八年级数学整式除法测试题

合集下载

初二上册数学整式除法专项练习题

初二上册数学整式除法专项练习题

初二上册数学整式除法专项练习题在初二上册数学学习中,整式除法是一个重要的知识点。

为了帮助同学们更好地掌握整式除法的方法和技巧,以下是一些整式除法专项练习题,供大家参考和练习。

练习题一:一元多项式的除法
1. 将多项式x^3 + 3x^2 - x + 2除以x + 1。

2. 将多项式x^4 - 2x^3 + 3x^2 - 4x + 5除以x - 1。

3. 将多项式2x^3 - 5x^2 + 4x - 3除以2x - 1。

练习题二:多项式的除法应用
1. 已知多项式P(x) = 3x^4 - 4x^3 + 2x^2 - 5x + 1,求P(2)的值。

2. 已知多项式Q(x) = x^3 - 5x^2 + x + 2,求Q(-1)的值。

3. 已知多项式R(x) = 2x^4 + 3x^3 + x^2 - 2x - 3,求R(0)的值。

练习题三:多项式的因式分解与除法
1. 将多项式x^4 - 5x^3 + 4x^2 - 4x - 3分解因式。

2. 将多项式4x^3 + 6x^2 - 5x - 4分解因式。

3. 将多项式x^3 - 2x^2 - 7x + 10分解因式。

以上是初二上册数学整式除法专项练习题,希望同学们能够认真思考并运用所学知识解答。

通过这些练习,相信大家对整式除法的掌握
能力会有一定提升。

在学习过程中,如果有任何问题或困惑,一定要
及时找老师或同学们讨论,共同进步。

祝大家学业进步,取得好成绩!。

八年级数学整式的除法天天练

八年级数学整式的除法天天练

整式除法同步测试题一、 填空题:(每小题2分,计24分)1、 单项式5)2(32y x -的系数是_________,次数是___________。

2、 多项式π2323232----x xy y x 中,三次项系数是_______,常数项是_________。

3、 若,3,2==nma a 则___________,__________23==--n m n m a a 4、 单项式2222,2,21,2xy y x xy y x ---的和是_________________________。

5、 若2333632-++=⋅x x x ,则x =_________________。

6、 )2131)(3121(a b b a ---=___________________。

7、 若n mx x x x --=-+2)3)(4(,则__________________,==n m 。

8、 ________________)6()8186(32=-÷-+-x x x x 9、 442)(_)(_________5⨯⨯⨯⋅⋅⋅⋅-=x x x x x10、22413)(___)(_________y xy xy x +-=+-11、______________42125.0666=⨯⨯。

12、_____________)()(22++=-b a b a 。

二、选择题:(每小题2分,共20分) 1、 代数式4322++-x x 是A 、多项式B 、三次多项式C 、三次三项式D 、四次三项式2、 )]([c b a +--去括号后应为A 、c b a +--B 、c b a -+-C 、c b a ---D 、c b a ++-3、=⋅-+1221)()(n n x xA 、n x 4B 、34+n xC 、14+n xD 、14-n x 4、下列式子正确的是A 、10=aB 、5445)()(a a -=- C 、9)3)(3(2-=--+-a a aD 、222)(b a b a -=-5、下列式子错误的是A 、161)2(22=-- B 、161)2(22-=--C 、641)2(32-=--D 、 641)2(32=--6、=-⨯99100)21(2A 、2B 、2-C 、 21D 、21-7、=-÷-34)()(p q q pA 、q p -B 、q p --C 、p q -D 、q p +8、已知,109,53==ba 则=+b a 23A 、50-B 、50C 、500D 、不知道9、,2,2-==+ab b a 则=+22b a A 、8- B 、8 C 、0 D 、8±10、一个正方形的边长若增加3cm ,它的面积就增加39cm ,这个正方形的边长原来是 A 、8cm B 、6cm C 、5cm D 、10cm二、 计算:(每小题4分,共计24分) 1、42332)()()(ab b a⋅⋅-1.._______362=÷x x 2..______)5.0()3(2353=-÷-n m n m3.._______)102()104(39=⨯-÷⨯ 4.._______)(34)(836=-÷-b a b a5.2222234)2(c b a c b a ÷-=________6..________])[()(239226=⋅÷÷÷a a a a a 7..________)]()(51[)()(523=+--÷+-y x x y y x y x8.mm8)(16=÷.9.⎪⎭⎫⎝⎛-÷2333238ax x a ;10.()2323342112⎪⎭⎫⎝⎛÷-y x y x ;11.()()3533263b a c b a -÷;12.()()()32332643xy y x ÷⋅;13.()()39102104⨯-÷⨯;14.()()322324n n xy y x -÷15.32332)6()4()3(xy y x ÷-⋅;16.233224652)3(12z y x z y x z y x ÷-÷;17.)102(10)12(562⨯÷⨯--;18222221)52()41()25(n n n n b a b a b a -⋅-÷+;2、2.4)2()21(232÷÷-xy y x3、3334455653)1095643(y x y x y x y x ÷-+4、)3121()312(2122y x y x x -+--5、)1(32)]1(21[2-----x x x6、⎭⎬⎫⎩⎨⎧-÷----)21()]2(3[2522222xy y x xy xy y x xy四、先化简,再求值(每小题7分,共计14分)1、2)3()32)(32(b a b a b a -+-+,其中31,5=-=b a 。

整式的乘除练习题初二

整式的乘除练习题初二

整式的乘除练习题初二1. (2x + 3y)² =首先,我们可以使用分配律展开整式。

根据分配律,我们可以将整式分别乘以自身。

(2x + 3y)² = (2x + 3y) * (2x + 3y)在进行乘法时,我们可以使用FOIL法则,即先外后内再外,将整式相乘。

(2x + 3y) * (2x + 3y) = 2x * 2x + 2x * 3y + 3y * 2x + 3y * 3y按照乘法的规则,我们可以将同类项相加,并进行合并。

2x * 2x = 4x²2x * 3y = 6xy3y * 2x = 6xy3y * 3y = 9y²因此,(2x + 3y)² = 4x² + 6xy + 6xy + 9y² = 4x² + 12xy + 9y²。

2. 3a(4a + 5b) =在这个式子中,我们需要将3a与括号中的整式(4a + 5b)相乘。

使用分配律,我们可以将3a乘以4a和5b。

3a(4a + 5b) = 3a * 4a + 3a * 5b根据乘法规则,我们可以将同类项相加,并进行合并。

3a * 4a = 12a²3a * 5b = 15ab因此,3a(4a + 5b) = 12a² + 15ab。

3. (x - 4)(x + 4) =这个式子是一个差的平方形式,也就是 (a - b)(a + b)。

使用差的平方公式,我们可以将它展开。

(x - 4)(x + 4) = x² - 4²在这里,4²可以计算为16。

因此,(x - 4)(x + 4) = x² - 16。

4. (2x + 5)(3x - 7) =这个式子中也是一个乘法运算,我们可以使用分配律将两个整式相乘。

(2x + 5)(3x - 7) = 2x * 3x + 2x * (-7) + 5 * 3x + 5 * (-7)按照乘法规则,我们可以将同类项相加,并进行合并。

初二上册数学整式的除法练习题

初二上册数学整式的除法练习题

初二上册数学整式的除法练习题在初二上册的数学课程中,整式的除法是一个重要的知识点。

通过
练习题的形式进行训练,能够帮助学生更好地掌握和应用这一知识。

本文将为大家提供一些初二上册数学整式的除法练习题,希望对大家
的学习有所帮助。

练习题一: 整式的因式分解
1. 将12a^3a−4a^2a^2−20a^2a^3进行因式分解。

2. 将32a^3a^2−48a^2a^3+16aa^4进行因式分解。

练习题二: 整式的除法
3. 计算 (12a^4+8a^3−4a^2) ÷ (4a^2)。

4. 计算 (16a^3−8a^2+12a) ÷ (4a)。

练习题三: 应用题
5. 若一个长方形的长和宽分别是2a^2−4a和a−3,求该长方形的面积。

6. 某数比2a−1多9,这个数减去4a的四倍等于5a-8,求这个数。

练习题四: 解答题
7. 解方程a^2−5a−14=0。

8. 解方程a^2+7a+10=0。

以上是初二上册数学整式的除法练习题。

希望同学们利用课余时间多加练习,巩固并提高自己的数学能力。

祝大家学业进步!。

初二数学整式除法测试题(含答案).doc

初二数学整式除法测试题(含答案).doc

初二数学整式除法测试题(含答案) 查字典数学网小编为大家整理了初二数学整式除法测试题,希望能对大家的学习带来帮助!整式除法和因式分解知识点仁同底数幕的除法法则:aman=am-n (aO, m, n都是正整数,且mn) 规定:a0=1 (aO) 学习运算法则时注意:A:因为零不能作除数,所以底数不能为0;B:底数可以是单项式,也可以是多项式;C:多个同底数幕相除,应按顺序求解配套练习1•计算:a7a二__________ ; (ab)12(ab)4= _______ ;(a+b) 10 (a+b) 5=__X7x2二___________ ;(a-b) 12 (a-b) 4二____________2•计算:(a~b) 11 (b~a) 10+ (一a_b) 5 (a+b) 4 (a~b) 15 (a~b) 5 (b~a) 8(-a11)3 (-a) 17 (—a3) 2a8 (-a16) 2 (-a 15) (—a3) 2a83.变式练习:已知2m二7, 2n=5,求4m-n的值。

4.计算;(x-y) 12 (y-x) 11 + (~x-y) 3 (x+y) 2知识点2:单项式,多项式除以单项式用单项式或多项式除双被除数的单项式,再把所得的结果相加5.a3x4a2x ________ ;45a5b3 (-9a2b) _________ ; (-2x4y2) 3 (-2x3y3)6.xm+n (-2xmyn) (3xmyn)27x5y3z (-9x2y) (-2a2y2)3 (-3ay2)37.(9a3b2-12a2b+3ab) (-3ab) (-0.25a3b2- a4b3+a3b) (-0. 5a3b)[(a+b) 5- (a+b) 3] (a+b) 3 [ (a+b) (a~b) - (a~b) 2] (a~b) 8 先化简再求值[(2b~a) (3a+2b) - (a+2b) 2] (- a),其中a=2, b二9•综合应用:已知8a二32, 8b二0. 5,求3a3b10.解不等式:(-3)7(2xT) (-3)8(1-x)11.解关于X的方程(x-5) x-2二112.计算:[2x (y-1) 5-3x2 (y-1)4+6x3 (y-1) 3] [-2x (y-1) 3] 知识点3:因式分解因式分解方法:提公因式法,运用公式法,十字相乘法,分组分解法。

初二数学整式试题答案及解析

初二数学整式试题答案及解析

初二数学整式试题答案及解析1.小明做了一道因式分解题:x2y﹣2xy2+y2=y(x2﹣2xy+y2)=y(x﹣y)2,他用到的分解因式的方法是_________(写出两个)【答案】提公因式法,运用公式法.【解析】x2y﹣2xy2+y2=y(x2﹣2xy+y2)=y(x﹣y)2,他用到的分解因式的方法是提公因式法,运用公式法.故答案是提公因式法,运用公式法.【考点】因式分解-运用公式法;因式分解-提公因式法.2.分解因式.【答案】.【解析】把作为一整体应用完全平方公式分解后再应用平方差公式分解即可.试题解析:.【考点】1.应用公式法因式分解;2.整体思想的应用.3.下面是某同学在一次测验中的计算摘录,其中正确的个数有( )①3x3·(-2x2)=-6x5;②4a3b÷(-2a2b)=-2a;③(a3)2=a5;④(-a)3÷(-a)=-a2.A.1个B.2个C.3个D.4个【答案】B.【解析】根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.①3x3•(﹣2x2)=﹣6x5,正确;②4a3b÷(﹣2a2b)=﹣2a,正确;③应为(a3)2=a6,错误;④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,错误.所以①②两项正确.故选B.【考点】1.单项式乘单项式,2.幂的乘方与积的乘方,3.底数幂的除法,4.整式的除法.4.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是 .【答案】x2+2.【解析】根据被除式减余式,可得商式与除式的积,根据积除以商式,可得除式.x3+2x2﹣1﹣(﹣1)=x3+2x,(x3+2x)÷x=x2+2.故答案是x2+2.【考点】整式的除法.5.下列运算正确的是()A.x4·x3=x12B.(x3)4=x7C.x4÷x3=x(x≠0)D.x4+x4=x8【答案】C.【解析】幂的加减乘除运算:1.同底数幂相乘,底数不变,指数相加;2.幂的乘方公式:(a m)n=a mn;3.幂的积的乘方公式:(ab)n=a n b n;4.幂的加减运算,是同类项的才能合并;由题, x4·x3 =x7,A选项错误, (x3)4=x7,B选项错误,C选项正确, x4+x4=2x4,D选项不正确,故选C.【考点】幂的加减乘除运算.6. 因式分解 【答案】. 【解析】通过分析可知原式还因子,故可设 =取两组特殊值代入求出,即可得到答案. 试题解析:注意到 当时,原式等于0,故原式含有因子,又原式是关于的轮换对称式,故原式还含因子,又原式为的五次式,故可设=, 令得,令得 解得 所以=. 【考点】因式分解.7. (1)如图1,以的边、为边分别向外作正方形和正方形,连结,试判断与面积之间的关系,并说明理由;(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形大理石和黑色的三角形大理石铺成.已知中间的所有正方形的面积之和是平方米,内圈的所有三角形的面积之和是平方米,这条小路一共占地多少平方米?【答案】(1)相等;(2)(a+2b )平方米.【解析】(1)过点C 作CM ⊥AB 于M ,过点G 作GN ⊥EA 交EA 延长线于N ,得出△ABC 与△AEG 的两条高,由正方形的特殊性证明△ACM ≌△AGN ,是判断△ABC 与△AEG 面积之间的关系的关键;(2)同(1)道理知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和,求出这条小路一共占地多少平方米.试题解析:(1)△ABC 与△AEG 面积相等.理由:过点C 作CM ⊥AB 于M ,过点G 作GN ⊥EA 交EA 延长线于N ,则∠AMC=∠ANG=90°,∵四边形ABDE 和四边形ACFG 都是正方形, ∴∠BAE=∠CAG=90°,AB=AE ,AC=AG , ∵∠BAE+∠CAG+∠BAC+∠EAG=360°, ∴∠BAC+∠EAG=180°, ∵∠EAG+∠GAN=180°, ∴∠BAC=∠GAN , ∴△ACM ≌△AGN , ∴CM=GN ,∵S △ABC =AB•CM ,S △AEG =AE•GN ,∴S △ABC =S △AEG ;(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和.∴这条小路的面积为(a+2b)平方米.【考点】1.正方形的性质;2.全等三角形的面积和性质;3.三角形的面积公式.8.多项式能用完全平方式分解因式,则m的值为( ).【答案】m=±10【解析】完全平方式应具备的条件有:两数乘积二倍项和两数平方和的项,由此确定出确定出mab=±2·a·5b=±10ab.所以m=±10.故填±10.【考点】完全平方式.9. a3·a2b= .【答案】a5b【解析】由题, a3·a2b =a5b.同底数幂相乘,底数不变,指数相加,由题, a3·a2b =a5b.【考点】整式的乘法.10.下列从左边到右边的变形,是因式分解的是().A.B.C.D.【答案】C.【解析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.、是多项式乘法,不是因式分解,错误;、是多项式乘法,不是因式分解,错误;、是因式分解,正确;、右边不是积的形式,错误.【考点】因式分解的定义.11.下列运算中,正确的是().A.B.C.D.【答案】B.【解析】根据同底数幂的乘法,合并同类项,积的乘方,以及完全平方公式的意义,对各选项计算后利用排除法求解.、而不等于,故本选项错误;、正确;、而不等于,故本选项错误;、而不等于,故本选项错误.因此本题选B.【考点】(1)同底数幂的乘法;(2)合并同类项;(3)积的乘方;(4)完全平方公式.12.若一多项式除以2x2﹣3,得到的商式为7x﹣4,则此多项式为______________.【答案】.【解析】根据被除式=商×除式可知该多项式=,去括号整理即得.试题解析:=.【考点】多项式乘以多项式.13.下列各题的计算,正确的是()A.B.C.D.【答案】D.【解析】 A.,本选项错误;B.,本选项错误;C.,本选项错误;D.,本选项正确,故选D【考点】1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法;4.同底数幂的除法.14.在数学课的学习中,我们已经接触了很多代数恒等式,知道可以用图形的面积来解释这些代数恒等式.如图①可以解释恒等式;(1)如图②可以解释恒等式= .(2)如图③是由4个长为,宽为的长方形纸片围成的正方形,①用面积关系写出一个代数恒等式:.②若长方形纸片的面积为3,且长比宽长3,求长方形的周长(其中a.b都是正数,结果可保留根号).【答案】(1);(2)①或或;②.【解析】(1)根据图形面积可以得出公式;(2)①根据面积关系可以得出公式或或;②再利用长方形纸片的面积为3,长比宽长3,得出a,b关系求出即可.试题解析:(1);(2)①或或;②由①得:,依题意得,,,因为.都是正数,所以,所以,长方形周长为:.【考点】1.完全平方公式的几何背景;2.完全平方式.15.计算:÷·【答案】【解析】先根据乘方法则化简,再根据分式的基本性质约分即可.原式.【考点】幂的运算点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.16.下面是某同学对多项式(x2—4x+2)(x2—4x+6)+4进行分解因式的过程。

初中数学整式的乘除法练习题(附答案)

初中数学整式的乘除法练习题(附答案)

初中数学整式的乘除法练习题一、单选题1.下列运算正确的是( )A.236a a a ⋅=B.22423a a a +=C.236(2)2a a -=- D.422()a a a ÷-= 2.计算结果为256x x --的是( )A .()(61)x x -+B .()(23)x x -+C .()(61)x x +-D .()(23)x x +-3.已知222610x y x y +--=-,那么20182x y 的值为( ) A.19 B.9 C.1 D.24.下列各式从左到右的变形中,是因式分解的为( )A.()a x y ax ay +=+B.()24444x x x x -+=-+C.()2105521x x x x -=-D.()()24416x x x +-=-5.若2()(3)x a x x x n +-=+-,则( )A.4,12a n =-=B.4,12a n =-=-C.4,12a n ==-D.4,12a n ==6.计算2201820192017-⨯的结果是( )A.-1B. 0C.1D. 4 0347.计算101100205⨯⋅的结果正确的是( )A. 1B. 2C. 0.5D. 108.下列计算正确的是( )A.22(3)(3)9x y x y x y -+=-B.2(9)(9)9x x x -+=-C.22()()x y x y x y --+=-D.2211()24x x -=-9.如果单项式23212a x y --和32713a b x y +--的和仍为单项式,那么他们的乘积为( ) A. 6423x y - B. 3216x y - C. 6416x y - D. 6416x y 二、解答题 10.先化简,再求值:22(2)(2)(2)8a b a b a b b -+--+,其中12,2a b =-=. 11.甲、乙两人共同计算一道整式乘法:(2)(3)x a x b ++,由于甲抄错了第一个多项式中a 的符号,得到的结果为261110x x +-;由于乙漏抄了第二个多项式中x 的系数,得到的结果为22910x x -+.请你计算出,a b 的值,并写出这道整式乘法的正确结果.12.某同学化简(2)()()a a b a b a b +-+-出现了错误,解答过程如下:原式()2222a ab a b =+--(第一步)2222a ab a b =+--(第二步)22.ab b =-(第三步) (1)该同学解答过程从第_____________步开始出错,错误原因是____________;(2)写出此题正确的解答过程.13.先阅读下列因式分解的过程,再回答所提出的问题:21(1)(1)x x x x x +++++23(1)[1(1)](1)(1(1).)x x x x x x x =++++=++=+ (1)上述分解因式的方法是________,共应用__________了次;(2)若分解220181(1)(1)(1)x x x x x x x ++++++++,则需应用上述方法________次,结果是___________;(3)分解因式:21(1)(1)(1)n x x x x x x x ++++++++(n 为正整数). 14.已知ABC 的三边长,,a b c 满足20a bc ab ac --+=.求证:ABC 是等腰三角形.三、计算题15.用简便方法计算:(1)298;(2)99101⨯.16.已知440,235m n m n +=-=,求()()2223m n m n +--的值.17.化简求值:2222111[()()](2)222x y x y x y ++--,其中3,4x y =-=.18.计算:()322322433431242x y xy x y x y ⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭. 四、填空题19.若长方形的面积是2327a ab a ++,宽为a ,则它的长为 .20.若22116a b -=-,14a b +=-,则a b -的值为 . 21.如果(221)(221)63a b a b +++-=,那么a b +的值为 .22.已知248(1)16x n x n +++是一个关于x 的完全平方式,则常数n 的值为 . 参考答案1.答案:D解析: A 选项,原式5a =,所以A 选项错误;B 选项,原式23a =,所以B 选项错误;C 选项,原式68a =-,所以C 选项错误;D 选项,原式422a a a =÷=,所以D 选项正确.故选D.2.答案:A解析:3.答案:B解析:222610x y x y +--=-,()()22130x y ∴-+-=,1,3x y ∴==,2018220182139x y =⨯=.4.答案:C解析:A 选项是整式乘法,错误;B 选项中右边的结果不是积的形式,错误;C 选项是因式分解,正确;D 选项中右边不是积的形式,错误.故选C.5.答案:D解析:2()(3)33x a x x x ax a +-=-+-22(3)3x a x a x x n =+--=+-,则31,3a a n -=-=-,解得4,12a n ==.故选D.6.答案:C解析:2201820192017-⨯22018(20181)(20181)=-+-()222018201811=--=.7.答案:B解析:原式10010010022052(205)2=⨯⨯⋅=⨯⨯⋅=. 8.答案:A解析: A 选项,原式229x y =-,正确;B 选项,原式281x =-,错误:C 选项,原式222x xy y =-+-,错误;D 选项,原式214x x =-+,错误.故选A. 9.答案:C解析:单项式23212a x y --和32713a b x y +--的和仍为单项式,∴ 2327=2a b a b -=⎧⎨+-⎩解得3=3a b =⎧⎨⎩故单项式23212a x y --和32713a b x y +--的乘积6416x y -. 10.答案:解:原式2222244484a b a ab b b ab =--+-+=,当12,2a b =-=时,原式4=-. 解析:11.答案:∵甲得到的算式: ()()()222362361110x a x b x b a x ab x x -+=+--=+-对应的系数相等, 2311b a -=,10ab =, 乙得到的算式: ()()()222222910x a x b x b a x ab x x ++=+++=-+对应的系数相等, 29b a +=-,10ab =,∴231129b a b a -=+=-⎧⎨⎩解得: 52a b =-⎧⎨=-⎩.∴正确的式子: ()()2253261910x x x x --=-+.解析:12.答案:(1)二;去括号时没有变号(2)(2)()()a a b a b a b +-+-()2222222222.a ab a b a ab a b ab b =+--=+-+=+解析:13.答案:(1)提公因式法;2(2)2018;2019(1)x +(3)21(1)(1)(1)n x x x x x x x ++++++++212221(1)1(1)(1)(1)(1)1(1)(1)(1)(.1)n n n x x x x x x x x x x x x x x x x x --+⎡⎤=+++++++++⎣⎦⎡⎤=+++++++++⎣⎦=+解析:14.答案:因为20a bc ab ac --+=,所以20a ab bc ac --+=,所以()2()0,()()0a ab ac bc a a b c a b -+-=-+-=,则()()0a b a c -+=,因为0a c +≠,所以0a b -=,所以a b =,所以ABC 是等腰三角形.解析:15.答案:解:(1)原式222(1002)10024009604=-=+-=(2)原式2(1001)(1001)10011000019999=-⨯+=-=-=解析:16.答案:()()2223m n m n +-- ()()2323m n m n m n m n =++-+-+()()432m n n m =+-()()423m n m n =-+-.当440,235m n m n +=-=时,原式405200=-⨯=-.解析:17.答案:原式222211(2)(2)22x y x y =+-44144x y =-. 把3,4x y =-=代入得,原式260=.解析:18.答案:解:原式962486342714644x y x y x y x y =-⋅-⋅ 11101110271164x y x y =-- 11103116x y =-. 解析:19.答案:327a b ++解析:由题意可知长方形的长为2(3)27327ab a a a b a ++÷=++.故答案为327a b ++.20.答案:14解析:221()()16a b a b a b -=+-=-,14a b +=-,14a b ∴-=.21.答案:4±解析:(221)(221)63a b a b +++-=,22(22)163a b ∴+-=,2(22)64a b ∴+=,则228a b +=±.两边同时除以2,得4a b +=±.22.答案:1解析:()248116x n x n +++是一个关于x 的完全平方式11n n ∴+=±=。

人教版八年级数学整式的除法习题

人教版八年级数学整式的除法习题

人教版八年级数学整式的除法习题本文档旨在提供人教版八年级数学整式的除法题,帮助学生巩固和提升他们在整式除法方面的能力。

题一1. 将多项式P(x) = 3x^4 - 5x^3 + 2x^2 - 7x + 9除以(x - 2)得到的商和余数分别是什么?2. 已知多项式Q(x) = 4x^3 - 7x^2 + 9x - 3被(x - 1)除后的余数为2,则商式是什么?题二3. 将多项式R(x) = x^5 - 2x^4 + 3x^3 - 4x^2 + 5x - 6除以(x + 1)得到的商和余数分别是什么?4. 已知多项式S(x) = x^4 - 3x^3 + 4x^2 - 5x + 7被(x + 2)除后的余数为-3,则商式是什么?题三5. 将多项式T(x) = 2x^6 + 3x^5 - 4x^4 + 5x^3 - 6x^2 + 7x - 8除以(x - 3)得到的商和余数分别是什么?6. 已知多项式U(x) = 3x^5 + 2x^4 - 5x^3 + 6x^2 - 7x + 9被(x - 4)除后的余数为5,则商式是什么?以上题可以帮助学生练整式的除法运算,巩固他们在整式除法方面的知识和技能。

通过解答这些题,学生可以加深对多项式除法的理解,并提高解决实际问题时的计算能力。

注意:本文档中的题仅作为练和参考,请在解答时注意核对答案。

参考答案:1. 商式:3x^3 + x^2 - 3x - 1,余数:-52. 商式:4x^2 - 3x + 73. 商式:x^4 - 3x^3 + 5x^2 - 9x + 14,余数:-204. 商式:x^3 - 2x^2 + 6x - 35. 商式:2x^5 + 9x^4 - 27x^3 + 77x^2 - 215x + 646,余数:19306. 商式:3x^4 + 14x^3 + 53x^2 + 217x + 880。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式除法和因式分解
知识点1:同底数幂的除法
法则:a m ÷a n =a m-n (a ≠0,m,n 都是正整数,且m>n)
规定:a 0=1(a ≠0)
学习运算法则时注意:
A :因为零不能作除数,所以底数不能为0;
B :底数可以是单项式,也可以是多项式;
C :多个同底数幂相除,应按顺序求解
配套练习
1.计算:a 7÷a=__________;(ab)12÷(ab)4=______;(a+b)10÷(a+b)5=_________ X 7÷x 2=___________;(a-b)12÷(a-b)4=_______________
2.计算:(a-b )11÷(b-a)10+(-a-b)5÷(a+b)4(a-b )15÷(a-b)5÷(b-a)8
(-a 11)3÷(-a)17÷(-a 3)2÷a 8(-a 16)2÷(-a 15)÷(-a 3)2÷a 8
3.变式练习:已知2m =7,2n =5,求4m-n 的值。

4.计算()()354105319.02121230
2-÷⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯----÷;(x-y)12÷(y-x)11+(-x-y)3÷(x+y)2
知识点2:单项式,多项式除以单项式
用单项式或多项式除双被除数的单项式,再把所得的结果相加
5.a 3x 4÷4
3a 2x________;45a 5b 3÷(-9a 2b)________;(-2x 4y 2)3÷(-2x 3y 3)2_________; 6.x m+n ×(-2x m y n )÷(3x m y n )27x 5y 3z ÷(-9x 2y)(-2a 2y 2)3÷(-3ay 2)3
7.(9a 3b 2-12a 2b+3ab)÷(-3ab)(-0.25a 3b 2-21a 4b 3+3
1a 3b)÷(-0.5a 3b) [(a+b)5-(a+b)3]÷(a+b)3[(a+b)(a-b)-(a-b)2]÷(a-b)
8先化简再求值[(2b-a)(3a+2b)-(a+2b)2]÷(-21a),其中a=2,b=97
13 9.综合应用:已知8a =32,8b =0.5,求3a ÷3b
10.解不等式:(-3)7(2x-1)<(-3)8(1-x)11.解关于X 的方程(x-5)x-2=1
12.计算:[2x(y-1)5-3x 2(y-1)4+6x 3(y-1)3]÷[-2x(y-1)3]
知识点3:因式分解
因式分解方法:提公因式法,运用公式法,十字相乘法,分组分解法。

13.分解因式:
75a 3b 5-25a 2b 4=_________;-12x 4y 2-8x 4y-2x 3y=_______;2
1a 3b 2-a 2b 3=______ 14.分解因式:a 2-4b 2=_________;16x 2-25y 2=______;(a+m)2-(a+n)2=___________
15.分解因式:4a 2+12ab+9b 2=________;
分解因式
16.5a(a-2b)-10b(2b-a)17:-5(x-y)3-15(x-y)2+10(x-y)18:22011-22010
19:5a(a-2b)2-10b(2b-a)220:4(x-y)3-2
1(y-x)221:a 4-6a 2+9
22:3ax 2+6ax+3a23:4a 3b-25ab 324:x 2+3x+2
25:x 2+2x-1526:x 2-3x-2827:x 2+21x+80
28:2x 3+4x 2-6x29:x 2-(k+3)x+(k+2)30:(m 2-1)(n 2-1)+4mn
因式分解综合练习
31:求证:257+513是30的倍数
32:已知a+b=2,求222
121b ab a ++的值 33:已知0136422=++++b a b a 求ab 的值
34 三角形三边长度满足0222=---++bc ac ab c b a ,判断三角形ABC 的形状。

35:已知(2011-b )(2009-b)=2010,求(2011-b)2+(2009-b)2的值
36:已知a 2+10ab+25b 2与|b-2|互为相反数,求a+b 的值
37:对于二次三项式x 2-10x+36,小明同学作出如下结论:无论x 取何值时,它的值都不可能等于11.你同意他的看法吗?说明你的理由。

相关文档
最新文档