∠3=∠5 D. ∠2+∠4=180°
D. -1
∠y=x+1,
8. 以方程组
的解为坐标的点(x,y)在
y=-x+2
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
七年级数学(人教版) 第 1 页 (共 4 页)
9. 母亲节当天,小明的爸爸去菜市场买了 1 斤萝卜,2 斤排骨,准备做排骨汤来庆祝母亲
节.回家后,爸爸告诉妈妈买萝卜和排骨一共花了 39 元,妈妈说萝卜单价上涨了 50%,
y=3.
∴2x+3y=2×6+3×3=21,∴3m-15=21,m=12. 姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 9 分
20. 解:(1)137(答案不唯一) 姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 3 分
(2)设 n 的十位数字与个位数字分别为 x,y. 姨姨姨姨姨姨姨姨姨姨姨姨姨 4 分
x=2y,
把 x=3 代入①,得 y=2. 姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 9 分
x=3,
所以这个方程组的解是
姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 10 分
y=2.
七年级数学答案(人教版) 第 1 页 (共 3 页)
18. 解:(1)画出的坐标系如图所示.
山西省2018-2019学年第一学期七年级阶段二质量评估试题·数学(人教版)·试题+答案

22. 解:(1)原式=4x2-2xy2-3xy-5y2-7xy+9y2+2mxy2-1 =4x2-10xy+4y2+(-2+2m)xy2-1, !!!!!!!!!!!!! 3 分
由题意知该多项式不含三次项,-2+2m=0,m=1. !!!!!!!!!!!! 5 分
(2)当 x2+y2=13,xy=-6 时,
=-24+4=-20. !!!!!!!!!!!!!!!!!!!!! 5 分
(2)方法
1:原式=(-60)×
3 4
+(-60)×
5 6
%%%%
!!!!!!!!!!!!!!
8分
=-45+(-50)=-95. !!!!!!!!!!!!!!!!! 10 分
! " 方法 2:原式=(-60)×
9 12
+
10 12
!!!!!!!!!!!!!!!!! 8 分
=(-60)×
19 12
=-95.
!!!!!!!!!!!!!!!!!! 10 分
17. 解:原式=5a2+a2+(5a2-2a-2a2+6a)=6a2+(5a2-2a2-2a+6a)=6a2+(3a2+4a)=9a2+4a.
!!!!!!!!!!!!!!!! 4 分
100n-(98n-2m)= 2m+2n(元).
答:实际销售比不采取降价销售少盈利(2m+2n)元. !!!!!!!!! 10 分
21. 解:(1)由题意知,
# $ 小明预计第一天看 x 页,第二天看(x+50)页,第三天看
1 5
山西省2019-2020学年第一学期七年级阶段三质量评估试题·数学(人教)试卷+答案
项符合题目要求)
1.%-3 的相反数是
A.%-3
B.%3
C.%±3%%
D.%0
2.%下列式子计算正确的是
A.%5a+6a=11a
B.%12x+8=20x
C.%10b-7b=3
D.%5-3c=2c
3.%某电子厂生产一种电子元件,其核心零件的直径为 0.0129%cm,将数据 0.0129 精确到 0.001
11. 8
12. a+b
13. 3
14. <
15. 32
三、解答题(本大题共 8 小题,共 75 分)
! " ! " 16. 解:(1)原式=8×
-
1 8
+
3 2
×
-
1 9
!!!!!!!!!!!!!!!!!!! 3 分
=-1-
1 6
!!!!!!!!!!!!!!!!!!!!!!!!! 4 分
=-
7 6
(2)设乙公司还需 y 天才能完成这项工程,
! " 根据题意,得
1 +1 20 30
×10+ 1 y=1. 30
!!!!!!!!!!!!!!!!! 7 分
解这个方程,得 y=5. !!!!!!!!!!!!!!!!!!!!!!!! 8 分
答:乙公司还需 5 天才能完成这项工程. !!!!!!!!!!!!!!!! 9 分
15.%某养殖场养有鸡与兔子共 60 只,共有脚 184 只,则该养殖场有兔子 _____ 只. 七年级数学(人教版) 第 2 页 (共 4 页)
三、解答题(本大题共 8 小题,共 75 分.解答题应写出文字说明、证明过程或演算步骤)
2018-2019学年度人教版七年级数学阶段一试题+答案
(2)C、B 两点间的距离是 6-2.5=3.5, !!!!!!!!!!!!!!!!! 6 分
C、D 两点间距离是 6-(-4)=10. !!!!!!!!!!!!!!!!!!! 8 分
19. 解:由题意得 a+b=0,mn=1,x=2 或-2, !!!!!!!!!!!!!!!! 3 分
当 x=2 时,原式=-2×1+0-2=-2-2=-4; !!!!!!!!!!!!!!!! 6 分
1 40×41
=%%%%%%%%%%%%%%%%%%%%;(不必计算结果)
(2)直接写出下列各式的计算结果:
① 1 + 1 + 1 +…+
1
=%%%%%%%%%%%%%%%%%;
1×2 2×3 3×4
2017×2018
② 1 + 1 + 1 +…+ 1 =%%%%%%%%%%%%%%%%%%;
1×3 3×5 5×7
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 3 分
答:守门员最后回到了球门线的位置. !!!!!!!!!!!!!!!! 4 分
(2)由观察可知:5-3+10=12(米). !!!!!!!!!!!!!!!!!! 6 分
答:在练习过程中,守门员离开球门线最远距离是 ቤተ መጻሕፍቲ ባይዱ2 米. !!!!!!!! 7 分
.
14. 已知 x(x>0)的绝对值为 2,y 与 3 互为相反数,则 2x+y=
.
15. 对于任意两个不相等的有理数 a,b,定义运算如下:a☆b=(a+b)÷(a-b),那么 3☆5 的值
是
.
三、解答题(本大题共 8 小题,共 75 分,解答应写出文字说明、证明过程或演算步骤)
(解析版)山西太原2018-2019年初一上年末数学试卷.doc
(解析版)山西太原2018-2019年初一上年末数学试卷参考答案与试题解析【一】选择题〔本大题共10个小题,每题3分,总分值30分〕在每个小题给出的四个选项中,只有一项符合题目要求、1、〔2018•利川市模拟〕﹣3的绝对值等于〔〕A、 3B、C、D、﹣3考点:绝对值、专题:常规题型、分析:根据绝对值的性质解答即可、解答:解:|﹣3|=3、应选A、点评:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0、2、〔2018秋•太原期末〕为了完成以下任务,计划采用的调查方式合适的是〔〕A、了解我省中学生每天体育锻炼的时间,采用抽样调查的方式B、了解一沓钞票中有没有假钞,采用抽样调查的方式C、了解某种灯泡的使用寿命,采用普查的方式D、了解我国初中生每周阅读的时间,采用普查的方式考点:全面调查与抽样调查、分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似、解答:解:A、了解我省中学生每天体育锻炼的时间,调查对象范围广,宜采用抽样调查的方式,故A正确;B、了解一沓钞票中有没有假钞,要求调查结果准确,采用全面调查的方式,故B 错误;C、了解某种灯泡的使用寿命,调查具有破坏性,采用抽样调查的方式,故C错误;D、了解我国初中生每周阅读的时间,调查对象范围广,宜采用抽样调查的方式,故D错误;应选:A、点评:此题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查、3、〔2018秋•太原期末〕以下运算中,正确的选项是〔〕A、 3X+2X2=5X3B、 2A2B﹣A2B=1C、﹣AB﹣AB=﹣2ABD、 7X+5X =12X2考点:合并同类项、专题:计算题、分析:原式各项合并得到结果,即可做出判断、解答:解:A、原式不能合并,错误;B、原式=A2B,错误;C、原式=﹣2AB,正确;D、原式=12X,错误、应选C、点评:此题考查了合并同类项,熟练掌握合并同类项法那么是解此题的关键、〔2018秋•太原期末〕如图是一个正方体的平面展开图,在这个正方体中,与“我”4、字所在的面相对的面上的字是〔〕A、中B、国C、的D、梦考点:专题:正方体相对两个面上的文字、分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答、解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“梦”是相对面,“们”与“中”是相对面,“的”与“国”是相对面、应选D、点评:此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题、5、〔2018秋•太原期末〕如图,长方形的长是3A,宽是2A﹣B,那么长方形的周长是〔〕A、 10A﹣2BB、 10A+2BC、 6A﹣2BD、 10A﹣B考点:整式的加减、专题:探究型、分析:直接根据长方形的周长公式进行解答即可、解答:解:∵长方形的长是3A,宽是2A﹣B,∴长方形的周长=2〔3A+2A﹣B〕=10A﹣2B、应选A、点评:此题考查的是整式的加减及长方形的周长,熟知长方形的周长=2〔长+宽〕是解答此题的关键、6、〔2018秋•太原期末〕如果2〔X+1〕的值与2﹣X的值互为相反数,那么X等于〔〕A、﹣4B、 0C、 1D、﹣2考点:解一元一次方程、分析:根据互为相反数两数之和为0列出方程,求出方程的解即可得到X的值、解答:解:由题意得2〔X+1〕+2﹣X=0解得:X=﹣4、应选:A、点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解、7、〔2018秋•太原期末〕在等式S=〔A+B〕H中,A=3,H=4,S=16,那么B 等于〔〕A、 1B、 3C、 5D、 7考点:解一元一次方程、专题:计算题、分析:将A,H及S的值代入等式中计算即可求出B的值、解答:解:将A=3,H=4,S=16代入等式得:16=×〔3+B〕×4,解得:B=5、应选C、点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解、8、〔2018秋•太原期末〕以下说法中,正确的选项是〔〕A、 1、45°=87′B、 1800″=30°C、当时钟指向3:30时,时针与分钟的夹角是90°D、两个锐角的和一定是钝角考点:度分秒的换算;钟面角;角的计算、分析:根据度分秒的换算,可判断A、B;根据钟面角,可判断C;根据角的和差,可判断D、解答:解:A、1、45°=87′,故A正确;B、1800″=30′=0、5°,故B错误;C、当时钟指向3:30时,时针与分钟的夹角是75°,故C错误;D、两个锐角的和可能是锐角、可能是钝角,故D错误;应选:A、点评:此题考查了度分秒的换算,大的单位化小的单位乘以进率,小的单位化大的单位除以进率、9、〔2018秋•太原期末〕如图,OC是∠AOB的角平分线,∠BOD=∠COD,∠BOD=20°,那么∠AOD的度数等于〔〕A、 130°B、 120°C、 110°D、 100°考点:角平分线的定义、分析:先由∠BOD=∠COD,∠BOD=20°,得出∠COD=3∠BOD=60°,根据角的和差求出∠BOC=∠COD﹣∠BOD=40°,再利用角平分线定义得出∠AOB=2∠BOC=80°,于是根据∠AOD=∠AOB+∠BOD即可求解、解答:解:∵∠BOD=∠COD,∠BOD=20°,∴∠COD=3∠BOD=60°,∴∠BOC=∠COD﹣∠BOD=40°,∵OC是∠AOB的角平分线,∴∠AOB=2∠BOC=80°,∴∠AOD=∠AOB+∠BOD=80°+20°=100°、应选D、点评:此题考查了角平分线的定义,及角的和差计算,解题的关键是先求出∠BOC 的度数,再根据角平分线的定义,求出∠AOB的度数、10、〔2018秋•太原期末〕按如图方式摆放餐桌和椅子,照这样的方式继续排列餐桌,如果要摆放N张餐桌,那么应摆放的椅子数为〔〕A、 6NB、 4N+2C、 7N﹣1D、 8N﹣2考点:规律型:图形的变化类、分析:第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子、第N张餐桌共有6+4〔N﹣1〕=4N+2、解答:解:有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,∵多一张餐桌,多放4把椅子,∴第N张餐桌共有6+4〔N﹣1〕=4N+2、应选:B、点评:此题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律解决问题、【二】填空题〔本大题共6个小题,每题3分,共18分〕11、〔2018秋•太原期末〕太原市公共自行车项目是为了缓解交通拥堵、减少环境污染和方便市民出行的民生工程重点项目之一,截止2018年12月,累计租骑公共自行车总量已达到2、217亿车次,这个数据用科学记数法表示为2、217×108车次、考点:科学记数法—表示较大的数、分析:科学记数法的表示形式为A×10N的形式,其中1≤|A|《10,N为整数、确定N的值时,要看把原数变成A时,小数点移动了多少位,N的绝对值与小数点移动的位数相同、当原数绝对值》1时,N是正数;当原数的绝对值《1时,N是负数、解答:解:将2、217亿用科学记数法表示为:2、217×108、故答案为:2、217×108、点评:此题考查科学记数法的表示方法、科学记数法的表示形式为A×10N的形式,其中1≤|A|《10,N为整数,表示时关键要正确确定A的值以及N的值、12、〔2018秋•太原期末〕,点C在线段AB上,AB=10CM,AC=4CM,那么线段BC的长等于6CM、考点:两点间的距离、分析:根据线段的和差,可得答案、解答:解:由线段的和差,得BC=AB﹣AC=10﹣4=6CM,故答案为:6、点评:此题考查了两点间的距离,利用线段的和差解题是解题关键、13、〔2018秋•太原期末〕,X=﹣2是方程MX﹣3=5的解,那么M的值为﹣4、考点:一元一次方程的解、分析:把X的值代入方程求解即可、解答:解:把X=﹣2代入MX﹣3=5,得M=﹣4,故答案为:﹣4、点评:此题主要考查了一元一次方程的解,解题的关键是把方程的值代入方程、14、〔2018秋•太原期末〕如图,数学课代表用折线统计图呈现了A、B两名同学最近5次的数学成绩,由统计图可知,A同学的进步大、考点:折线统计图、分析:根据折线统计图可知,A、B两名同学第一次成绩都是70分,5次成绩是逐渐提高,到第5次A同学成绩在90分以上,B同学只达到85分,所以A同学的进步大、解答:解:由图可知,A、B两名同学第一次成绩都是70分,折线从左往右逐渐上升,即5次成绩是逐渐提高,到第5次时A同学成绩在90分以上,B同学只达到85分,所以A同学的进步大、故答案为A、点评:此题考查了折线统计图的定义与特点,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来、以折线的上升或下降来表示统计数量增减变化、折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况、15、〔2018秋•太原期末〕检修一台机器,甲、乙两组单独检修分别需4小时、6小时完成,如果甲组先检修1小时,然后两组合作,还需几小时才能完成这台机器的检修任务?设两组合作还需X小时才能完成这台机器的检修任务,根据题意列出的方程是+〔+〕X=1、考点:由实际问题抽象出一元一次方程、分析:根据工作量=工作效率×工作时间,当工作完成时,工作量就是1,设还需X小时完成,根据公式可列方程求解、解答:解:设两组合作还需X小时才能完成这台机器的检修任务,根据题意得+〔+〕X=1,故答案为+〔+〕X=1、点评:此题考查了由实际问题抽象出一元一次方程,关键是找出题目中的相等关系、16、〔2018秋•太原期末〕小红在某月的日历中任意框出如下图的四个数,但不小心将墨水滴在上面遮盖了其中的两个数,用含字母B的代数式表示A的结果是A=B+5、考点:列代数式、分析:日历中同一行中相邻的两个数,左边的一个总比右边的一个小1;同一列中,上边的一个总比下边的一个小7,由此注意表示得出答案即可、解答:解:A=B﹣1+7﹣1=B+5、故答案为:B+5、点评:此题考查列代数式,根据日历表的特点得出这四个数之间的关系是解题的关键、【三】解答题〔本大题共8个小题,共52分〕解答应写出必要的文字说明或演算步骤17、〔2018秋•太原期末〕计算以下各式:〔1〕﹣11+12×〔﹣4〕÷|﹣8|;〔2〕〔﹣〕×30+〔﹣3〕2、考点:有理数的混合运算、分析:〔1〕先算乘法和绝对值,再算除法,最后算加法;〔2〕先算乘方,乘法利用乘法分配律简算,最后算加减、解答:解:〔1〕原式=﹣11+〔﹣48〕÷8=﹣11﹣6=﹣17;〔2〕原式=×30﹣×30+9=5﹣12+9=2、点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可、18、〔2018秋•太原期末〕化简以下各式:〔1〕〔4A2﹣4A﹣1〕﹣2〔3A2﹣A+1〕;〔2〕﹣3〔X﹣Y2〕+〔﹣X+Y2〕考点:整式的加减、专题:计算题、分析:原式去括号合并即可得到结果、解答:解:〔1〕原式=4A2﹣4A﹣1﹣6A2+2A﹣2=﹣2A2﹣2A﹣3;〔2〕原式=﹣3X+Y2﹣X+Y2=﹣4X+2Y2、点评:此题考查了整式的加减,熟练掌握运算法那么是解此题的关键、19、〔2018秋•太原期末〕解以下方程:〔1〕3﹣2X=7+X;〔2〕=1+、考点:解一元一次方程、专题:计算题、分析:〔1〕方程移项合并,把X系数化为1,即可求出解;〔2〕方程去分母,去括号,移项合并,把X系数化为1,即可求出解、解答:解:〔1〕方程移项合并得:3X=﹣4,解得:X=﹣;〔2〕去分母得:4〔X﹣1〕=12+3〔X+1〕,去括号得:4X﹣4=12+3X+3,解得:X=19、点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解、20、〔2018秋•太原期末〕在学习求代数式的值的内容时,小明发现:当N=1,2,3时,N2﹣10N﹣1的值都是负数,于是他猜想:当N为任意正整数时,N2﹣10N﹣1的值都是负数、〔1〕当N=1,2,3时,分别求代数式N2﹣10N﹣1的值;〔2〕判断小明的猜想是否正确,请举例说明、考点:代数式求值、专题:计算题、分析:〔1〕把N=1,2,3分别代入代数式求出值即可;〔2〕小明的猜想错误,当N=11时,代数式的值大于0、解答:解:〔1〕当N=1时,原式=1﹣10﹣1=﹣10;当N=2时,原式=4﹣20﹣1=﹣17;当N=3时,原式=9﹣30﹣1=﹣22;〔2〕小明的猜想错误,N2﹣10N﹣1=N2﹣10N+25﹣26=〔N﹣5〕2﹣26≥﹣26,当N=11时,原式=10》0、点评:此题考查了代数式求值,熟练掌握运算法那么是解此题的关键、21、〔2018秋•太原期末〕如图,线段A,B和∠O、〔1〕用直尺和圆规在∠O的一边上作线段OA=A,在另一边上作线段OB=B,并作直线AB〔2〕根据〔1〕中作出的图形,解答以下问题:①用大写字母表示所有的线段:OA,OB,AB②以点A为端点的射线共有1条、考点:作图—基本作图;直线、射线、线段、分析:〔1〕以点O为圆心,分别以线段A,B为半径画圆,使OA=A,OB=B,作过AB的直线即可;〔2〕①根据线段的表示方法表示出所有的线段;②根据射线的定义写出所有的射线、解答:解:〔1〕如下图;〔2〕①由图可知,线段有OA,OB,AB、故答案为:OA,OB,AB;②以点A为端点的射线有射线AB,共1条、故答案为:1、点评:此题考查的是作图﹣基本作图,熟知作一条线段等于线段的作法是解答此题的关键、22、〔2018秋•太原期末〕小彬和小颖相约到书城去买书,下面是两人的对话、小彬:“听说花20元办一张会员卡,买书可享受八五折优惠、”小颖:“是的,我上次买了几本书,加上办一张会员卡的费用,最后还省了10元、”请你根据他们对话的内容,求小颖上次所买图书的原价、考点:一元一次方程的应用、分析:设购买图书的原价为X元,根据原价×折扣+20元=原价﹣10元,据此列方程求解、解答:解:设购买图书的原价为X元,由题意得,0、85X+20=X﹣10,解得:X=200、答:小颖上次所买图书的原价为200元、点评:此题考查了一元一次方程的应用,解答此题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解、23、〔2018秋•太原期末〕为了丰富学生的在校生活,某校要求每个学生必须从音乐、体育、美术、书法等各类活动中只选择一类参与,学校为了解学生中申报活动的情况,先在全校范围内随机调查了部分学生,并将调查结果绘制成如图统计图、〔1〕这次一共调查了多少名学生?〔2〕求扇形统计图中“音乐”类所在扇形的圆心角的度数;〔3〕假设该校共有2400名学生,请估计参加“美术”类活动的人数、考点:条形统计图;用样本估计总体;扇形统计图、分析:〔1〕求得各组的人数的和即可;〔2〕利用360乘以对应的比例即可;〔3〕利用总人数2400乘以对应的比例即可、解答:解:〔1〕调查的总人数是:12+16+6+10+4=48〔人〕;〔2〕扇形统计图中“音乐”类所在扇形的圆心角的度数是:360×=90°;〔3〕估计参加“美术”类活动的人数是:2400×=300〔人〕、点评:此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键、条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小、24、〔2018秋•太原期末〕如图,数轴上有A、B、C、D、O五个点,点O为原点,点C在数轴上表示的数是5,线段CD的长度为4个单位,线段AB的长度为2个单位,且B、C两点之间的距离为11个单位,请解答以下问题:〔1〕点D在数轴上表示的数是9,点A在数轴上表示的数是﹣8;〔2〕假设点B以每秒2个单位的速度向右匀速运动T秒运动到线段CD上,且BC 的长度是3个单位,根据题意列出的方程是11﹣2T=3,解得T=4;〔3〕假设线段AB、CD同时从原来的位置出发,线段AB以每秒2个单位的速度向右匀速运动,线段CD以每秒3个单位的速度向左匀速运动,把线段CD的中点记作P,请直接写出,点P与线段AB的一个端点的距离为1、5个单位时运动的时间、考点:一元一次方程的应用;数轴、分析:〔1〕根据题意以及数轴上所表示的数字写出点D、A表示的数字;〔2〕用BC的长度减去点B运动的距离=3,据此列方程求解;〔3〕线段CD的中点P的位置为7,分四种情况求出点P与线段AB的一个端点的距离为1、5个单位时运动的时间、解答:解:〔1〕∵点C在数轴上表示的数是5,CD=4,AB=2,BC=11,∴点D在数轴上表示的数是9,点B在数轴上表示的数是﹣6,点A在数轴上表示的数是﹣8;〔2〕由题意得,11﹣2T=3,解得:T=4;〔3〕由题意得,线段CD的中点P的位置为7,①当点P在点B右侧1、5个单位时,13﹣2T﹣3T=1、5,解得:T=2、3;②当点P在点B左侧1、5个单位时,2T+3T﹣13=1、5,解得:T=2、9;③当点P在点A右侧1、5个单位时,15﹣2T﹣3T=1、5,解得:T=2、7;④当点P在点A左侧1、5个单位时,2T+3T﹣15=1、5,解得:T=3、3、答:点P与线段AB的一个端点的距离为1、5个单位时运动的时间为2、3S,2、7S,2、9S,3、3S、故答案为:9,﹣8;11﹣2T=3,4、点评:此题考查了一元一次方程的应用和数轴、解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解、。
山西省2018-2019学年第二学期七年级阶段三质量评估试题·数学(人教版)·答案
七年级数学答案(人教版) 第 3 页 (共 3 页)
根据题意可列方程组
姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 6 分
x+y=7+5.
x=8,
解这个方程组的解可得
姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 8 分
y=4.
答:n 的值为 84. 姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 9 分
21. 解:(1)设每枚黄金重 x 两,每枚白银重 y 两, 姨姨姨姨姨姨姨姨姨姨姨姨姨姨 1 分
火车站、体育场、医院的坐标分别是(0,0),(-4,3),(-2,-3). 姨姨姨姨姨姨 5 分
(2)7.5 姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 8 分
x+2y=12, ①
19.%解:根据题意可得方程组
姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 2 分
x-y=3. ②
由②得,x=y+3. ③ 姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 3 分
山西省 2018-2019 学年第二学期七年级阶段三质量评估试题
数学(人教版)参考答案和评分标准
一、选择题(每小题 3 分,共 30 分)
题 号 1 2 3 4 5 6 7 8 9 10 选项 B A C B C D A A B D
二、填空题(每小题 3 分,共 15 分)
11. 6
x=2, 12.
把 x=3 代入①,得 y=2. 姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 9 分
x=3,
所以这个方程组的解是
姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨姨 10 分
y=2.
七年级数学答案(人教版) 第 1 页 (共 3 页)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)2 x+1 -3=5 的解是
;
(3)示例中解法一的研究方法主要体现的数学思想是
.
七年级数学 (人教版) 第 4 页 (共 4 页)
山西省 2018-2019 学年第一学期七年级阶段三质量评估试题
数学(人教版)参考答案和评分标准
一、选择题(每小题 3 分,共 30 分)
题号 选项
12345678 C D C AB AD B
☆ ☆☆ ☆ 17.( % 本题
7
分)设
A=-
1 2
x-4
x-
1 3
y
+
-
3 2
x+
2 3
y
.
(1)当 x=-2,%y=3 时,求 A 的值;
(2)若 -3x+y=2,则 A=%%%%%%%%%%%%%%%%%%. 18.(本题 8 分)当 x 等于什么数时,x- x-1 的值:
3
(1)是 1;
(2)与 1 互为相反数.
15. 定义“☆”运算为 a☆b=ab+2a,例如:1☆3=1×3+2×1=5.若(3☆x)=22-(x☆3),则 x=
.
三、解答题(本大题共 8 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤)
16.( % 本题 10 分)
(1)计算:-32+24÷[5-(-1)3%];
(2)解方程: x+1 -3=3x-5.%%%%% 2
项符合题目要求)
1. -6 的倒数是
A. -6
B. 6
2. 单项式- 5t2 的系数是 3
A. 5
B. -5
C. - 1 6
%%%%%%%%%%%%C.
5 3
D. 1 6
D.
-
5 3
3. 已知 y3n 和 yn+6 是同类项,则 n 是
A. 1
B. 2
%%%%%%%%%%%%C. 3
D. 4
4. 若 x=-3 是方程 x+a=5 的解,则 a 的值是
=-2ab+6a2-a2+5ab-5a2-2ab !!!!!!!!!!!!!!!!!!!!! 6 分
=ab. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 7 分
当
a=-
3 2
,b=
1 2
时,原式=-
3 2
×
1 2
=-
3 4
.%%%%
!!!!!!!!!!!!!!!
10 分
20. 解:(1)窗眉用布所占面积相当于半径为 b 的圆的面积的一半,即 1 πb2,窗户能射进
A. 120 元
B. 100 元
C. 80 元
D. 60 元
10. 计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,…,归纳各计算结果中的个位数字的
规律,猜测 218-1 的个位数字是
A. 1
B. 3
C. 5
D. 7
第Ⅱ卷 非选择题 (共 90 分)
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)
(2)4 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 7 分
七年级数学(人教版) 答案 第 1 页 (共 3 页)
18.
解:(1)根据题意,得
x-
x-1 3
=1.%
方程两边都乘以 3,得 3x-(x-1)=3. 去括号,得 3x-x+1=3. !!!!!!!!!!!!!!!!!!!!!! 2 分
移项、合并同类项,得 2x=2.
系数化为 1,得 x=1. !!!!!!!!!!!!!!!!!!!!!!! 4 分
(2)根据题意,得
x-
x-1 3
+1=0.
方程两边都乘以 3,得 3x-(x-1)+3=0. 去括号,得 3x-x+1+3=0. !!!!!!!!!!!!!!!!!!!!! 6 分
移项、合并同类项,得 2x=-4.
系数化为 1,得 x=-2. !!!!!!!!!!!!!!!!!!!!!!! 8 分
19.
解:(1)b=-
3 2
+2=
1 2
.%%%%
!!!!!!!!!!!!!!!!!!!!!!! 3 分
(2)-2(ab-3a2)-[a2-5(ab-a2)+2ab]
=-2(ab-3a2)-(a2-5ab+5a2+2ab) !!!!!!!!!!!!!!!!!!! 5 分
19.(本题 10 分)如图,一只蚂蚁从点 M 沿数轴向右爬行 2 个单位长度到达点 N,点 M 表
示的数
a
是
-
3 2
,设点 N 表示的数为 b.
M
N
-2 a -1 0 b 1 2
(1)求 b 的值;
(2)对-2(ab-3a2)-[a2-5(ab-a2)+2ab]进行化简,并求值.
20.(本题 10 分)装修公司给小红家的窗户设计了如图所示的装修方案,上方布料窗眉
当 x<0 时,原方程化为-x+1=3,解方程,得 x=-2,
所以方程 x +1=3 的解是 x=2 或 x=-2.
解法二:移项,得 x =3-1,合并同类项,得 x =2,
由绝对值的定义知 x=±2,所以原方程的解为 x=2 或 x=-2.
问题:用你发现的规律解方程:
(1) x -7=-5(用两种方法解);
! "! " 17.
解:(1)原式
=-
1 2
x-4
x- 1 3
y
+ - 3 x+ 2 y 23
=-
1 2
x-4x+
4 3
y-
3 2
x+
2 3
y
!!!!!!!!!!!!!!! 1 分
=-6x+2y. !!!!!!!!!!!!!!!!!!!!!!! 3 分
当 x=-2, y=3 时,A=-6×(-2)+2×3=18. !!!!!!!!!!!!!!!! 5 分
答:乙组单独修完需要 40 天,学校共库存 840 套桌凳. !!!!!!!!! 8 分
22. 解:(1)设小亮妈妈买了 x 千克西瓜, !!!!!!!!!!!!!!!! 1 分 根据题意,得 15-(3.2x+2.0×2)=1.4. !!!!!!!!!!!!!!!!! 4 分
(2)(答案不唯一)小明爸爸在超市花 20 元钱买了梨和香蕉两种水果共 6 千克,问小 明爸爸买了梨和香蕉各多少千克? !!!!!!!!!!!!!!!! 5 分
11. 写出一个绝对值小于 4.6 的整数
.
12.
已知
1 2
m=1,则比 m 小 3 的数为
.
13. 当 x=
时,代数式 3x+1 与 5x-8 的值相等.
14. 若长方形的一边长为 3a,另一边比它大 2a,且这个长方形的周长为 24,则可列方程为
.
七年级数学 (人教版) 第 2 页 (共 4 页)
运土 12 m3,为了使挖出的土能恰好运完,若安排 x 台机械挖土,则可列方程为
A. 18x-12x=15
B. 18x=12(15-x)
C. 12x=3(15-x)
D. 18x+12x=15
9. 互联网“微商”销售已成为大众创业新途径,某微信平台上一件商品标价为 200 元,按
标价的五折销售,仍可获利 20 元,则这件商品的进价为
方法二:设学校共库存 x 套桌凳. !!!!!!!!!!!!!!!!!! 1 分
由题意可得:
x 14
-20=
x 14+7
.
!!!!!!!!!!!!!!!!!!! 3 分
解得:x=840. !!!!!!!!!!!!!!!!!!!!!!!!!! 5 分
乙组单独修完需要 840 14+7
=40(天).
!!!!!!!!!!!!!!!!! 7 分
2
8
阳光的面积为:ab- 1 πb2. 8
!!!!!!!!!!!!!!!!!!!! 6 分
(2)1 πb2 是单项式,次数是 2; 8
!!!!!!!!!!!!!!!!!! 8 分
(ab- 1 πb2)是多项式,次数是 2. 8
!!!!!!!!!!!!!!!!!! 10 分
七年级数学(人教版) 答案 第 2 页 (共 3 页)
两木工组,甲组每天修桌凳 14 套,乙组每天比甲组多修 7 套,甲组单独修完这些桌凳
比乙组单独修完多用 20 天.请问乙组单独修完需要多少天? 学校共库存多少套桌凳?
22.(本题 10 分)某超市的水果价格如下表所示:
品种
苹果 西瓜 橘子
梨
香蕉
价格(元/千克) 4.0
3.2
1.8
2.0
3.6
(1)列出下列问题的方程:小亮妈妈在超市买了 2 千克梨和若干千克西瓜,她给售货员
9 10 CB
二、填空题(每小题 3 分,共 15 分)
11. 0(答案不唯一)
12. -1
13. 4.5
14. 2(3a+5a)=24
15. 2
三、解答题(本大题共 8 小题,共 75 分)
16. 解:(1)原式=-9+24÷[5-(-1)] !!!!!!!!!!!!!!!!!!! 3 分
=-9+24÷6
A. 21
B. 14
C. 11
D. 25
七年级数学 (人教版) 第 1 页 (共 4 页)
7. 公元 820 年左右,中亚细亚的一位数学家曾写过一本名叫《对消与还原》的书,重点讨