北师大版2018八年级数学上册期中模拟测试题一(附答案)
2018年秋期北师大版八年级上学期数学期中测试题一(含答案)

2018年秋期北师大版八年级上学期数学期中测试题一(含答案)象限 D. 第四象限5. 化简下列式子:①44229339---===---;②()201520152=-;③()1642=-; ④2282=-+-a a ;⑤()201520152-=-.其中正确的是( )A. ①和⑤B. ②和③C.①和③ D. ②和④6. 如图2,长方形OABC 的边OA 在x 轴上,O与原点重合,OA =1,OC =2,点D 的坐标为(0,4),则直线BD 的函数表达式为( )A. y =-x +2B. y =-2x +4C. y =-x+3 D. y =2x +47. 如图3,在平面直角坐标系中,点P 的坐标为(-2,3),以点O 为圆心,OP 长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( )A. -4与-3之间B. 3与4之间C. -5与-4之间D. 4与5之间8. 直线y =ax +b 与y =bx +a 在同一平面直角坐标系中的图象位置可能是( )A BC D9. 如图4,在平面直角坐标系xOy图中,A ,B 都是直线y =-2x +m (m 为常数)上的点,且横坐标分别是-1,2,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积为( )A. 6B. 9C. 12D. 因m 不确定,故面积不确定10. 一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y (千米)与行驶时间x (小时)之间的函数图象如图5所示,则下列说法中错误的是( )A. 客车比出租车晚4小时到达目的地B. 客车速度为60千米/时,出租车速度为100千米/时C. 两车出发后3.75小时相遇D. 两车相遇时客车距乙地还有225千米二、细心填一填(每小题3分,共24分)11. 若二次根式+5x 有意义,则x 的取值范围是_______.12. 已知一次函数y =(m -1)x +2的图象不经过第三象限,则m 的取值范围是_______.13. 已知一个正数的两个平方根分别是3x -2和4-x ,则这个正数是_____.14. 如图6,已知点A (a ,b ),O 是原点,OA =OA 1,OA ⊥OA 1,则点A 1的坐标为______.图y /x /O15. 实数a ,b 在数轴上对应的点分别为A ,B ,且A 在原点左侧,B 在原点右侧,化简|a -b|-2a =_____. 16. 如图7,点A (a ,4)在一次函数y =-3x -5的图象上,图象与y 轴的交点为B ,则△AOB 的面积为_____.17. 如图8,已知∠B =45°,AB =2cm ,点P 为∠ABC 的边BC 上一动点,则当BP =_______cm 时,△BAP 为直角三角形. 18. 如图9,在平面直角坐标系中,一颗棋子从点P (0,-2)处开始依次关于点A (-1,-1),B (1,2),C (2,1)作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再跳到点N 关于点C 的对称点处,……,如此下去,则经过第2019次跳动之后,棋子落点的坐标为______.三、耐心做一做(共66分)19.(6分)计算:(1)281822--;(2)()()73668376--.20.(6分)如图10,一次函数图象经过点A ,且与正比例函数y x =-的图象交图图图O x y A (a A 图于点B ,求一次函数的表达式.21.(8分)(1)若点M (5+a ,a -3)在第二、四象限的角平分线上,求a 的值;(2)已知点N 的坐标为(2-a ,3a +6),且点N到两坐标轴的距离相等,求点N 的坐标.22.(8分)阅读下列内容:∵1<2<4,∴1<2<2.∴2的整数部分是1,小数部分是2-1.试完成下列问题:(1)求13的整数部分和小数部分;(2)若9+13和9-13的小数部分分别是a 和b ,求ab -3a +4b +8的值.23.(7分)如图11,已知∠AOB =90°,OA =90 cm ,OB =30 cm ,一机器人在点B 处感应到点A 处的小球沿AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,且恰好在点C 处截住了小球,如果小球滚动的速度与机器人行走的速度相等,试求机器人行走的路程BC.24.(9分)一艘轮船与一艘快艇沿相同方向行驶,图12所示为轮船与快艇行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象). 根据图象解答图O y/千米x/小时 图图① ② 图下列问题:(1)请分别写出轮船和快艇行驶过程中路程与时间的函数关系式(不写自变量的取值范围);(2)轮船和快艇在途中行驶的速度分别是多少?(3)问快艇出发多长时间赶上轮船?25.(10分)如图13-①,一个长方体的木柜放在墙角处(与墙面和地面均没有缝隙),一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处. 如图13-②,小明认为蚂蚁能够最快到达目的地的路线为AC 1,小王认为蚂蚁能够最快到达目的地的路线为AC 1′. 已知AB =BC =4,CC 1=5,请你帮助他们求出蚂蚁爬过的最短路线的长.26.(12分)如图14,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在线段OA 和射线AC 上运动,试解决下列问题:(1)求直线AC 的表达式;(2)求△OAC 的面积;(3)是否存在点M ,使△OMC 的面积是△OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.参考答案一、1. A 2. B 3. A 4. D 5. D 6. B 7.A 8. A 9.B 10. D二、11. x≥-5 12. m<1 13. 25 14.(-b,a)15. b 16. 7.5 17. 2218.(4,4)提示:连接PA并延长到点M,使AM=PA,则点M的坐标是(-2,0);连接MB并延长到点N,使BN=MB,则点N的坐标是(4,4);连接NC并延长到点Q,使QC=NC,发现点Q与点P 重合.因为棋子跳动3次后又回到点P处,所以经过第2019次跳动后,即2019÷3=671……2,棋子落在点N 处,故其坐标为(4,4).三、19.(12(2)420-220. 解:由图象可知,一次函数图象经过点A(0,2),点B的横坐标是-1.因为点B在正比例函数y x=-图象上,所以y=- (-1)=1.所以点B的坐标为(-1,1).设一次函数表达式为y=kx+b,把A(0,2),B(-1,1)代入,得b=2,k=1,所以一次函数的表达式为y=x+2.21. 解:(1)由题意,得5+a+a-3=0,解得a =-1;(2)由题意,得|2-a|=|3a+6|,即2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4,所以点N的坐标为(3,3)或(6,-6).22. 解:(1)因为313<413的整数部分是3133;(2)因为913913的小数部分分别是a和b,所以a=913-9-313-3,b=9135=4 13所以ab-3a+4b+8=133)(413-313-3)+4(4138=13-13-12+13139+16-138=8.23. 解:设机器人行走的路程BC是x cm,则AC =BC=x cm.因为AC=90 cm,所以OC=(90-x)cm. 由勾股定理,得302+(90-x)2=x2,解得x=50,即BC =50 cm.所以机器人行走的路程是50 cm.24. 解:(1)设快艇行驶过程中路程与时间的函数关系式是y1=k1x,把点(8,160)代入,得160=8 k1,解得k1=20.所以快艇行驶过程中路程与时间的函数关系式是y1=20x;设轮船行驶过程中路程与时间的函数关系式为y2=k2x+b.由图象,知该直线过(0,40),(8,120),所以b =40,8k2+b =120,解得k2=10.所以轮船行驶过程中路程与时间的函数关系式为第 11 页y 2=10x+40;(2)由图象可以看出,快艇在8小时内行驶了160千米,所以它的速度是160÷8=20(千米/时),轮船在8小时内行驶了120-40=80(千米),所以轮船的速度是80÷8=10(千米/时);(3)设快艇出发x 小时赶上轮船,根据题意得10x+40=20x ,解得x=4.所以快艇出发4小时赶上轮船.25. 解:蚂蚁沿着木柜表面经线段A 1B 1到C 1′,爬过路线的长是L 1()224+4+5=97;蚂蚁沿着木柜表面经线段BB 1到C 1,爬过路线的长是L 2()224+4+5=89. 因为L 1>L 289 26. 解:(1)因为点C 的坐标为(0,6),所以设直线AC 的函数表达式为y =kx +6. 因为点A 的坐标为(4,2),所以4k +6=2,解得k =-1.所以直线AC 的函数表达式为y =-x +6.(2)由已知,得OC =6.因为点A 的坐标为(4,2),所以△OAC 的边OC 上的高为4.所以1=2OAC S ∆×6×4=12.(3)①如图1,当点M 位于线段OA 上时,设点M 的坐标为(a ,b ),则△OMC 的边OC 上的高为a.所以14OMC S ∆=OAC S ∆=14×12=3.第 12 页 因为OC =6,所以12×6a =3.所以a = 1. 因为点A 的坐标为(4,2),所以直线OA 的函数表达式为y =12x.因为点M 在直线OA 上,所以b =12×1=12.所以当点M 的坐标为112⎛⎫ ⎪⎝⎭,时,△OMC 的面积是△OAC 面积的14; ②如图2,当点M 位于线段AC 上时,设点M 的坐标为(m ,n ),同①可得m =1.因为点M 在直线AC 上,所以n =-1+6=5.所以当点M 的坐标为(1,5)时,△OMC 的面积是△OAC 面积的14; ③如图3,当点M 位于射线CM 上时,设点M 的坐标为(s ,t ),同①可得s =-1.因为点M 在直线AC 上,所以t =-(-1)+6=7.所以当点M 的坐标为(-1,7)时,△OMC 的面积是△OAC 面积的14. 综上所述,存在满足题意的点M ,其坐标为112⎛⎫ ⎪⎝⎭,或(1,5)或(-1,7).图图图。
北师大版八年级上册数学期中考试试题含答案

北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。
2018-2019学年最新北师大版八年级数学上学期期中模拟检测试题及答案解析-精品试题

八年级上学期期中数学试卷一、选择题(每题3分,满分30分)1.知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或252.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A. 2 B. 3 C. 4 D. 53.下列说法中,正确的是()A.数轴上的点表示的都是有理数B.无理数不能比较大小C.无理数没有倒数及相反数D.实数与数轴上的点是一一对应的4.下列各式中,正确的是()A.=﹣2 B.(﹣)2=9 C.±=±3D.=﹣35.给出下列说法:①﹣6是36的平方根;②16的平方根是4;③是无理数;④﹣=2;⑤一个无理数不是正数就是负数.其中,正确的说法有()A.①③⑤B.②④ C.①③D.①6.下列各组数中互为相反数的是()A.5和B.﹣5和C.﹣5和D.﹣|﹣5|和﹣(﹣5)7.下列一次函数中,y随x增大而减小的是()A.y=3x B.y=3x﹣2 C. y=3x+2x D.y=﹣3x﹣28.在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为()A. 5 B. 2 C. 3 D. 49.一次函数y=﹣5x+3的图象经过的象限是()A.一,二,三B.二,三,四C.一,二,四D.一,三,四10.下列各图给出了变量x与y之间的函数是()A.B.C.D.二、填空题(每小题3分,共30分)11.的平方根是,的立方根是,5的算术平方根是.12.若的整数部分为a,小数部分为b,则a=,b=.13.已知一个数的平方根为a+3与2a﹣15,则这个数是.14.若函数y=(m﹣2)是正比例函数,则m的值是.15.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为.16.一次函数y=2x+b的图象与两坐标轴所围成的三角形的面积为8,则b=.17.若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为.18.若将直线y=﹣2x﹣5向上平移4个单位,则所得直线的表达式为.19.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.20.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.三、解答题(满分40分)21.计算题:(1)﹣(1﹣)0;(2)﹣4(1+)+;(3)+2﹣3﹣8;(4)(﹣1.414)0﹣﹣()﹣1+|1﹣|.22.求下列各式x的值(1)(x﹣1)3=(﹣1)2005(2)16x2﹣9=0.23.已知,如图,在平面直角坐标系中,S△ABC=24,OA=OB,BC=12,求△ABC三个顶点的坐标.24.已知y=+18,求代数式的值.25.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?26.已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x﹣3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.八年级上学期期中数学试卷一、选择题(每题3分,满分30分)1.知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或25考点:勾股定理的逆定理.分析:已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.解答:解:分两种情况:(1)3、4都为直角边,由勾股定理得,斜边为5;(2)3为直角边,4为斜边,由勾股定理得,直角边为.∴第三边长的平方是25或7,故选D.点评:本题利用了分类讨论思想,是数学中常用的一种解题方法.2.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B. 3 C. 4 D. 5考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答:解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列说法中,正确的是()A.数轴上的点表示的都是有理数B.无理数不能比较大小C.无理数没有倒数及相反数D.实数与数轴上的点是一一对应的考点:实数与数轴;无理数.专题:数形结合.分析:A、根据实数与数轴上的点的对应关系即可确定;B、根据无理数的定义即可判定;C、根据无理数的定义及性质即可判定;D、根据实数与数轴上的点的对应关系即可确定.解答:解:A、数轴上的点表示的不一定是有理数,有的是无理数,故选项错误;B、无理数可以比较大小,故选项错误;C、无理数有倒数及相反数,故选项错误;D、实数与数轴上的点是一一对应的,故选项正确.故选D.点评:本题考查了实数与数轴的对应关系,以及无理数的性质,也利用了数形结合的思想.4.下列各式中,正确的是()A.=﹣2 B.(﹣)2=9 C.±=±3 D.=﹣3考点:算术平方根;平方根;立方根.分析:根据算术平方根,二次根式的性质,平方根,立方根的定义求出即可.解答:解:A、结果是2,故本选项错误;B、结果是3,故本选项错误;C、结果是±3,故本选项正确;D、≠﹣3,=﹣3,故本选项错误;故选C.点评:本题考查了对算术平方根,二次根式的性质,平方根,立方根的定义的应用,主要考查学生的理解能力和计算能力.5.给出下列说法:①﹣6是36的平方根;②16的平方根是4;③是无理数;④﹣=2;⑤一个无理数不是正数就是负数.其中,正确的说法有()A.①③⑤B.②④C.①③D.①考点:实数.分析:根据开方运算,可判断①②③④,根据无理数是无限不循环小数,可判断⑤.解答:解:①﹣6是36的平方根,故①正确;②16的平方根是±4,故②错误;③27的立方根是3,3是有理数,故③错误;④﹣=2,故④正确;⑤一个无理数不是正数就是负数,故⑤正确;故选:D.点评:本题考查了实数,注意一个无理数不是正数就是负数.6.下列各组数中互为相反数的是()A.5和B.﹣5和C.﹣5和D.﹣|﹣5|和﹣(﹣5)考点:实数的性质.分析:根据只有符号不同的两个数互为相反数,可得答案.解答:解:A、两个数相等,故A错误;B、两个数互为倒数,故B错误;C、两个数相等,故C错误;D、只有符号不同的两个数互为相反数,故D正确;故选:D.点评:本题考查了实数的性质,只有符号不同的两个数互为相反数.7.下列一次函数中,y随x增大而减小的是()A.y=3x B.y=3x﹣2 C.y=3x+2x D. y=﹣3x﹣2考点:一次函数的性质;正比例函数的性质.分析:由一次函数的性质,在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.解答:解:在y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.A、函数y=3x中的k=3>0,故y的值随着x值的增大而增大.故本选项错误;B、函数y=3x﹣2中的k=3>0,y的值随着x值的增大而增大.故本选项错误;C、函数y=3x+2x=5x中的k=5>0,y的值随着x值的增大而增大.故本选项错误;D、函数y=﹣3x﹣2中的k=﹣3<0,y的值随着x值的增大而减小.故本选项正确;故选D.点评:本题考查了一次函数的性质,属于基础题,关键是掌握在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8.在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5 B. 2 C. 3 D. 4考点:无理数.分析:根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.解答:解:所给数据中无理数有:,π,2+,3.212212221…,共4个.故选D.点评:本题考查了无理数的知识,属于基础题,解答本题的关键是掌握无理数的三种形式.9.一次函数y=﹣5x+3的图象经过的象限是()A.一,二,三B.二,三,四C.一,二,四D.一,三,四考点:一次函数的性质.分析:根据直线解析式知:k<0,b>0.由一次函数的性质可得出答案.解答:解:∵y=﹣5x+3∴k=﹣5<0,b=3>0∴直线经过第一、二、四象限.故选C.点评:能够根据k,b的符号正确判断直线所经过的象限.10.下列各图给出了变量x与y之间的函数是()A. B.C.D.考点:函数的图象.分析:函数就是在一个变化过程中,有两个变量x,y,对于x的每一个值,y都有唯一的值与其对应,则x叫自变量,y是x的函数.在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.解答:解:A、B、C中对于x的值y的值不是唯一的,因而不符合函数的定义;D、符合函数定义.故选D.点评:本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.二、填空题(每小题3分,共30分)11.的平方根是±3,的立方根是,5的算术平方根是.考点:算术平方根;平方根;立方根.专题:计算题.分析:原式利用平方根,算术平方根,以及立方根的定义计算即可得到结果.解答:解:=9,9的平方根是±3,=4的立方根是,5的算术平方根是,故答案为:±3;;点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.12.若的整数部分为a,小数部分为b,则a=3,b=﹣3.考点:估算无理数的大小.分析:根据3<<4首先确定a的值,则小数部分即可确定.解答:解:∵3<<4,∴a=3,则b=﹣3.故答案是:3,﹣3.点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.13.已知一个数的平方根为a+3与2a﹣15,则这个数是49.考点:平方根.分析:根据两个平方根互为相反数,即可列方程得到a的值,然后根据平方根的定义求得这个数.解答:解:根据题意得:a+3+(2a﹣15)=0,解得:a=4,则这个数是(a+3)2=(4+3)2=49.故答案是:49.点评:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,正确求得a的值是关键.14.若函数y=(m﹣2)是正比例函数,则m的值是﹣2.考点:正比例函数的定义.分析:直接利用正比例函数的定义直接得出答案.解答:解:∵函数y=(m﹣2)是正比例函数,∴m2﹣3=1,m﹣2≠0,解得:m=±2,m≠2,故m=﹣2.故答案为:﹣2.点评:此题主要考查了正比例函数的定义,正确把握正比例函数的定义是解题关键.15.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为y=3x.考点:待定系数法求正比例函数解析式.专题:计算题;待定系数法.分析:直接将点的坐标代入函数关系式中,即可得到k,继而可得出解析式.解答:解:有y=kx,且点(1,3)在正比例函图象上故有:3=x.即k=3.解析式为:y=3x.点评:对已知点的坐标求一次函数的系数的简单考查,很简单.16.一次函数y=2x+b的图象与两坐标轴所围成的三角形的面积为8,则b=.考点:一次函数图象上点的坐标特征.分析:先求出直线与两坐标轴的交点,再根据三角形的面积公式即可得出结论.解答:解:∵令x=0,则y=b;令y=0,则x=﹣,∴直线与两坐标轴的交点分别为(0,b),(﹣,0),∴一次函数y=2x+b的图象与两坐标轴所围成的三角形的面积=|﹣|•|b|==8,解得b=±4.故答案为:±4.点评:本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.17.若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为(﹣3,﹣2).考点:关于x轴、y轴对称的点的坐标;非负数的性质:偶次方;非负数的性质:算术平方根.专题:计算题.分析:先求出a与b的值,再根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出M的对称点的坐标.解答:解:∵+(b+2)2=0,∴a=3,b=﹣2;∴点M(a,b)关于y轴的对称点的坐标为(﹣3,﹣2).点评:本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,也考查了非负数的性质.18.若将直线y=﹣2x﹣5向上平移4个单位,则所得直线的表达式为y=﹣2x﹣1.考点:一次函数图象与几何变换.分析:根据“上加下减”的原则进行解答即可.解答:解:由“上加下减”的原则可知,将函数y=﹣2x﹣5向上平移4个单位所得函数的解析式为y=﹣2x﹣5+4,即y=﹣2x﹣1.故答案为:y=﹣2x﹣1.点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.19.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm.考点:勾股定理的应用.分析:如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.解答:解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.点评:本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.20.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25.考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.解答:解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴,解得:,则a b的值为:(﹣5)2=25.故答案为:25.点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.三、解答题(满分40分)21.计算题:(1)﹣(1﹣)0;(2)﹣4(1+)+;(3)+2﹣3﹣8;(4)(﹣1.414)0﹣﹣()﹣1+|1﹣|.考点:二次根式的混合运算;零指数幂.分析:(1)首先化简二次根式,进而利用零指数幂的性质求出即可;(2)首先化简二次根式,进而合并即可;(3)首先化简二次根式,进而合并即可;(4)首先利用零指数幂的性质以及绝对值的性质和负指数幂的性质分别化简求出即可.解答:解:(1)﹣(1﹣)0=﹣1=1﹣1=0;(2)﹣4(1+)+=4﹣4﹣4+4=0;(3)+2﹣3﹣8=5+﹣18﹣=﹣13;(4)(﹣1.414)0﹣﹣()﹣1+|1﹣|=1+4﹣4+﹣1=.点评:此题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键.22.求下列各式x的值(1)(x﹣1)3=(﹣1)2005(2)16x2﹣9=0.考点:立方根;平方根.分析:(1)把x﹣1看作一个整体,然后根据立方根的定义求解即可;(2)先求出x2的值,再根据平方根的定义解答.解答:解:(1)∵(x﹣1)3=(﹣1)2005=﹣1,∴x﹣1=﹣1,解得x=0;(2)由16x2﹣9=0得,x2=,∴x=±.点评:本题考查了利用平方根和立方根求未知数的值,熟记概念是解题的关键,要注意整体思想的利用.23.已知,如图,在平面直角坐标系中,S△ABC=24,OA=OB,BC=12,求△ABC三个顶点的坐标.考点:三角形的面积;坐标与图形性质.分析:首先根据面积求得OA的长,再根据已知条件求得OB的长,最后求得OC的长.最后写坐标的时候注意点的位置.解答:解:∵S△ABC=BC•OA=24,OA=OB,BC=12,∴OA=OB===4,∴OC=8,∵点O为原点,∴A(0,4),B(﹣4,0),C(8,0).点评:写点的坐标的时候,特别注意根据点所在的位置来确定坐标符号.24.已知y=+18,求代数式的值.考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣8≥0且8﹣x≥0,解得x≥8且x≤8,所以,x=8,y=18,所以,﹣=﹣=2﹣3=﹣.点评:本题考查的知识点为:二次根式的被开方数是非负数,由x的取值范围求出x的值是解题的关键.25.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?考点:翻折变换(折叠问题).分析:连接BE,设CE=x,由折叠可知,AE=BE=10﹣x,把问题转化到Rt△BCE中,使用勾股定理.解答:解:连接BE,设CE=x∵将直角三角形的纸片折叠,A与B重合,折痕为DE∴DE是AB的垂直平分线∴AE=BE=10﹣x在Rt△BCE中BE2=CE2+BC2即(10﹣x)2=x2+62解之得x=,即CE=cm.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段相等.26.已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x﹣3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.考点:一次函数的性质;一次函数图象上点的坐标特征;两条直线相交或平行问题.专题:探究型.分析:(1)令x=0,y=0求出值即可;(2)根据互相平行的两条直线斜率相等求出m的值即可;(3)根据一次函数的性质求出m的取值范围.解答:解:(1)∵函数y=(2m+1)x+m﹣3的图象经过原点,∴当x=0时y=0,即m﹣3=0,解得m=3;(2)∵函数y=(2m+1)x+m﹣3的图象与直线y=3x﹣3平行,∴2m+1=3,解得m=1;(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<﹣.点评:本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时y随x的增大而减小是解答此题的关键.。
2018学年度第一学期八年级数学科期中考试试题(北师大)及答案

2018学年度第一学期八年级数学科期中考试试题说明:l .全卷共4页,满分为100分,考试用时为90分钟.2.解答过程写在答题卡上,监考教师只收答题卡.3. 非选择题必须用黑色字迹的钢笔或签字笔作答;画图时用2B 铅笔并描清晰. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上. 1.下列计算正确的是…………………………………………………( ) A .6÷3=2 B .2+3=5 C .12=23 D .2·3=6 2.下列各式中,正确的是……………………………………………( ) A .2)2(2-=- B .416±= C .283-=- D .4)2(2=- 3.下列计算结果正确的是……………………………………………( ) A .07.051.0≈ B .9016003≈ C .1.604736≈ D .20402≈ 4.下列说法正确的是 ( )A .3是9的立方根;B .16的平方根是4;C .6是6的算术平方根;D .-a 无平方根(a 为实数).5.数7-,2,0,16-,38,3.14159,π2,35,71中,其中无理数共有( )A .2 个B .3个C .4个D .5个6.如图示,图中四边形都是正方形,则字母B 所代表的 正方形的面积是 ( )A .144B .13C .12D .194 7.以下列各组数为边,能组成直角三角形的是( )A .5,5,10B .10,6,8C .5,4,6D .2,3,4 8.小华先向东走了16m 后,接着向北走了12m ,此时小华离出发点的距离是( ) A .28 m B . 16 m C . 20 m D .12 m9.已知一个直角三角形的两边长分别为3和4,则第三边的长是( ) A .5 B .2 C .7 D .5或710.将直角三角形的三条边长同时缩小为原来的一半,所得到的三角形为 ( )第6题图第16题图 A .直角三角形 B .锐角三角形 C .等腰三角形 D .钝角三角形二、填空题(本大题共6小题,每小题3分,共18分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.7-的绝对值是 . 12.满足23<<-x 的整数x 有 .13.若一个正数的平方根是1+a 和3-a ,则这个正数是 . 14.已知一正方形的对角线长为4,则正方形的面积为 .15.在用数轴表示实数时,有一个数表示成如右图所示,则图中点A 所表示的数是 .16.如图,某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯(地毯宽与楼梯宽一样), 则所铺地毯的长为 米.三、解答题(本大题共8小题,第17题8分,第18至22题各6分,23、24题各7分,共52分)请在答题卡相应位置上作答. 17 . 计算(每小4分,共8分)(1) 2362⨯ (2)32712-18.(6分)计算:182188+-19.(6分)已知算式:第15题图①121212211-=--=+, ②232323321-=--=+,③343434431-=--=+, … .(1)观察上述算式,根据以上规律第10个算式可表示为 ,第 n (n ≥1)个算式可表示为 .(2)用你得到的规律计算:212++322+ +432++······+100992+20.(6分)如图:在△ABC 中∠C=90°,AB =3,BC =2,求△ABC 的面积.21.(6分)小明爸爸叫木匠师傅做了一扇高为2 m ,宽为1.5 m 的门ABCD ,但师傅安装好门之后,他总觉得门安装得不够标准.根据经验一扇门安装的是否标准,主要取决于∠ACB ,若∠ACB 是直角就标准,但手上只有一把够长的卷尺.请你用所学知识去帮助小明爸爸验证这扇门是否安装的标准. (1) 根据所学知识可知,还需量出线段 的长度. (2) 若⑴中量出的线段长度为2.5 m ,请你利用所学知识帮 小明爸爸判断门安装的是否标准?第20题图第21题图22.(6分)小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5 m 处,发现此时绳子底端距离打结处约1 m .请设法算出旗杆的高度.23.(7分)如图,把长方形沿AE 对折后点D 落在BC 边的点F 处,BC =5cm ,AB =4cm ,求:(1)CF 的长;(2)EF 的长.24.(7分)某单位大门口有个圆形柱子,已知柱子的直径为1 m 、高为5 m ,为庆祝国庆节,单位想在柱子上挂一根彩带.(以下计算规定 =3) (1)当彩带从A 点开始绕柱子1圈后,挂在点A 的正上方的点B 处,求彩带最短需要多少米?(2)当彩带从A 点开始绕柱子4圈后,挂在点A 的正上方的点B 处,求彩带最短又需要多少米?A第24题图E FDA第23题图第22题图2018学年度第一学期八年级数学科期中考试试题参考答案及评分标准一、选择题1—10题 DCDCB ABCDA二、填空题11、 7 12、 1 , 0 , -1(每多写、少写或错写1个扣1分), 13、 4 14、 8 15、5 16、 7三、解答题(在答题卡上作答,写出必要的解题步骤. 共52分) ( 注:下列各题如有不同解法,正确的均可参照标准给分) 17.(1)解:原式=2632⨯⨯ ………… 2分=126………… 3分= 212………… 4分(2)解:原式=327312- ………… 1分 =94- ………… 2分 = 2-3 ………… 3分= -1 …………4分18解:原式 = 232422+- …4分(每化错1个扣1分,全部化错得0分)= 2 …………6分19.(1)101111101-=+(每空1分,共2分)(2) 解:原式=2(12- + 23- +34-······+ 99100- )………4 分)(11002-= ……5分=2(10-1)=18 ……… 6分20.解:在Rt △ABC 中∠C=90°∴ 222AB BC AC =+ ………2分 ∴ 22BC AB AC -=2223-=5=………… 4分∴ S △ABC =21AC •BC ………… 5分 =21525=⨯⨯ … 6分 21.(1)AB (1分)(2)解:∵AC=2、BC=1.5、AB=2.5∴AC 2+BC 2=22+1.52=6.25 ……2分nn n n -+=++111AB 2=2.52=6.25 ……3分 ∴AC 2+BC 2=AB 2 …… 4分 ∴∠ACB=900 ……5分 ∴ 门安装是标准的…… 6分22、解:设旗杆的高度为x m …… 1分由勾股定理得:52+x 2=(x+1)2 …… 3分 25+x 2=x 2+2x+1 …… 4分 2x=24x =12 …… 5分 答:旗杆的高度为12 m ……6分23、(1)解:∵四边形ABCD 是长方形∴AD=AB=4、AD=BC=5、∠B=∠C=900 ∵长方形沿AE 对折后点D 落在BC 边的F 处 ∴△ADE ≅△AFE∴DE=EF , AF=AD=5 …… 1分在Rt △ABC 中,有AB 2+BF 2=AF 2BF=22AB AF -=3 ………… 2分 ∴ CF=BC-BF=2 ………… 3分(2)解:由(1)知:BC=AD=5、DE=EF在Rt △CEF 中,设EF=x m ,则CE=(4-x) m ……… 4分由勾股定理得:CF 2+CE 2=EF 222+(4-x)2=x 2 ………… 5分 4+16-8x+x 2=x 28x=20 ………… 6分 x=2.5即:EF=2.5 m ………… 7分24、(1)解:如图、在直角△ABC 中,∠C=900 (不画展开图扣0.5分)AC=2πr=3 、BC=5 ……1分 ∴ AB 2=AC 2+BC 2 ∴AB== 34 …… 2分答:彩带的最短长度为34 m ……3分(2)解:如图,在直角△ABC 中,∠C=900(不画展开图扣0.5分)AC=4×2πr=12 、BC=5 ……5分 ∴ AB 2=AC 2+BC 2 ∴ AB==13 …… 6分2235+22512+答:彩带的最短长度为 13 m …… 7分。
【北师大版】初二数学上期中模拟试卷带答案

一、选择题1.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个2.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③ 3.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°4.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②BP 垂直平分CE ;③PG =AG ;④CP 平分∠DCB ;其中,其中说法正确的有( )A .1个B .2个C .3个D .4个5.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .16.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 7.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对8.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 9.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒ 10.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒ 11.以下列各组线段为边,能组成三角形的是( ) A .1,2,3 B .2,3,4 C .2,5,8 D .6,3,3 12.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④ B .①②③ C .①④⑤ D .②④⑤二、填空题13.给出如下三个图案,它们具有的公共特点是:________.(写出1个即可)14.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.15.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________16.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .17.如图,在直角坐标系中,AD 是Rt △OAB 的角平分线,已知点D 的坐标是(0,-3),AB 的长为12,则△ABD 的面积是_____18.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.19.七边形的外角和为________.20.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图 1,若 AB ⊥AE ,则∠BFC=75°;②图 2 中 BD 过点C ,则有∠DAE+∠DCE=45°;③图 3中∠DAE+∠DFC 等于 135°;④保持重合的顶点不变,改变三角板BAD 的摆放位置,使得D 在边AC 上,则∠BAE=105°.三、解答题21.如图,△ABC 是边长为12cm 的等边三角形,动点M 、N 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动.(1)若点M 的运动速度是2cm/s ,点N 的运动速度是4cm/s ,当N 到达点C 时,M 、N 两点都停止运动,设运动时间为t (s ),当t=2时,判断△BMN 的形状,并说明理由; (2)当它们的速度都是2cm/s ,当点M 到达点B 时,M 、N 两点停止运动,设点M 的运动时间为t (s ),则当t 为何值时,△MBN 是直角三角形?22.如图,在ABC ∆中,AB AC =.(1)尺规作图:作边AB 的垂直平分线,交AB 于点D ,交AC 于点E ,连结BE ;(保留作图痕迹,不写作法)(2)若6AB =,4BC =,求BEC ∆的周长.23.如图,在△ABC 中,90ACB ∠=︒,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D . (1)求证:AD =CE(2)AD =6cm ,DE =4cm ,求BE 的长度24.小敏在学习了几何知识后,对角的知识产生了兴趣,进行了如下探究:(1)如图1,∠AOB =90°,在图中动手画图(不用写画法).在∠AOB 内部任意画一条射线OC ;画∠AOC 的平分线OM ,画∠BOC 的平分线ON ;用量角器量得∠MON =______. (2)如图2,∠AOB =90°,将OC 向下旋转,使∠BOC =30°,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.25.若a ,b ,c 是ABC 的三边的长,化简|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|. 26.如图,在ABC 中,点E 在AC 边上,连结BE ,过点E 作//DF BC ,交AB 与点D .若BE 平分ABC ∠,EC 平分BEF ∠.设AED β∠=.(1)当80β=︒时,求DEB ∠的度数.(2)试用含α的代数式表示β.(3)若=k βα(k 为常数),求α的度数(用含k 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先根据等边三角形性质得出BC=AC,CD=CE,∠ACB=∠ECD=60°,即可证明△BCD与△ACE全等、△BCF与△ACG全等以及△DFC与△EGC全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC与△CDE为等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,即:∠ACE=∠BCD,在△BCD与△ACE中,∵BC=AC,∠ACE=∠BCD,CD=CE,∴△BCD≌△ACE(SAS),∴AE=BD,即①正确;在△BCF与△ACG中,由①可知∠CBF=∠CAG,又∵AC=BC,∠BCF=∠ACG=60°,∴△BCF≌△ACG(ASA),∴AG=BF,即②正确;在△DFC与△EGC中,∵△BCF≌△ACG,∴CF=CG.即④正确;∵∠GCF =60°,∴△CFG为等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,即③正确;综上,①②③④都正确.故选:D.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.2.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC =90°,∴∠ABC +∠ACB =90°,∠ABC +∠BAD =90°,∴∠ACB =∠BAD ,∵CF 是∠ACB 的平分线,∴∠ACB =2∠ACF ,∴∠BAD =2∠ACF ,即∠FAG =2∠ACF ,故③正确;根据已知条件不能推出∠HBC =∠HCB ,即不能推出BH =CH ,故④错误;故选:B .【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.3.B解析:B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.4.D解析:D【分析】①根据角平分线的定义与三角形外角的性质可证此结论;②利用等腰三角形“三线合一”可证明此结论;③根据角平分线定义与平行线性质可得∠APG =∠BAP ,再利用等腰三角形的判定可证此结论;④如下图,由角平分线的性质定理可得PM=PN ,PM=PO ,则PN =PO ,即可证明结论.【详解】解:∵AP 平分∠BAC ,PB 平分∠CBE ,∴∠CAB =2∠PAB ,∠CBE =2∠PBE ,∵∠CBE=∠CAB+∠ACB,∠PBE=∠PAB+∠APB,即∠CBE=∠CAB+2∠APB,∴∠ACB=2∠APB.故①正确;∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一).故②正确;∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴PG=AG.故③正确;如图,过点P作PM⊥AE于点M,PN⊥AD于点N,PO⊥BC于点O,∵AP平分∠BAC,PB平分∠CBE,∴PM=PN,PM=PO,∴PN =PO,∴CP平分∠DCB.故④正确.故选:D.【点睛】本题考查了角平分线的判定与性质、平行线的性质、等腰三角形的性质与判定,熟练掌握相关知识并能灵活运用所学知识进行论证是解题的关键.5.B解析:B【分析】先根据全等三角形的判定定理得出△ACD≌△ACB,△ABO≌△ADO,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC和△ADC中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 6.D解析:D【分析】根据垂直关系,可以判断△AEF 与△CEB 有两对角相等,就只需要添加一对边相等就可以了.【详解】解:∵AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,∴∠AEF=∠CEB=90°,∠ADB=∠ADC=90°,∴∠EAF+∠B=90°,∠BCE+∠B=90°,∴∠EAF=∠BCE .A.在Rt △AEF 和Rt △CEB 中AEF CEB EAF BCE EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;B.在Rt △AEF 和Rt △CEB 中AEF CEB EA ECEAF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF ≌CEB △(ASA ),故正确;C.在Rt △AEF 和Rt △CEB 中 AEF CEB EAF BCE AF CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;D.在Rt △AEF 和Rt △CEB 中 由AEF CEB EAF BCE AFB B ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩不能证明AEF ≌CEB △,故不正确; 故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.7.B解析:B【分析】根据线段垂直平分线的性质得到,AC=AD ,BC=BD ,OC=OD ,然后根据”HL”可判断Rt △AOC ≌Rt △AOD ,Rt △BOC ≌Rt △BOD ;根据“SSS”可判断△ABC ≌△ABD .【详解】解:∵AB 是线段CD 的垂直平分线,∴AC=AD ,BC=BD ,OC=OD ,∴Rt △AOC ≌Rt △AOD (HL ),Rt △BOC ≌Rt △BOD (HL ),△ABC ≌△ABD (SSS ). 故选:B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”“HL”;全等三角形的对应边相等.也考查了线段垂直平分线的性质.8.D解析:D【分析】设点Q 的运动速度是x cm/s ,有两种情况:①AP=BP ,AC=BQ ,②AP=BQ ,AC=BP ,列出方程,求出方程的解即可.【详解】解:设点Q 的运动速度是x cm/s ,∵∠CAB=∠DBA ,∴△ACP 与△BPQ 全等,有两种情况:①AP=BP ,AC=BQ ,则1×t=4-1×t ,则3=2x ,解得:t=2,x=1.5;②AP=BQ ,AC=BP ,则1×t=tx ,4-1×t=3,解得:t=1,x=1,故选:D .【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.9.C解析:C【分析】根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数【详解】解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒∴45E ∠=︒又∵60ABC ∠=︒∴120FBE ∠=︒由三角形的外角性质得DFB E FBE ∠=∠+∠45120=︒+︒165=︒故选:C【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质10.B解析:B【分析】由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.11.B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、1+2=3,不能构成三角形, A 错误;B 、2+3=5>4可以构成三角形,B 正确;C 、2+5=7<8,不能构成三角形, C 错误;D 、3+3=6,不能构成三角形,D 错误.故答案选:B .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键. 12.A解析:A【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断.【详解】①过两点有且只有一条直线,故①正确;②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确;⑤各角都相等且各边相等的多边形是正多边形,故⑤错误.∴正确的有①②④,故选:A .【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键.二、填空题13.都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征【详解】解:答案不唯一例如:都是轴对称图形故答案为:都是轴对称图形【点睛】本题考查了轴对称图形解题的关键是正确把握轴对称图形的特征 解析:都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征.【详解】解:答案不唯一,例如:都是轴对称图形,故答案为:都是轴对称图形.【点睛】本题考查了轴对称图形,解题的关键是正确把握轴对称图形的特征.14.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角, ∴ADC A ABC ∠=∠+∠, ∵ADC ∠是BOD 的外角, ∴ADC BOD OBD ∠=∠+∠, ∵AOB 与COB △关于边OB 所在的直线成轴对称, ∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.15.(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ 根据全等三角形的判定与性质可得AQCQ 根据线段的和差可得OQ 可得答案【详解】解:作BP ⊥y 轴AQ ⊥y 轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ ,根据全等三角形的判定与性质,可得AQ ,CQ ,根据线段的和差,可得OQ ,可得答案.【详解】解:作BP ⊥y 轴,AQ ⊥y 轴,如图,∴∠BPC=∠AQC=90°∵BC=AC ,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.16.1或15【分析】分两种情况讨论:当△ACP ≌△BPQ 时从而可得点的运动速度;当△ACP ≌△BQP 时可得:从而可得点的运动速度从而可得答案【详解】解:当△ACP ≌△BPQ 时则AC =BPAP =BQ ∵AC解析:1或1.5【分析】分两种情况讨论:当△ACP ≌△BPQ 时,1AP BQ ==, 从而可得Q 点的运动速度;当△ACP ≌△BQP 时,可得:23AP BP BQ ===,, 从而可得Q 点的运动速度,从而可得答案.【详解】解:当△ACP ≌△BPQ 时,则AC =BP ,AP =BQ ,∵AC =3cm ,∴BP =3cm ,∵AB =4cm ,∴AP =1cm ,∴BQ =1cm ,∴点Q 的速度为:1÷(1÷1)=1(cm/s );当△ACP ≌△BQP 时,则AC =BQ ,AP =BP ,∵AB =4cm ,AC =BD =3cm ,∴AP =BP =2cm ,BQ =3cm ,∴点Q 的速度为:3÷(2÷1)=1.5(cm/s );故答案为:1或1.5.【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键.17.18【分析】过点D 作DE ⊥AB 于点E 由角平分线的性质可得出DE 的长再根据三角形的面积公式即可得出结论【详解】解:过点D 作DE ⊥AB 于点E ∵D (0-3)∴OD=3∵AD 是Rt △OAB 的角平分线OD ⊥O解析:18【分析】过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE 的长,再根据三角形的面积公式即可得出结论.【详解】解:过点D 作DE ⊥AB 于点E ,∵D (0,-3)∴OD=3,∵AD 是Rt △OAB 的角平分线,OD ⊥OA ,DE ⊥AB ,∴DE=OD=3,∴S △ABD =12AB•DE=12×12×3=18. 故答案为:18.【点睛】本题考查了坐标与图形的性质,角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.18.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒, 故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键. 19.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36解析:360°根据多边形的外角和等于360°即可求解;【详解】∵ 多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键; 20.①②③④【分析】由可得:再结合:从而可求解于是可得可判断①;由可得:再利用:求解可判断②;由再利用角的和差可得:可判断③;由图4可得:可判断④【详解】解:如图1故①正确;如图2故②正确;如图3故③正解析:①②③④.【分析】由,AB AE ⊥可得:90BAC CAD DAE ∠+∠+∠=︒,再结合:2105BAC CAD DAE ∠+∠+∠=︒,从而可求解CAD ∠,于是可得BFC ∠,可判断①;由90ADB ,∠=︒可得:90DAC ACD ∠+∠=︒,再利用:180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,求解DAE DCE ∠+∠,可判断②;由,DFC D DAF ∠=∠+∠再利用角的和差可得:135DFC DAE D CAE ∠+∠=∠+∠=︒,可判断③;由图4可得:105BAE BAC CAE ∠=∠+∠=︒,可判断④. 【详解】解:如图1,,AB AE ⊥90BAC CAD DAE ∴∠+∠+∠=︒,60BAD BAC CAD ∠=∠+∠=︒,45CAE CAD DAE ∠=∠+∠=︒,2105BAC CAD DAE ∴∠+∠+∠=︒,15CAD ∴∠=︒,90ADB ∠=︒,901575BFC AFD ∴∠=∠=︒-︒=︒,故①正确; 如图2,90ADB ∠=︒,90DAC ACD ∴∠+∠=︒,180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,90ACE ∠=︒, 180CAD DAE ACD DCE E ∴∠+∠+∠+∠+∠=︒,()()180180904545DAE DCE CAD ACD E ∴∠+∠=︒-∠+∠+∠=︒-︒+︒=︒, 故②正确;如图3,,DFC D DAF ∠=∠+∠9045135DFC DAE D DAF DAE D CAE ∴∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,如图4,6045BAD CAE ∠=︒∠=︒,,6045105BAE ∴∠=︒+︒=︒,故④正确.故答案为:①②③④.【点睛】本题考查的是三角形的内角和定理,三角形的外角的性质,角的和差,掌握以上知识是解题的关键.三、解答题21.(1)△BMN 是等边三角形,见解析;(2)当t=2或t=4时,△BMN 是直角三角形.【分析】(1)先由等边三角形的性质解得,当t=2时,AM =4,BN=8,继而证明BM=BN ,再根据等边三角形的判定解题即可;(2)若△MBN 是直角三角形,则∠BNM=90°或∠BMN=90°,根据直角三角形含30°角的性质列方程解题即可.【详解】解:(1)△BMN 是等边三角形当t=2时,AM =4,BN=8,∵△ABC 是等边三角形且边长是12∴BM=12-4=8,∠B=60°∴BM=BN∴△BMN 是等边三角形;(2)△BMN 中,BM=12-2t ,BN=2t①当∠BNM=90°时,∠B=60°∴∠BMN=30° ∴12BN BM = ∴12(122)2t t =-∴t=2②当∠BMN=90°时,∠B=60°∴∠BNM=30°∴12BM BN = ∴112222t t -=⨯ ∴t=4综上:当t=2或t=4时,△BMN 是直角三角形.【点睛】本题考查直角三角形的判定、等边三角形的判定与性质、几何动点与一元一次方程等知识,涉及含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)见详解;(2)10.【分析】(1)分别以A 、B 两点为圆心,以大于12AB 长度为半径画弧,在AB 两边分别相交于两点,然后过这两点作直线即为AB 的垂直平分线;(2)由中垂线的性质得AE =BE ,根据△EBC 的周长=BE +CE +BC =AE +CE +BC =AC +BC ,进而可得答案.【详解】(1)如图所示:(2)∵6AB =,∴6AC AB ==,∵DE 是AB 的垂直平分线,∴AE=BE ,∴BEC ∆的周长=BC+CE+BE=BC+CE+AE=BC+AC=4+6=10.【点睛】本题考查了线段的垂直平分线的性质及等腰三角形的性质及基本作图,解题的关键是掌握垂直平分线上的点到线段两端点的距离相等.23.(1)证明见解析;(2)2cm .【分析】(1)先根据垂直的定义可得90ADC E ∠=∠=︒,再根据直角三角形的两锐角互余、等量代换可得CAD BCE ∠=∠,然后根据三角形全等的判定定理与性质即可得证;(2)先结合(1)的结论可得6CE cm =,再根据线段的和差可得2CD cm =,然后根据全等三角形的性质即可得.【详解】(1),AD CE BE CE ⊥⊥,90ADC E ∠=∠=∴︒,90CAD ACD ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,CAD BCE ∴∠=∠,在ACD △和CBE △中,ADC E CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴≅,AD CE ∴=;(2)由(1)已证:AD CE =,6AD cm =,6CE cm ∴=,4DE cm =,2CD CE DE cm ∴=-=,又由(1)已证:ACD CBE ≅,2BE CD cm ∴==.【点睛】本题考查了直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.24.(1)作图见解析,45;(2)能,45【分析】(1)以点O 为圆心,任意长为半径,画圆弧,并分别交OA 、OC 于点H 、点G ;再分别以点H 、点G 为圆心,以大于12HG 的长度为半径画圆弧并相较于点P ,过点P 作射线OM 即为∠AOC 的平分线;同理得∠BOC 的平分线ON ;通过量角器测量即可得到∠MON ; (2)根据题意,得114522COM AOC BOC ∠=∠=+∠,12CON BOC ∠=∠,结合MON COM CON ∠=∠-∠,经计算即可得到答案.【详解】(1)作图如下用量角器量得:∠MON =45故答案为:45;(2)∵∠AOC ,∠BOC 的平分线OM ,ON ,且∠AOB =90° ∴()11145222COM AOC AOB BOC BOC ∠=∠=∠+∠=+∠ 12CON BOC ∠=∠ ∴11454522MON COM CON BOC BOC ∠=∠-∠=+∠-∠=. 【点睛】本题考查了角平分线、射线的知识;解题的关键是熟练掌握角平分线、角的运算的性质,从而完成求解.25.3c+a ﹣b .【分析】根据三角形的三边关系“两边之和>第三边,两边之差<第三边”,判断式子的符号,再根据绝对值的意义去掉绝对值即可.【详解】解:根据三角形的三边关系,两边之和大于第三边,得a ﹣b ﹣c <0,b ﹣c ﹣a <0,c+a ﹣b >0.∴|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|=b+c ﹣a+c+a ﹣b+c+a ﹣b=3c+a ﹣b .【点睛】本题考查了三角形的三边关系、绝对值的性质、整式加减的应用,熟练掌握三角形的三边关系定理是解题关键.26.(1)20︒;(2)1=904βα︒-;(3)360=41k α︒+. 【分析】(1)根据对顶角的性质得到∠CEF =∠AED =80°,根据角平分线的定义即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据题意列方程即可得到结论.【详解】解:(1)∵β=80°,∴∠CEF=∠AED=80°,∵EC平分∠BEF,∴∠BEC=∠CEF=80°,∴∠DEB=180°﹣80°﹣80°=20°;(2)∵DF∥BC,∴∠ADE=∠ABC=α,∵BE平分∠ABC,∴∠DEB=∠EBC=12α,∵EC平分∠BEF,∴β=∠CEF=12(180°﹣12α)=90°﹣14α;(3)∵β=kα,∴90°﹣14α=kα,解得:α=36041k︒+.【点睛】本题考查了三角形的内角和定理,平行线的性质,熟练掌握三角形的内角和定理是解题的关键.。
2018--2019学年度第一学期北师大版八年级期中考试数学试卷及答案解析(word版)

○…………外…装…………订____姓名:___________○…………内…装…………订绝密★启 2018-2019学年度第一学期 北师大版八年级期中考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.做题时要平心静气,不可漏题 一、单选题(计30分) 1.(本题3分)如果三角形的三个内角的度数之比为1:2:3,那么这个三角形的三条边长之比为( ) A .1:2:3 B .1:4:9 C .1::2 D .1:: 2.(本题3分)在0⋯,2π,0.333...-中,无理数有 A . 2个 B . 3个 C . 4个 D . 5个 3.(本题3分)如图,点M 表示的实数是( ) A . B . C . D . 4.(本题3分)已知y = + -3,则2xy 的值为( ) A . -15 B . 15 C . - D . 无法确定 5.(本题3分)如图是我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD 的面积是小正方形EFGH 面积的13倍,那么tan ∠ADE 的值为( )………○……………○…装※※订※※线※※※※………○……………○…A.B.C.D.6.(本题3分)(﹣2)2的算术平方根是()A.2 B.±2 C.﹣2 D.7.(本题3x的取值范围是()A.x≥43B.x≤43C.x<43D.x≠438.(本题3分)(2013•镇江模拟)已知圆锥的母线长OA=8,底面圆的半径为2,一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A处,则小虫所走的最短距离为()A.8 B.4π C.8 D.89.(本题3分)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角.当小球第1次碰到长方形的边时的点为P1,第2次碰到长方形的边时的点为P2,…,第n次碰到长方形的边时的点为P n,则点P2 018的坐标是()A.(7,4)B.(3,0)C.(1,4)D.(8,3)10.(本题3分)Rt△ABC中,斜边BC=2,则AB2+BC2+CA2=()A.8 B.6 C.4 D.无法计算二、填空题(计32分)11.(本题4分)已知一个直角三角形的两边长分别为4和3,则它的面积为_________ .12.(本题4分)在Rt△ABC中,∠ACB=90°,CA=CB,如果斜边AB=5cm,那么斜边上的高CD= cm.13.(本题4分)计算:9+(2-1)0= .14.(本题4分)|﹣|= ,比较大小:π﹣3 0.14.15.(本题4分)若无理数5a,则a=________.16.(本题4分)的平方根是它本身,的立方根是它本身.…○……○…17.(本题4分)按照如图所示的操作步骤,若输入x 的值为3,则输出的值为________. 18.(本题4分)若一个正数的两个平方根分别是2m +1和m -4,则这个正数是________. 三、解答题19.(本题8分)(1)计算: ;(2)已知 =4,求x 的值. 20.(本题8分)已知,求下列代数式的值 (1)x 2y+xy 2 (2)x 2-xy+y 2 21.(本题8分)已知数 满足 - - ,求 - .……○………※※装※※订※※线……○……… 22.(本题8分)一个正数 的平方根是 与 ,求 和 的值。
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,是无理数的是( )A .﹣53B .|﹣2|CD .2.下列语句中正确的是( )A ±4B .任何数都有两个平方根C .∵a 的平方是a 2,∵a 2的平方根是aD .﹣1是1的平方根3.下列各组数中互为相反数的是( )A .5B .5-和15C .D .--(- 4.下列一次函数y 随x 的增大而增大是( )A .y =-2xB .y =x -3C .y =-5xD .y =-x +3 5.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A 点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(1,5),白(5,5)B .黑(3,2),白(3,3)C .黑(3,3),白(3,1)D .黑(3,1),白(3,3)6是( )A .在2和3之间B .在3和4之间C .在5和6之间D .在8和9之间7.已知一次函数y =kx +b (k≠0)的图象如图所示,则y =-bx -k 的图象可能是()A .B .C .D .8.下列计算正确的是( )A B =C .3+D 2÷=9.在平面直角坐标系中,第四象限内有一点M ,它到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标为( )A .()3,4-B .()4,3-C .()3,4-D .()4,3-10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到An .则∵OA 2A 2018的面积是( )A .504m 2B .10092m 2 C .10112m 2 D .1009m 2 二、填空题11.比较大小:“>”,“<”或“=”).12.若点P(2,3)与点Q 关于原点对称,则点Q 的坐标是__________.13.化简11=________.14.请写出两组勾股数:________.15.P 点在平面直角坐标系的第三象限,P 到x 轴的距离为1,到y 轴的距离为3,则P 点的坐标是________.16.有一个英文单词的字母顺序对应如图中的有序数对分别为(2,1),(1,3)、(1,3),(4,2),请你把这个英文单词写出来或者翻译中文为_________.17.已知a 的平方根为±3,b 的立方根是-1,c 是36的算术平方根,求a b c +-的值_________. 18.如图,已知BA =BC .写出数轴上点A 所表示的数是____________.三、解答题19.计算:(1(2)(3) ⎛ ⎝(4) 2(11)1)-20.阅读下列计算过程:==1==2==试求:(1(2⋅⋅⋅(321.在∵ABC中,∵C=90°,AC>BC,D是AB的中点.E在线段CA的延长线上,连接DE,过点D作DF∵DE,交直线BC的延长线于点F,连接EF.求证:AE2+BF2=EF2.22.生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表.设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造成这片林的总费用需多少元?23.如图,在平面直角坐标系中,直线y=−2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当∵POC是等腰三角形时P的坐标.(3)在直线AB上是否存在点M,使得∵MOC的面积是∵AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.24.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?25.如图,将两个大小、形状完全相同的∵ABC和∵A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C,若∵ACB=∵A′C′B′=90°,AC=BC=6,求B′C的长.参考答案1.C2.D3.D4.B5.D6.A7.C8.B9.D10.A11.>.【分析】根据根式的性质把根号外的因式移入根号内,再比较即可.【详解】解:∵47=283=272827∵33故答案为:>.【点睛】本题考查了平方根的大小比较的应用,能选择适当的方法比较两个数的大小是解此题的关键.12.(-2,-3).【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点P(2,3)与点Q关于原点对称,则点Q的坐标(-2,-3),故答案是:(-2,-3).【点睛】本题考查了关于原点的对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.13【解析】【分析】化简绝对值,再进行实数的计算.【详解】11=11-+=故答案为:【点睛】本题考查了实数的运算,化简绝对值,掌握化简绝对值是解题的关键.14.3,4,5;6,8,10(答案不唯一)【解析】【分析】勾股数:构成一个直角三角形三边的一组正整数,称之为勾股数,根据勾股数的定义可得答案.【详解】解:勾股数是构成一个直角三角形三边的一组正整数,2222222223+4=5,6810,51213,+=+=∴;6,8,10;5,12,13都是勾股数.3,4,5故答案为:3,4,5;6,8,10【点睛】本题考查的是勾股数的含义,勾股定理的逆定理的理解,掌握勾股数的定义是解题的关键. 15.(-3,-1)【解析】【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【详解】解:∵点P在第三象限,且点P到x轴的距离是1,∵点P的纵坐标为-1,∵点P到y轴的距离是3,∵点P的横坐标为-3,所以,点P的坐标为(-3,-1).故答案为:(-3,-1).【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.16.book【解析】【分析】根据每一个点的坐标确定其对应的位置,最后写出答案.【详解】解:(2,1)对应的字母是B,(1,3)对应的字母是O,(1,3)对应的字母是O,(4,2)对应的字母是K.故答案为:book.【点睛】本题考查了坐标位置的确定,熟记有序数对的规定,找出各点的对应字母是解题的关键.17.2【解析】【分析】根据平方根的含义求解,a立方根的含义求解,b算术平方根的含义求解,c再代入代数式求值即可.【详解】解:a的平方根为±3,b的立方根是-1,c是36的算术平方根,∴==-=a b c9,1,6,()∴+-=+--=a b c916 2.故答案为:2.【点睛】本题考查的是平方根,立方根,算术平方根的含义,熟悉“平方根,立方根,算术平方根的含义”是解题的关键.18.1-【分析】先利用勾股定理求解BC的长,可得BA的长,从而可得A到原点的距离,从而可得答案.【详解】解:由勾股定理得:BC===BA BC,∴=BA则A1,∴点A 1.1.【点睛】本题考查的是利用数轴表示无理数,勾股定理的应用,掌握利用勾股定理求解直角三角形的某条边长是解题的关键.19.(1)(2)-6;(3;(4)-【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先把二次根式化为最简二次根式,然后合并即可;(4)根据完全平方公式和平方差公式计算即可.【详解】解:(11=⨯2==(2)==6=-;(3) ⎛ ⎝434⎛= ⎝⎭=(4)2(11)1)-15(51)=---1551=--+10=-+【点睛】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(1(2(3)-【解析】【分析】(1(2 (3)利用(2)的规律,把每个二次根式化简,再合并同类二次根式即可得到答案.【详解】解:(1=(2=== (3⋅⋅⋅1199+1 1.=21.见解析【解析】过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,证明()EAD GBD AAS ≅,推出ED GD =,AE BG =,得到EF FG =,再由勾股定理得到结论.【详解】证明:过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,∵//BG AC ,∵EAD GBD ∠=∠,DEA DGB ∠=∠,∵D 是AB 的中点,∵AD BD =,∵()EAD GBD AAS ≅,∵ED GD =,AE BG =,又∵DF DE ⊥,∵DF 是线段EG 的垂直平分线,∵EF FG =,∵90C ∠=︒,//BG AC ,∵90GBF C ∠=∠=︒,在Rt BGF 中,由勾股定理得:222FG BG BF =+, ∵222EF AE BF =+.【点睛】此题考查全等三角形的判定及性质,勾股定理的应用,线段垂直平分线的判定及性质,熟记全等三角形的判定定理及正确引出辅助线解决问题是解题的关键.22.y=-6x+48000;45000.【解析】【分析】(1)A 种树苗x 棵,则B 种树苗(2000-x )棵,然后根据总费用=A 种的总价+B 种的总价得出函数关系式;(2)根据成活率求出x 的值,然后进行计算.【详解】解:(1)根据题意得∵y =(15+3)x +(20+4)(2000-x )=-6x +48000(2)由题意得:0.95x +0.99(2000-x )=1960,∵x =500当x =500时,y =-6×500+48000=45000∵造这片林的总费用需45000元.23.(1)(4,4);(2)(4,0)或(8,0) 或(0) 或(-0) ;(3)存在,理由见解析,M (8,−4)或(0,12)【解析】【分析】(1)联立两直线解析式成方程组,解方程组即可得出点C 的坐标;(2)分OC=PC ,OC=OP ,PC=OP 三种情况进行讨论;(3)分两种情况讨论:当M 在x 轴下方时;当M 在x 轴上方时.把∵MOC 的面积是∵AOC面积的2倍的数量关系转化为∵MOA 的面积与∵AOC 面积的数量关系即可求解.【详解】解: (1)联立两直线解析式成方程组,得:212y x y x =-+⎧⎨=⎩,解得:44x y =⎧⎨=⎩,∵点C 的坐标为(4,4).(2) 如图, 分三种情况讨论:OC 为腰,当OC=P 1C 时,∵C (4,4),∵P 1(8,0);OC 为腰,当OC=OP 2= OP 3时,∵C (4,4), 22442,2P ∴,3(P -;当P 4C=OP 4时,设P (x ,0),则x= =解得x=4,∵P 4(4,0).综上所述,P 点坐标为P 1(8,0),P 2(0),3(P -,P 4(4,0).(3)当y=0时,有0=−2x+12,解得:x=6,∵点A 的坐标为(6,0),∵OA=6,∵S ∵OAC=12× 6× 4=12.设M (x ,y ),当M 在x 轴下方时∵MOC 的面积是∵AOC 面积的2倍, ∵∵MOA 的面积等于∵AOC 的面积,1166422y ⨯⨯=⨯⨯, ∵4y =,∵y=−4,∵4212x -=-+,∵x=8,∵M (8,−4)当M 在x 轴上方时∵MOC 的面积是∵AOC 面积的2倍,∵∵MOA 的面积等于∵AOC 的面积的3倍,11664322y ⨯⨯=⨯⨯⨯ ∵12y =∵y=12时,∵12212x =-+,∵x=0,∵M (0,12)综上所述,M (8,−4)或(0,12).【点睛】本题考查的是一次函数综合题,涉及到一次函数图象上点的坐标问题及等腰三角形的性质和判定等知识,在解答(2)、(3)时要注意进行分类讨论,不要漏解.24.(1)当0≤x≤20时,y 与x 的函数表达式是y=2x ;当x >20时,y 与x 的函数表达式是y=2.8x ﹣16;(2)小颖家五月份比四月份节约用水3吨.【解析】【分析】(1)因为月用水量不超过20吨时,按2元/吨计费,所以当0≤x≤20时,y 与x 的函数表达式是y=2x ;因为月用水量超过20吨时,其中的20吨仍按2元/吨收费,超过部分按2.8元/吨计费,所以当x >20时,y 与x 的函数表达式是y=2×20+2.8(x -20),即y=2.6x -12; (2)由题意可得:因为五月份缴费金额不超过40元,所以用y=2x 计算用水量;四月份缴费金额超过40元,所以用y=2.8x -16计算用水量,进一步得出结果即可.【详解】解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x-20)=2.8x-16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x-16中,得x=22.所以22-19=3吨.答:小颖家五月份比四月份节约用水3吨.【点睛】一次函数的应用.25.B'C的长为【解析】【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∵CAB′=90°,根据勾股定理计算.【详解】解:∵∵ACB=∵AC′B′=90°,AC=BC=6,∵CAB=45°,∵∵ABC和∵A′B′C′全等,∵∵C′AB′=∵CAB=45°,∵∵CAB′=90°,答:B'C的长为。
北师大版八年级上学期期中考试数学试卷(含答案)
北师大版八年级上学期期中考试数学试卷一、选择题(本题共12小题,每小题3分,共36分) 1. 在0,-1,-2,π中,属于无理数的有( )A .1个B .2个C .3个D .4个2. 下列各组数据中,不是勾股数的是( )A .5,7,9B .6,8,10C .7,24,25D .8,15,173. 在平面直角坐标系中,点P (3,-2)所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限4. 若直角三角形的两直角边长分别为5、12,则这个直角三角形的斜边长是( )A .13B .13C .169D .1195. 点(3,5)关于y 轴对称的点是( )A .(3,-5)B .(-3,5)C .(-3,-5)D .以上都不是6. 下列各式正确的为( )A .16=±4B .327--=-9C .23-()=-3D .94=327. 如图,一根垂直于地面的旗杆在离地面5m 处撕裂折断,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前的高度是( ) A .5m B .12m C .13mD .18m8. 实数a 、b 、c 在数轴上对应点的位置如图所示,以下结论正确的是( )A .ac <0B .|a +b |=a -bC .|c -a |=a -cD .|a |>|b |9. 若a ,b 是Rt △ABC 的两直角边长,若a ∶b =3∶5,△ABC 的面积24,则斜边c 为( )A .5B .10C .15D .2010.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( )A .2B .22C .32D .4211.坐标平面内一点A (1,2),点O 是原点,点P 是y 轴上一个动点,如果以点P 、O 、A 为顶点的三角形为等腰三角形,那么符合条件的动点P 的个数为( )A .1B .2C .3D .412.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( )A .132B .312C .3+192D .27二、填空题(每题3分,满分12分) 13.9的算术平方根是_______.14.计算(5-2)2018(5+2)2019的值为_________.15.如图所示:分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,若S 1=25,S 3=9,则BC 的长为_______.16.Rt △ABC 在直角坐标系中的位置如图所示,∠BAC =90°,AB ⊥x 轴,B (-3,0),C (0,6),将△ABC 沿BC 折叠,点A 落在点A ′处,则点A ′的坐标是______________.三、解答题(17题每题3分,总6分,18题每题3分,总12分,19题6分,20题5分,21题6分,22题8分,23题9分)17.(6分)求下列等式中未知数x 的值: (1)x 2=25 (2)(x +1)3=12518.(12分)计算: (1)18-32+8 (2)632(3)(23-32)2(4)-22+4-3827×3-|1-3|A'ACB Oyx19.(6分)如图,若△A1B1C1是由△ABC平移后得到的,且△ABC中任意一点P(x,y)经过平移后的对应点为P1(x-5,y+2)(1)直接写出A、B、C的坐标;(2)求点A1、B1、C1的坐标;(3)求△A1B1C1的面积.(2分)20.(5分)如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向北方向航行,他们同时出发,1.5小时后,甲、乙两渔船相距多少海里?21.(6分)在解决问题“已知a=123+,求2a2-8a+1的值”时,小明是这样分析与解答的:∵a=123+=232323-+-()()=2-3∴a-2=-3,∴(a-2)2=3,a2-4a+4=3∴a2-4a=-1,∴2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)化简:2 53 -(2)若a=121-,求3a2-6a-1的值.22.(8分)已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=122.(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.23.(9分)如图,已知平面直角坐标系中,点A在y轴上,点B、C在x轴上,S△ABO=8,OA=OB,BC=10,点P的坐标是(-6,a)(1)求△ABC三个顶点A、B、C的坐标;(2)连接PA、PB,并用含字母a的式子表示△PAB的面积(a≠2);(3)在(2)问的条件下,是否存在点P,使△PAB的面积等于△ABC的面积?如果存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、选择题:二、填空题:三、解答题17.(1)x=5±;(2)x=42)3(3)30-124)-3-18.(119.(1)A(4,3),B(3,1),C(1,2),(2)A1(−1,5),B1(−2,3),C1(−4,4)(3)△A1B1C1的面积为5220.甲、乙两渔船相距15海里21.(1(2)3a2-6a-1的值为222.(1)C(6,6)(2)连接OC,在OB上截取OM=AF,连接CM、ME,证△ACF≌△OCM(SAS),证△ECF≌△ECM(SAS),证明略(3)过点C作CN⊥OA于N,CF=23.(1)A(0,4-),B(4-,0),C(6,0)(2)a>0时,△PAB的面积为2a-4,a<0时,△PAB的面积为4-2a (3)P(6-,12)或(6-,8-)。
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1 )A .BC .2±D .22.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .643.下列运算中,正确的是( )A B 3=± C .22=( D .2-= 4.下列各数中,为无理数的是( )AB C .13 D5.正比例函数y kx =的图象经过点(4-,8),则k 的值为( )A .2-B .2C .12- D .126.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .7,24,25B .3,4,5C .5,12,13D .4,5,6 7.对于一次函数4y x =+,下列结论错误的是( )A .函数值随自变量的增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第二象限D .函数图象与x 轴的交点坐标是(4-,0) 8.已知点P (0,a )在y 轴的负半轴上,则点M (a ,﹣a+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.第二象限内的点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标为( ) A .(3-,2) B .(3-,2-) C .(2-,3-) D .(2-,3) 10.在同一坐标系中,正比例函数y=kx 与一次函数y=x -k 的图象为( )A.B.C.D.11.如图,一个长方体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知AB=6,BC=5,CG=3,这只蚂蚁爬行的最短路程是()A.14 B.10 C D12.甲、乙两车从A地匀速驶向B地,甲车比乙车早出发2h,并且甲车在途中休息了0.5h 后仍以原速度驶向B地,如图是甲、乙两车行驶的路程y(km)与行驶的时间x(h)之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40km/h,乙车的速度是80km/h;③当甲车距离A地260km时,甲车所用的时间为7h;④当两车相距20km时,则乙车行驶了3h或4h,其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题的立方根是________.13.2714.在平面直角坐标系内,把点A(4,-1)先向左平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标是______.152,那么这个三角形的最大角的度数为______ .16.如图,已知A 1(1,0)、A 2(1,1)、A 3(﹣1,1)、A 4(﹣1,﹣1)、A 5(2,﹣1)、….则点A 2019的坐标为_____.三、解答题17.计算:(1)(2)21)+18.对于任意的正数m 、n ,定义运算为:m ⓧn =))m n m n ≥<,计算(3ⓧ2)×(8ⓧ12)的结果.19.如图,在平面直角坐标系中,有一个△ABC ,顶点(1,3)A -,(2,0)B ,(3,1)C --.(1)画出△ABC 关于 y 轴的对称图形111A B C ∆(不写画法)点A 关于 x 轴对称的点坐标为_____________;点 B 关于 y 轴对称的点坐标为_____________;点 C 关于原点对称的点坐标为_____________;(2)若网格上的每个小正方形的边长为 1,求△ABC 的面积.20.大鹏新区某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.设购买甲种树苗x 株,购买两种树苗总费用为y 元.(1)求y 与x 函数关系式;(2)若100≤x ≤225时,如何购买甲、乙两种树苗才能保证费用最低?最低费用是多少? 21.在平面直角坐标系x O y 中,一次函数y =−x +m 的图象交y 轴于点D ,且它与正比例函数12y x =的图象交于点A (2,n ),设x 轴上有一点P ,过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交12y x =和y =−x +m 的图象与点B 、C .(1)求m 和n 的值;(2)若BC=OD ,求点P 的坐标.22.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB 边上一点,且AD=2,AC=BC=(1)证明:△ACE ≌△BCD ;(2)求四边形ADCE 的面积;(3)求ED 的长.23.已知一次函数()232y m x n =-+-满足下列条件,分别求出m ,n 的取值范围. ()1使得y 随x 增加而减小.()2使得函数图象与y轴的交点在x轴的上方.()3使得函数图象经过一、三、四象限.24.如图,直线y=-2x+4交x轴和y轴于点A和点B,点C(0,-2)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△APC的面积为4,求点P;(3)过点B的直线BH交x轴于点H(H点在点A右侧),当∠ABE=45︒时,求直线BE.参考答案1.B【详解】详解:,而2故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.C【分析】根据合并同类二次根式法则、二次根式的性质判断即可.【详解】A.A 错误;B. 33=,故B 错误;C. =22=2(,故C 正确;D. ()21-=-D 错误;故选C.【点睛】 此题考查的是二次根式的减法和二次根式的性质,掌握同类二次根式的定义、合并同类二次根式法则和二次根式的性质是解决此题的关键.4.D【解析】A,是有理数;B =2,是有理数;C .13,是有理数;D ,是无理数, 故选D.5.A【分析】将(4-,8)代入即可.【详解】将(4-,8)代入y kx =得:84k =-解得:2k =-故选A.【点睛】此题考查的是求正比例函数的比例系数,掌握用待定系数法求正比例函数的比例系数是解决此题的关键.6.D【分析】根据勾股定理的逆定理逐一判断即可.【详解】A. 因为72+242=252,所以7,24,25能构成直角三角形,故不选A;B. 因为32+42=52,所以3,4,5能构成直角三角形,故不选B;C. 因为52+122=132,所以5,12,13能构成直角三角形,故不选C;D. 因为42+52≠62,所以4,5,6不能构成直角三角形,故选D.故选D【点睛】此题考查的是直角三角形的判定,掌握用勾股定理的逆定理判断三边是否能构成直角三角形是解决此题的关键.7.C【分析】根据一次函数的图像性质逐一判断即可.【详解】A. 因为k=1>0,所以函数值随自变量的增大而增大,故不选A ;B. 因为k=tan a=1(其中a为函数图象与x轴正方向的夹角),所以函数图象与x轴正方向成45°角,故不选B;C. 因为k=1>0,b=4>0,所以函数图像经过一、二、三象限,故选C;x=-,所以函数图象与x轴的交点坐标是(4-,0)D. 将y=0代入一次函数解析式中得4故不选D.故选C.【点睛】此题考查的是一次函数图像及性质,掌握一次函数图像的性质与各项系数之间的关系是解决此题的关键.8.B【解析】【分析】根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答.【详解】∵点P(0,a)在y轴的负半轴上,∴a<0,∴﹣a>0,∴点M(a,﹣a+1)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.D【分析】先根据点P在第二象限内,判断横、纵坐标的符合,然后再根据点P到x轴的距离为3,到y轴的距离为2,即可写出P点坐标.【详解】解:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0∵点P到x轴的距离为3,到y轴的距离为2,∴点P的纵坐标为3,横坐标为﹣2,故选D.【点睛】此题考查的是求点的坐标,解决此题的关键是先根据点所在的象限判断横、纵坐标的符合,然后根据点到x轴、y轴的距离写出点的坐标.10.B【详解】试题分析:正比例函数和一次函数的图象.根据正比例函数经过原点,一次函数为增函数就可以排除C、D选项,A、B两个选项中正比例函数为减函数,则说明k<0,则-k>0,所以一次函数图象与y轴交于正半轴,所以选择B.考点:正比例函数和一次函数的图象11.B【分析】将长方体盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.如图1,2AG==如图2,210AG==;故选B.【点睛】此题考查长方体的展开图,解题关键在于掌握路径最短问题.12.C【解析】【分析】①观察图象找出点(3.5,120),根据“速度=路程÷行驶时间”可以算出甲车的速度,再结合甲车中途休息半个小时即可得出a、m的值;②根据点(3.5,120),利用“速度=路程÷行驶时间”可以算出乙车的速度;③根据“时间=路程÷速度”可算出甲车距离A地260千米时行驶的时间,加上休息的0.5小时即可得出结论;④根据点(3.5,120),结合两车速度差即可算出当两车相距20千米时,甲车行驶的时间,再根据甲车比乙车早出发2小时可得出乙车行驶时间.对比给定的说法即可得出结论.【详解】①∵甲车途中休息了0.5小时,∴m=1.5﹣0.5=1,甲车的速度为:120÷(3.5﹣0.5)=40(千米/小时).a=1×40=40.∴①成立;②乙车的速度为:120÷(3.5﹣2)=80(千米/时),∴甲车的速度是40千米/小时,乙车的速度是80千米/小时,②成立;③当甲车距离A地260千米时,甲车所用的时间为:260÷40+0.5=7(小时),∴③成立;④∵两车相遇时时间为3.5时,且甲车速度为40千米/时,乙车速度为80千米/时,∴当两车相距20千米时,甲车行驶的时间为:3.5+20÷(80﹣40)=4(小时)或3.5﹣20÷(80﹣40)=3(小时),又∵甲车比乙车早出发2小时,∴当两车相距20千米时,则乙车行驶了1或2小时,④不正确.综上可知:正确的结论有①②③.故选C.【点睛】本题考查了一次函数的应用,解题的关键是结合图形找出点的坐标.本题属于基础题,难度不大,解决该题型题目时,观察图形找出点的坐标,再根据各数量之间的关系即可求出结论.13.-3.【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.14.(1,-3)【解析】【分析】根据点的平移规律,左右移,横坐标减加,纵坐标不变;上下移,纵坐标加减,横坐标不变即可求得答案.【详解】解:把点A(4,-1)先向左平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标是(4-3,-1-2),即(1,-3),故答案为(1,-3).【点睛】此题考查了坐标与图形变化-平移,正确掌握平移规律是解题的关键.15.90°【详解】∵2+22=)2,∴此三角形是直角三角形,∴这个三角形的最大角的度数为90°,故答案为90°.16.(-505,505)【解析】【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1的坐标为(﹣n,n)(n为正整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【详解】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,∴点A4n的坐标为(﹣n,n)(n为正整数).﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为(﹣505,505).【点睛】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1的坐标为(﹣n,n)(n为正整数)”是解题的关键.17.(1(2)6-.【分析】(1)根据二次根式的乘、除法公式化简计算即可;(2)根据平方差公式和完全平方公式化简计算即可.【详解】解:(1)=(2)21)+=2221-+-=7531-+-=6-【点睛】此题考查的是二次根式的混合运算,掌握二次根式的乘、除法公式、平方差公式和完全平方公式是解决此题的关键.18.2【分析】先根据定义新运算的公式分别计算3ⓧ2和8ⓧ12的结果,然后再代入计算即可. 【详解】解:∵3>2,8<12∴3ⓧ8ⓧ=∴(3ⓧ2)×(8ⓧ12)=22== 【点睛】此题考查的是定义新运算,根据定义新运算公式进行计算是解决此题的关键.19.(1)见解析;(-1,-3)、(-2,0)(3,1)(2)9.【分析】(1)根据关于y 轴对称的对应点的坐标特征,即横坐标相反,纵坐标相同,即可得出对应点的111A B C 、、 的坐标,然后连接三点即可画出△ABC 关于y 轴的对称图形.根据关于x 轴、y 轴、原点对称的对应点的坐标特征即可解决.(2)将三角形ABC 面积转化为CDA CBF ABE CDEF △△△矩形S -S -S -S 求解即可. 【详解】解:(1)∵三角形各点坐标为:(1,3)A -,(2,0)B ,(3,1)C --.∴关于y 轴对称的对应点的坐标为()()()1111,3-2,03-1A B C 、、,,依次连接个点.由关于x 轴对称的点的坐标特征可知,A 点关于x 轴对称的对应点的坐标为(-1,-3), 由关于y 轴对称的点的坐标特征可知,B 点关于y 轴对称的对应点的坐标为(-2,0), 由关于原点对称的点的坐标特征可知,C 点关于原点对称的对应点的坐标为(3,1).(2)分别找到点D (-3,3)、E (2,3)、F (2,-1),由图可知,四边形CDEF 为矩形,且CDEF矩形S =20,ABC CDA CBF ABE CDEF △△△△矩形S =S -S -S -S =20-4-52-92=9.所以△ABC 的面积为9.【点睛】本题考查了关于x轴、y轴、原点对称的对应点的坐标特征,割补法求图形面积,熟练掌握对称点的坐标特征是解决本题的关键.20.(1)y=27000﹣30x;(2)购买甲种树苗225株,乙种树苗75株时,费用最低,最低费用20250元.【解析】【分析】(1)根据总费用=购买甲种树苗的费用+购买乙种树苗的费用,列式即可得;(2)根据一次函数的增减性进行求解即可.【详解】(1)由题意得:y=60x+90(300﹣x)=27000﹣30x;(2)y=27000﹣30x中,k=-30<0,所以y随着x的增大而减小,因为100≤x≤225,所以y最小=27000﹣30×225=20250,故:购买甲种树苗225株,乙种树苗75株时,费用最低,最低费用20250元.【点睛】本题考查了一次函数的应用,读懂题意,弄清各数量间的关系正确列出函数解析式是解题的关键.注意一次函数性质的应用.21.(1)m =3,1n =;(2)(4,0)【分析】(1)将A (2,n )代入12y x =中即可求出n ,然后再将A 代入y =−x +m 即可求出m ;(2)设P 点坐标为(a ,0),然后分别表示出B 、C 两点的坐标,即可表示出BC 的长,然后根据BC=OD 列方程即可.【详解】解:(1)将A (2,n )代入12y x =中,得: 1212n =⨯=, 再将A (2,1)代入y =−x +m 中,得:1=−2+m解得:m =3(2)设P 点坐标为(a ,0)∵过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交12y x =和y =−x +3的图象与点B 、C∴点B 的坐标为1,2a a ⎛⎫ ⎪⎝⎭,点C 的坐标为:(),3a a -+ ∴BC=()133322a a a --+=- 把x=0代入y =−x +3中,解得y=3故点D 的坐标为(0,3)∴OD=3∵BC=OD ∴3332a -= 解得:4a =∴P 点坐标为(4,0)【点睛】此题考查的是一次函数的综合题,掌握待定系数法和用点的坐标表示线段的长度是解决此题的关键.22.(1)见解析;(2)9;(3)【分析】(1)根据△ACB 和△ECD 都是等腰直角三角形,可得:CE=CD ,CA=CB ,∠ECD=∠ACB=90°,再根据等式的基本性质即可得出:∠ACE=∠BCD ,利用SAS 即可证出△ACE ≌△BCD ;(2)根据(1)中全等,四边形ADCE 的面积=△ACE 的面积+△ACD 的面积=△BCD 的面积+△ACD 的面积=△ACB 的面积,故计算出△ACB 的面积即可;(3)根据勾股定理即可算出AB 的长,从而计算出BD 的长,再根据(1)的△ACE ≌△BCD 即可得EA=BD ,∠EAC=∠DBC=45°,从而得到∠EAD=90°,最后根据勾股定理即可算出ED 的长.【详解】解:(1)∵△ACB 和△ECD 都是等腰直角三角形∴CE=CD ,CA=CB ,∠ECD=∠ACB=90°∴∠ECD -∠ACD=∠ACB -∠ACD∴∠ACE=∠BCD在△ACE 和△BCD 中CE CD ACE BCD CA CB =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCD (SAS );(2)∵△ACE ≌△BCD∴S △ACE =S △BCD∴S 四边形ADCE =S △ACE +S △ACD =S △BCD +S △ACD =S △ACB∵AC=BC=∴S △ACB =192AC BC •= ∴S 四边形ADCE =9(3)根据勾股定理:6AB ==∴BD=AB -AD=4∵△ACE ≌△BCD∴EA=BD=4,∠EAC=∠DBC∵△ACB 是等腰直角三角形∴∠BAC=∠DBC=45°∴∠EAD=∠EAC +∠BAC=∠DBC +∠BAC=90°在Rt △EAD 中根据勾股定理:ED ==【点睛】此题考查的是全等三角形的判定及性质、勾股定理和等腰三角形的性质,掌握用SAS 证两个三角形全等、全等三角形的对应边相等和面积相等及用勾股定理解直角三角形是解决此题的关键.23.(1)3 2m < , n 取一切实数;(2)3 2m ≠,2n <;(3)3 2m >,2n >. 【解析】【分析】(1)根据一次函数的性质,如果y 随x 的增大而减小,则一次项的系数小于0,由此得出2m-3<0,即可求出m 的取值范围;(2)先求出一次函数y=(2m-3)x+2-n 与y 轴的交点坐标,再根据图象与y 轴的交点在x 轴的上方,得出交点的纵坐标大于0,即可求出m 的范围;(3)根据一次函数的性质知,当该函数的图象经过第一、三、四象限时,2m-3>0,且2-n <0,即可求出m 的范围.【详解】解:()1∵一次函数()232y m x n =-+-的图象y 随x 的增大而减小,∴230m -<, 解得32m <,n 取一切实数; ()2∵()232y m x n =-+-,∴当0x =时,2y n =-,由题意,得20n ->且230m -≠,∴32m ≠,2n <; ()5∵该函数的图象经过第一、三、四象限,∴230m ->,且20n -<, 解得32m >,2n >. 【点睛】考查的是一次函数的图象与系数的关系,一次函数图象上点的坐标特征,一次函数的性质,熟知一次函数y=kx+b (k≠0)的图象与系数的关系是解答此题的关键.24.(1)A(2,0),B(0,4)(2)1P (23,83),2P (103,-83)(3)143BE y x =-+ 【分析】(1)根据x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0即可求出点A 、B 的坐标;(2)分三种情况,当点P 在x 轴上方(即在点A 、B 之间)时,APC ABC BPC S S S ∆∆∆=-;当点P 在x 轴下方时,则APC BPC ABC S S S ∆∆∆=-进行计算;因为ABO S ∆=4,所以点P 不会在点B 的上方;(3)过点A 作AD ⊥AB 交BE 于点D,过点D 作DH ⊥X 轴 ,由∠ABE=45︒可得△BAD 为等腰直角三角形,易证△AOB ≌△DHA ,又因为OA=2,OB=4所以OH=4,DH=2,所以D(6,2),已知B(0,4) ,利用待定系数法可得 143BE y x =-+ . 【详解】(1)∵y=-2x+4交X 轴和y 轴于点A 和点B∴当x=0时,y=4;当y=0时,x=2∴A(2,0),B(0,4)(2) 设点P(a,-2a+4)①如图,当点P 在x 轴上方时,则APC ABC BPC S S S ∆∆∆=-∴4=()()114224222a ⨯+⨯-⨯+⨯∴a=23∴1P (23,83)②如图,当点P 在x 轴下方时则APC BPC ABC S S S ∆∆∆=-∴4=()()114242222a ⨯+⨯-⨯+⨯∴a=103∴2P (103,-83)③因为ABO S ∆=4,所以点P 不会在点B 的上方;(3)当∠ABE=45︒,设直线BE:y=kx+b如图, 过点A 作AD ⊥AB 交BE 于点D,过点D 作DH ⊥X 轴 ∵∠ABE=45︒∴△BAD 为等腰直角三角形,易证△AOB ≌△DHA∵OA=2,OB=4∴OH=4,DH=2∴D(6,2)21 ∵B(0,4) ∴143BE y x =-+【点睛】本题考查坐标轴上点的坐标特征、待定系数法求直线解析式,解题关键是综合运用一次函数的图像和性质.。
2017--2018学年度第一学期北师大版八年级数学上册期中试题
八年级上册数学期中试题(总分120分, 时刻90分钟)一.单选题(每小题3分,共36分)1. 在下列各数: 51525354.0、10049、2.0&、π1、7、11131、327、中,无理数的个数是 ( )A. 2B. 3C. 4D. 5 2.下列四个数中,是负数的是( )A .2- B. 2- C. 2)2(- D.2)2(-3.若直角三角形的三边长为6,8,m ,则m 的值为( )A .10B .27C. 10或 27 D .100或284. 如右图:图形A 的面积是:( )A. 225;B. 144;C. 81;D. 无法确信。
5.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到斜边AB 的距离是( )A .365 B .125C .9D .66.△ABC 中,∠A ,∠B ,∠C 的对边别离记为a ,b ,c ,由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A +∠B =∠C B .∠A ∶∠B ∶∠C =3∶4∶5 C .222a cb =- D .a ∶b ∶c =3∶4∶5 7.知足53<<-x 的整数有( )个 A 、2 B 、3 C 、4 D 、58. 若式子31-x 在实数范围内故意义,则x 的取值范围是( )A .3<xB .3≤xC .3>xD .3≥x9.下列说法正确的是( )A .一个有理数的平方根有两个,它们互为相反数B .负数没有立方根C .无理数都是开方开不尽的数D .无理数都是无穷小数 10. 一架梯长25米,斜靠在一面墙上,梯子底端离 墙7米,若是梯子的顶端下滑了4米到A ′,那么梯子的底端在水平方向滑动了( )米? A. 4 B. 8 C. 15 D. 2011.将2,33,521,用不等号连接起来为( )CBA(A )2<33<521(B ) 521< 33<2(C ) 33<2<521(D ) 521<2<3312.如图,在Rt △ABC 中,∠B =90°,以AC 为直径的圆恰好于点B .若AB =8,BC =6,则阴影部份的积是( )A .100π24-B .100π48-C .25π24-D .25π48-13.关于正比例函数y=-m 2x(m ≠0)下列结论正确的是( ).(A )y >0 (B)y 随x 的增大而增大 (C )y <0 (D)y 随x 的增大而减小14. 不管m 为何实数,直线y=x +2m 与y=-x +4的交点不可能在( ).A.第一象限B.第二象限C.第三象限D.第四象限15. 直线y=-8x+b 与y 轴交点在x 轴下方,则b 的取值为( ).(A )b=0 (B)b ≠0 (C)b <0 (D)b >016. 关于一次函数y=(1-m)x+m ,若m >1,则函数图象不通过( ). (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 17. 若直线y =3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).A .k >1,或13k <B.113k << >1 D. 13k <二、填空题(每小题3分,共18分) 18.64的算术平方根是 ,127-的立方根是 ,2的倒数是 . 19. 当=x________时,14+a 有最小值,最小值为____________.20.等腰△ABC 的腰长AB 为10 cm ,底边BC 为16 cm ,则底边上的高为 . 21. 已知05|1|=-++y x ,则y x +=_____________.22. 已知一个正数m 的2个平方根别离是2a-2和a-4,则m 的值是___________.23.我国古代有如此一道数学问题,枯木一根直立在地上,高2丈,周3尺,有葛藤条自根缠绕而上,五周而达其顶,问葛藤之长几何?题意是:如图所示,把枯木看做一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上绕五周后其结尾恰好抵达点B 处,求问题中葛藤的最短长度是_________尺.24. 已知一次函数y=kx+b 的图象通过点M (2,-1)和点N ,且点N 是直线与y 轴的交点,则点N 的坐标为____,那个函数的表达式为____.25. 直线y=3x-4与x 、y 轴交于A 、B 两点,则△AOB 的面积为 .DCBA26. 拖沓机开始工作时,油箱中有油36L ,若是每小明耗油4L ,那么油箱中剩余油量y (L),与工作时刻x (h)之间的函数关系式是____,自变量x 的取132y x =-+值范围是____. 27. 当ab >0,c <0时,直线ax+by+c=0通过第____象限.三.解答题(共66分)28. 计算(每小题5分,共30分)(1) 752712+- (2)22138+-(3)3612⨯ (4)45 - 1255+ 3(5) 23)21(12)21(01---+--- (6)()()221515+--29.(6分)请在同一个数轴上找出 13- 和 45的对应的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版2018八年级数学上册期中模拟测试题一(附答案)1.在下列实数中,无理数是( (A . 0B . 227C . √4D . π32.下列计算正确的是( ).A . 4=±B . 2=-C . 54= D . ()()322372-⨯-= 3.下列选项正确的是( )A . √9=±3B . √(−2)2=(2C . (1的算术平方根是1D . √1253=(54.无理数a 满足: 2<a <3,那么a 可能是( )A .B .C . 2.5D . 2075.一个有序数对( )A . 可以确定一个点的位置B . 可以确定两个点的位置C . 可以确定一个或两个点的位置D . 不能确定点的位置6.在﹣1(1(√2(2这四个数中,最小的数是( )A . (1B . 1C . √2D . 27.一个正方体木块的体积是343 cm 3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是( )A . 72 cm 2B . 494 cm 2C . 498 cm 2D . 1472cm 2 8.如果ab >0,a +b <0,那么:①√a b =√a √b ,②√a b ·√b a =1,③√ab ÷√ab =−b ,其中正确的是( ) A . ①②③ B . ①③ C . ②③ D . ①②9.若y 轴上的点P 到x 轴的距离为3,则点P 的坐标是( )A . (3,0)B . (0,3)C . (3,0)或(-3,0)D . (0,3)或(0,-3)10.如图所示,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平方向要向左滑动____米.11.9的平方根是______,它的算术平方根是______(12.如图,直线l过正方形ABCD的顶点B,点A、点B到直线l的距离分别是3和4,则该正方形的面积是__________.13.如图,△A1OM是腰长为1的等腰直角三角形,以A1M为一边,作A1A2⊥A1M,且A1A2=1,连接A2M,再以A2M为一边,作A2A3⊥A2M,且A2A3=1,则A1M=_____,照此规律操作下去…则A n M=_____(14.点B,3,-2)到x轴的距离是_________,到y轴的距离是____________,15.9的算术平方根是__________,16.观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律,a=_____.(提示:5=23+12,13=25+12,…)17.计算:√4=_____.18.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE中点,连接MD,若BD=2,CD=1.则MD的长为______.19.初三年级261位学生参加期末考试,某班35位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图1和图2所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,总成绩名次靠前的学生是_________(②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是_____20.规定一种新运算“,”,两数a,b通过“,”运算得(a+2,×2,b,即a,b=,a+2,×2,b,例如:3,5=,3+2,×2,5=10,5=5.根据上面规定解答下题:,1)求(7,5,,,,3,,2,7,,,3)与(﹣3,,7的值相等吗?21.计算:(1(√3×√6((2(√21×(−√7)((3(3√5×(−2√10)((4((−5√24)×(−4√80)((5(√123×(−2√2.25)((6(√34×(−2√213)×√566((7(√225×(√524−2√15)((8((√54−√6)×√24((9((3√2+2√3)(3√2−2√3)((10((2√x+3y)(3y−2√x)((11((3√5+2√10)2((12(3√5a⋅2√10ab((13(12√2m⋅(−√2m2+4mn)((14(13√12x⋅(12√3x3)⋅(−12⋅√xy4z).22.化简:(1)√20+√5(2)√27−√12+√8(3)(5√48−√27)÷√323.已知等腰Rt△ABC中,∠BAC=90°.点D从点B出发沿射线BC移动,以AD为腰作等腰Rt△ADE,∠DAE=90°.连接CE.(1)如图,求证:△ACE≌△ABD;(2)点D运动时,∠BCE的度数是否发生变化?若不变化,求它的度数;若变化,说明理由;(3)若CD=1时,请求出DE的长.25.在由边长为1个单位长度的小正方形组成的网格中建立如图所示的平面直角坐标系,四边形ABCD是格点四边形(顶点为网格线的交点)((1)写出点A(B(C(D的坐标;(2)求四边形ABCD的面积.26.如图,在5×5的方格纸中,每一个小正方形的边长都为1.(1)∠BCD是不是直角?请说明理由;(2)求四边形ABCD的面积.答案1.D【解析】分析:根据无理数为无限不循环小数逐一分析即可作答.详解:在0 、 227 、 √4 和 π3中无理数有π3,故选D. 点睛:本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数.2.B4=,2=-,=, ()()322372-⨯-=-, 故选B .3.D【解析】A 选项:√9=3,故是错误的;B 选项:√(−2)2=2,故是错误的;C 选项:(1没有算术平方根,故是错误的;D 选项:√1253=(5,故是正确的.故选D.4.B【解析】解:∵3423,,∴无理数a .故选B . 5.A【解析】根据有序数对的含义,知用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,利用有序数对,可以很准确地表示出一个位置.故答案为:A.6.A【解析】【分析】根据实数大小比较的法则比较即可.【详解】∵(1<1<√2<2∴最小的数是﹣1(故选A(【点睛】本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.7.D【解析】由题意可得每个小正方体的体积为:3438cm3,∴每个小正方体的边长为:72 =,∴每个小正方体的表面积为:27147622⎛⎫⨯=⎪⎝⎭cm3.故选D.点睛:(1)正方体的棱长是其体积的立方根;(2)正方体的表面积=棱长的平方的6倍. 8.C【解析】分析:由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.详解:∵ab>0,a+b<0,∴a<0,b<0.①√ab =√a√b,被开方数应≥0,a,b不能做被开方数,故①错误,②√ab •√ba=√ab×ba=√1=1,故②正确,③√ab÷√ab =√ab÷√ab−b=√ab×√ab=﹣b,故③正确.故选C.点睛:本题是考查二次根式的乘除法,解答本题的关键是明确a<0,b<0.9.D【解析】分析:由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.详解:∵y轴上的点P(∴P点的横坐标为0(又∵点P到x轴的距离为3(∴P点的纵坐标为±3(所以点P的坐标为(0(3)或(0(-3((故选D(点睛:此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.10.2【解析】【分析】如图,先利用勾股定理求出BC的长,再利用勾股定理求出CE的长,根据BE=BC-CE即可得答案.【详解】如图,AB=DE=10(AC=6(DC=8(∠C =90°(∴BC=√AB2−AC2=√102−62=8(CE=√DE2−DC2=√102−82=6(∴BE=BC-CE=2(米),故答案为:2.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.11.±33【解析】【分析】根据平方根和算术平方根的意义求解便可.【详解】9的平方根是±3,它的算术平方根是3.故答案为:(1). ±3(2). 3【点睛】本题考核知识点:平方根和算术平方根.解题关键点:理解平方根和算术平方根的意义.12.25【解析】先证左右两个直角三角形全等,再利用勾股定理可计算出AB,即可求出正方形ABCD 的面积.解:如图所示,∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∵AE⊥BE,CF⊥BF,∴∠AEB=∠BFC=90°,∴∠EAB+∠ABE=90°,∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中{AEB BFC EAB FBCAB BC∠=∠∠=∠=,∴△ABE≌△BCF(ASA)∴BE=CF=4,在Rt△ABE中,AE=3,BE=4,∴AB=5,∴S正方形ABCD=5×5=25.故答案为:25.点睛:本题主要考查勾股定理及全等三角形的判定.根据正方形的性质找出全等三角形的判定条件是解题的关键.13.√2√n+1(【解析】分析:根据勾股定理分别求出直角三角形的斜边长,从而得出一般性的规律.详解:∵A1M=√12+12=√2,A2M=√12+(√2)2=√3,A3M=√12+√32=√4= 2,……,A n M=√12+√n2=√n+1.点睛:本题主要考查的是直角三角形的勾股定理以及规律的发现,属于基础题型.解决这种问题的关键就是得出前面几个三角形的斜边,从而得出一般性的规律.14. 2 3【解析】根据点到x轴的距离等于纵坐标的长度的绝对值,到y轴的距离等于横坐标的长度的绝对值可得点B(3,−2)到x轴的距离是2;到y轴的距离是3.故答案为:2;2.15.3【解析】∵32=9,∴9的算术平方根是33=.故答案为:3.16.17【解析】观察各勾股数组,根据题目中的提示可设,211452a+=,解得a=17.点睛:本题主要考查了勾股数,观察各组勾股数的特点,根据题目中提示的方法,找出数据之间的关系,是解决本题的基本思路.17.2【解析】分析:如果一个数x的平方等于a,那么x是a的平方根,其中正的平方根叫做算术平方根.由此即可求解.详解:∵22=4,∴√4=2.故答案为:2.点睛:根据算术平方根的概念回答即可.18.23√3【解析】【分析】过点D作DF⊥AB于点F.由角平分线性质得FD=CD=1,在Rt△BDF 中,FD=1,BD=2,得∠B=30°,再证∠1=∠2=30°,再求AD=2FD=2,利用勾股定理可求AE=4√33,最后利用直角三角形斜边上中线等于斜边一半可求得.【详解】过点D作DF⊥AB于点F.∵AD平分∠BAC交BC于点D,CD=1,∴FD=CD=1;在Rt △BDF 中,FD=1,BD=2,∴∠B=30°(30°角所对的直角边是斜边的一半);∴∠1=∠2=30°,∴在Rt △AFD 中,AD=2FD=2;∴在Rt △AED 中,AE=4√33∴MD=12AE=2√33故正确选项为:2√33【点睛】本题考核知识点:角平分线,勾股定理,直角三角形性质. 解题的关键:做出辅助线,通过特殊边的数量关系推出特殊角,再解直角三角形即可.此题比较综合.19. 甲 数学【解析】分析:(1)根据图1分析甲乙两人所在的位置的横坐标即可确定总成绩名次;(2)根据图2分析丙所在位置的横坐标,确定丙的总成绩年级名次是倒数第5,在图1中找出从右数第5个点即为丙的位置,观察图1和图2中丙的纵坐标即可得出答案.详解:(1)由图1可知甲的位置在乙的左侧,所以在甲、乙两人中,总成绩名次靠前的学生是甲;(2)由初三年级261位学生参加期末考试,某班35位学生的语文成绩,数学成绩与总成绩在全年级的排名情况图可知,两个图中,同一个人的总成绩是不会变的.从图2看,丙是从右往左数第5个点,即丙的总成绩在班里倒数第5.在图1中,找到倒数第5个点,它表示的就是丙,发现这个点的位置比右边图中丙的位置高,所以语文名次更“大”,即在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.故答案为:甲;数学.点睛:本题考查了平面直角坐标系和点的坐标,结合两个图形找出点对应的横纵坐标的意义,以及两个图中横坐标表示的意义相同是解决此题的关键.20.,1,33,,2,,9,值不相等.【解析】试题分析:,1)原式利用题中的新定义计算即可求出值;,2)分别求出各自的值,比较即可.试题解析,,1)根据题中的新定义得:原式=13※,,3,=33,,2,7※,,3,=21,,,3,※7=,9,值不相等.21.(1)3√2((2)−7√3( (3)−30√2( (4)160√30( (5)−√15( (6)−73√2( (7)√22−12((8)24 ( (9)6 ( (10)9y2(4x((11)85+60√2( (12)30a√2b;(13)−m√m+2n((14)−12x2y2√xz.【解析】试题分析:直接根据二次根式的运算法则进行运算即可.试题解析:(1)原式=√3×6=√18=3√2.(2)原式=−√21×7=−7√3.(3)原式=−6√5×10=−6×5√2=−30√2.(4)原式=5×2√6×4×4√5=160√30.(5)原式=−√53×2×1.5=−√153×3=−√15.(6)原式=−2×16×√34×73×56=−13×√49×3=−7√23.(7)原式=√125×524−2√125×15=√12−2√36=√22−12.(8)原式=(3√6−√6)×2√6=2√6×2√6=24.(9)原式=(3√2)2−(2√3)2=18−12=6.(10)原式=(3y)2−(2√x)2=9y2−4x.(11)原式=(3√5)2+2×3√5×2√10+(2√10)2=45+60√2+40=85+60√2.(12)原式=6√50a2b=30a√2b.(13)原式=−12√4m2(m+2n)=−12⋅2m√m+2n=−m√m+2n.(14)原式=13×12×(−12)√36x5y4z=−12x2y2√xz.22.(1)3√5;(2)√3+2√2;(3)17.【解析】分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3(先把括号内各二次根式化为最简二次根式,根据二次根式的除法法则运算;详解:(1(√20+√5=2√5+√5=3√5((2(√27−√12+√8=3√3−2√3+2√2=√3+2√2((3((5√48−√27)÷√3=(5×4√3−3√3)÷√3=17(点睛:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.(1)见解析;(2)90°;(3)DE.【解析】试题分析:(1)由△ABC和△ADE都是等腰Rt△可得,AB=AC,AD=AE,∠BAC=∠DAE=90°,则有∠BAD=∠CAE,从而可证到△ACE≌△ABD;(2)由△ACE≌△ABD可得∠ACE=∠ABD=45°,从而得到∠BCE=∠BCA+∠ACE=90°;(3)可分点D在线段BC上时(如图1)和点D在线段BC延长线上时(如图2)两种情况讨论,在Rt△ABC中运用勾股定理可求出BC,从而得到BD,由△ACE≌△ABD可得CE=BD,在Rt△DCE中运用勾股定理就可求出DE.试题解析:(1)∵△ABC和△ADE都是等腰Rt△,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ACE和△ABD中,{AC ABCAE BADAE AD=∠=∠=,∴△ACE≌△ABD;(2)∵△ACE≌△ABD,∴∠ACE=∠ABD=45°,∴∠BCE=∠BCA+∠ACE=45°+45°=90°;∴∠BCE的度数不变,为90°;(3)①点D在线段BC上时,如图1,,∠BAC=90°,,∵CD=1,﹣1,∵△ACE≌△ABD,﹣1.∵∠BCE=90°,=②点D在线段BC延长线上时,如图2,,∠BAC=90°,,∵CD=1,+1,∵△ACE≌△ABD,+1,∵∠BCE=90°,∴∠ECD=90°,=综上所述:DE.【点睛】本题主要考查了全等三角形的判定与性质、勾股定理等知识,需要注意的是由于D 从点B出发沿射线BC移动,需分情况讨论.24.-1.【解析】【分析】直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案.【详解】﹣2+1﹣2√3解:原式=4×√32=2√3﹣2+1﹣2√3=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.25.(1)A (4(1)(B (0(0)(C ((2(3)(D (2(5)((2) 17.【解析】【分析】(1)根据图形结合坐标系写出各点坐标即可;(2)利用长方形的面积减去四个顶点上三角形的面积即可.【详解】(1(A(4(1)(B(0(0)(C((2(3)(D(2(5)((2(四边形ABCD 的面积为(5×6(12×2×3(12×2×4(12×2×4(12×1×4(17. 【点睛】本题考查了平面直角坐标系,点的坐标,四边形的面积等,结合网格特点以及平面直角坐标系的特征确定点的坐标是解题的关键.26.(1)见解析;(2)292【解析】试题分析:(1)连接BD ,由于每一个小正方形的边长都为1,根据勾股定理可分别求出△BCD 的三边长,根据勾股定理的逆定理即可判断出△BCD 的形状;(2)S 四边形ABCD =S 正方形AHEJ -S △BCE -S △ABH -S △ADI -S △DCF -S 正方形DFJI .试题解析:(1)∠BCD 是直角,理由如下:连接BD ,∵,∴BC 2+CD 2=BD 2,∴∠BCD 为直角;(2)S四边形ABCD =S 正方形AHEJ -S △BCE -S △ABH -S △ADI -S △DCF -S 正方形DFJI , 所以S 四边形ABCD =5×5﹣12×4×2﹣12×2×1﹣1×1﹣12×4×1﹣12×5×1, =25﹣4﹣1﹣1﹣2﹣52=292.。