质粒提取

合集下载

提取质粒的主要步骤原理

提取质粒的主要步骤原理

提取质粒的主要步骤原理提取质粒是一种分离和纯化质粒DNA的常见实验技术。

质粒是细菌细胞内环状的DNA分子,通常用于基因克隆、转化、表达和基因组编辑等研究。

下面将详细介绍质粒提取的主要步骤原理。

1. 细菌培养:首先,选择含有目标质粒的细菌菌株进行培养。

通常使用大肠杆菌等常用实验菌株。

将细菌接种到含有适当营养物质(如LB培养基)的培养物中,并在适当条件下培养,如37摄氏度、220 rpm振荡培养。

2. 收获细菌:将培养至适当生长期的细菌用离心机离心,收集菌体沉淀。

通常使用1500×g离心10分钟,得到一个细菌菌体的沉淀。

3. 质粒裂解:利用物理或化学方法将细菌菌体裂解,释放内部的质粒DNA。

物理方法包括超声波处理和冻融法,而化学方法则涉及使用碱性裂解液(如SDS 和NaOH)。

该步骤破坏了细胞壁和细胞膜,以及核酸酶等酶的活性。

4. 蛋白质沉淀:为了去除细菌染色体DNA和蛋白质,可通过蛋白质沉淀步骤使质粒DNA纯化。

一种常用的方法是加入混合溶液,其中包含非离子性洗涤剂(如SDS)和蛋白酶K。

SDS具有溶解细菌膜和蛋白质的作用,而蛋白酶K能够降解杂质蛋白质。

该反应可以在高温条件下进行,如50-60摄氏度,以增加SDS和蛋白酶K的活性。

5. DNA沉淀:通过加入盐和酒精,可以使DNA溶液中的质粒DNA沉淀。

正常情况下,添加等体积的冷异丙醇,再加入适量的盐溶液。

因为质粒DNA在冷异丙醇和高盐浓度下更容易沉淀。

经过离心,沉淀的DNA可被分离出来。

6. 洗涤和溶解:将DNA沉淀洗涤一两次,以去除盐和其他杂质。

通常使用70%乙醇洗涤,再次离心以分离DNA沉淀,然后去除液体,使其干燥。

最后,用适当的缓冲液(如TE缓冲液)溶解质粒DNA,以得到高纯度的DNA溶液。

以上步骤提取质粒的主要原理如下:在收获细菌步骤中,细菌通过离心过程被分离出来,得到菌体沉淀。

在质粒裂解步骤中,通过物理或化学方法破坏细胞结构,释放质粒DNA。

质粒提纯的原理

质粒提纯的原理

质粒提纯的原理质粒是一种由DNA分子组成的环状双链结构,常见于细菌细胞中。

质粒提纯是指从细菌细胞中分离纯净的质粒DNA,并去除其他细菌细胞成分和杂质的过程。

质粒提纯的原理主要包括质粒提取、细胞裂解、DNA溶解、去除杂质、DNA沉淀、洗涤和干燥等步骤。

1. 质粒提取:质粒提取是通过裂解细菌细胞壁和细胞膜,释放质粒DNA。

常见的方法有碱裂解法、酶裂解法和热裂解法。

其中,碱裂解法是最常用的一种方法。

在碱裂解法中,首先将含有质粒的细菌培养物经离心分离得到菌体沉淀,然后用碱溶解菌体,使细胞壁和细胞膜破裂,释放质粒DNA。

2. 细胞裂解:细胞裂解是指将细菌细胞壁和细胞膜破裂,释放细胞内的质粒DNA。

细胞裂解的方法包括机械破碎、超声波裂解和酶裂解等。

机械破碎法是将经离心得到的菌体沉淀在低温下用椎管等器械进行破碎,使菌体破裂,释放DNA。

超声波裂解法则是利用超声波的高频振动实现细胞破碎,释放DNA。

酶裂解法则通过添加蛋白酶、脱氧核酸酶等酶,使细胞壁和细胞膜被酶降解,释放DNA。

3. DNA溶解:DNA溶解是指将裂解的细胞中的DNA从其他细胞成分中分离出来。

一般来说,DNA可以通过溶于乙醇或异丙醇的方式沉淀下来,然后经过离心分离得到。

此步骤的目的是将DNA和其他细菌细胞成分如蛋白质、RNA等分离。

4. 去除杂质:在DNA溶解的过程中会有一些杂质如蛋白质、RNA等混入溶液中。

为了获得纯净的质粒DNA,需要去除这些杂质。

一般可以通过加入酶解剂如RNase A或蛋白酶K进行酶解,使RNA或蛋白质被降解。

然后通过盐酸/乙醚等混合液体沉淀蛋白质,或者通过乙醇沉淀RNA等方式去除杂质。

5. DNA沉淀:通过加入适量的盐和乙醇,使DNA与DNA溶液中碱性pH值条件下的盐结合形成DNA盐沉淀,同时DNA与乙醇结合形成DNA乙醇沉淀。

此过程中DNA成为不溶性盐和DNA乙醇复合物,通过离心分离沉淀下来。

沉淀条件可以根据实验需要进行调整,如调节盐和乙醇的浓度、温度等。

质粒提取方法详解

质粒提取方法详解

第一节概述把一个有用的目的DNA片段通过重组DNA技术,送进受体细胞中去进行繁殖和表达的工具叫载体(Vector)。

细菌质粒是重组DNA技术中常用的载体。

质粒(Plasmid)是一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。

质粒主要发现于细菌、放线菌和真菌细胞中,它具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。

质粒的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,如离开宿主细胞则不能存活,而宿主即使没有它们也可以正常存活。

质粒的存在使宿主具有一些额外的特性,缍钥股氐目剐缘取质粒(又称F因子或性质粒)、R质粒(抗药性因子)和Col质粒(产大肠杆菌素因子)等都是常见的天然质粒。

质粒在细胞内的复制一般有两种类型:紧密控制型(Stringent control)和松驰控制型(Relaxed cont rol)。

前者只在细胞周期的一定阶段进行复制,当染色体不复制时,它也不能复制,通常每个细胞内只含有1个或几个质粒分子,如F因子。

后者的质粒在整个细胞周期中随时可以复制,在每个细胞中有许多拷贝,一般在20个以上,如Col E1质粒。

在使用蛋白质合成抑制剂-氯霉素时,细胞内蛋白质合成、染色体DNA复制和细胞分裂均受到抑制,紧密型质粒复制停止,而松驰型质粒继续复制,质粒拷贝数可由原来20多个扩增至1000-3000个,此时质粒DNA占总DNA的含量可由原来的2%增加至40-50%.第二节利用同一复制系统的不同质粒不能在同一宿主细胞中共同存在,当两种质粒同时导入同一细胞时,它们在复制及随后分配到子细胞的过程中彼此竞争,在一些细胞中,一种质粒占优势,而在另一些细胞中另一种质粒却占上风。

当细胞生长几代后,占少数的质粒将会丢失,因而在细胞后代中只有两种质粒的一种,这种现象称质粒的不相容性(Incompatibility)。

质粒提取 原理及步骤

质粒提取 原理及步骤

质粒提取原理及步骤质粒提取是分子生物学中的一项重要实验技术,被广泛应用于基因克隆、基因转染、基因表达等方面。

本文将重点介绍质粒提取的原理及步骤。

一、原理质粒提取的原理基于质粒和细胞的生化学性质差异。

质粒是一种独立复制的DNA分子,可以自主复制并传递给细胞的子代。

而在真核细胞中,大多数DNA都位于细胞核中,很难获得足够的DNA量进行实验。

质粒提取利用了这一差异,将大量的质粒从细胞中提取出来。

质粒提取的主要步骤如下:二、步骤1. 细胞培养首先需要选择适当的细胞类型并在培养基中培养,使细胞处于最佳生长状态。

对于大多数细胞类型,建议在对数生长期时采集,因为此时细胞数量最多且代谢活跃,可以有效提高质粒提取的DNA量和质量。

同时,还需注意避免细胞因为过于密集而形成聚集体或凝胶。

2. 细胞收获收获细胞的方法取决于细胞类型和实验的目的。

常见的方法包括用PBS或细胞培养液将细胞冲洗下来,或者用胶体离心等方法进行细胞收获。

收获的细胞量需要根据实验需求进行调整,一般建议在0.1-1g的范围内收获细胞。

3. 细胞裂解细胞裂解是质粒提取过程中最关键的步骤之一,它能有效破坏细胞膜和核膜,释放细胞内的DNA。

常用的细胞裂解剂包括SDS、Triton X-100和Tween-20等,同时还需要将细胞裂解液加入蛋白酶抑制剂和DNA酶切酶,以避免核酸降解和一些酶促反应的发生。

细胞裂解后,将细胞裂解液转移到离心管中,并进行离心分离,将细胞碎片等大分子杂质通过离心将其剔除。

4. DNA纯化DNA纯化是质粒提取的最后一步,目的是将提取得到的DNA从其他杂质中纯化出来。

不同的实验需求需要不同级别的DNA纯化,从而需要使用不同种类的DNA纯化试剂盒。

目前常用的DNA纯化试剂盒包括酚/氯仿提取法、离子交换柱纯化法、硅胶膜纯化法等。

在DNA纯化后,通过分析电泳和UV测定等方法进行检测,以确保提取的DNA质量和浓度满足实验需求。

总结质粒提取是分子生物学中非常基础和常用的实验技术,其所涉及的步骤包括细胞培养、细胞收获、细胞裂解和DNA纯化等步骤。

质粒提取实验报告分析

质粒提取实验报告分析

质粒提取实验报告分析引言质粒提取是分子生物学实验中常用的技术手段之一,可以用于获取目标质粒并纯化。

在本次质粒提取实验中,我们使用了传统的琼脂糖凝胶柱层析法提取目标质粒。

本报告将对实验过程、结果和讨论进行详细的分析。

实验方法1. 质粒培养和提取1. 选取目标质粒进行大规模培养,添加适量的抗生素并摇床培养。

2. 收集培养液,离心沉淀并洗涤。

3. 使用琼脂糖凝胶柱层析法提取目标质粒。

2. 质粒浓度检测1. 取提取得到的质粒样品,使用纳米比色计测量DNA的浓度。

2. 根据测量结果计算质粒的浓度。

实验结果1. 质粒提取情况根据琼脂糖凝胶柱层析法分离得到的质粒经紫外线照射后观察,发现提取效果良好,目标质粒很大程度上得到了纯化。

2. 质粒浓度检测根据纳米比色计的测量结果,计算得到质粒的浓度为XX ng/μl。

测量的标准曲线显示结果可靠。

结果分析1. 实验验证质粒提取的过程中,通过琼脂糖凝胶柱层析法有效地分离出了目标质粒,并得到了相对较纯的质粒样品。

通过紫外线照射观察质粒形态,进一步确认了提取效果良好。

2. 质粒浓度结果根据浓度检测结果,我们可以初步了解到质粒的含量。

这对后续实验的设计和操作非常重要。

结论通过本次实验使用琼脂糖凝胶柱层析法提取质粒,成功获得了相对纯净的目标质粒样品。

质粒的浓度检测结果进一步验证了实验的成功。

这为后续的实验研究和应用提供了基础数据。

改进和展望1. 实验中可以尝试使用其他提取方法,比较不同方法的效果并选取最佳方案。

2. 在质粒浓度检测方面,可以引入其他的分析方法,如凝胶电泳等,以更全面地评估质粒的品质。

参考文献[1] 张三, 李四. 质粒提取实验方法综述[J]. 生物技术通讯,20XX,XX(XX):XX-XX.。

质粒提取方法

质粒提取方法

质粒提取:质粒是细胞染色体外弄够自主复制的很小的环状DNA分子。

1、将新鲜单菌落或液体培养物接种到5mL液体培养基中,32℃振荡培养至对数生长后期;(振荡速度250-300rpm)2.将菌液倒入1.5mL离心管中,4℃,10000rpm离心20秒,弃去上清液,将离心管倒置于吸水纸上,使上清液尽可能去尽。

为增加菌体的量,可重复操作2-3次;3.将收集的沉淀重悬于预冷的100μL溶液Ⅰ中,涡旋混匀,使充分悬浮,温室放置5分钟。

4.加入200μL溶液Ⅱ,颠倒混匀,冰浴5分钟。

(1、溶液变成半透明粘液;2、冰浴使染色体DNA片段不至于太小,质粒不容易开环;3、若SDS因温度太低析出,需微热使融)5.加入150μL溶液Ⅲ,混匀,冰浴5分钟,(DNA复性)6.12000rpm离心5分钟,将上清液移至1个新的1.5mL的离心管中,(上清液为复性的质粒,沉淀为缠绕的染色体及少量蛋白质)7.加入2倍体积无水乙醇颠倒混匀,室温放置10分钟,(无需-20℃)8.12000rpm离心10分钟,弃去上清液,将管口打开,倒置于吸水纸上,使所有液体尽可能流出。

9.加入1mL75%乙醇(洗去DNA表面的盐类),12000rpm离心5分钟。

10.弃去上清液,将离心管倒置于吸水纸上,使液体流尽,置通风厨中至液体挥干(乙醇需完全挥发)11.将沉淀溶于40μL含20μg/L(2%的浓度)的RNA酶的TE溶液中,38℃放置于10分钟,-20℃保存。

12.检验(DNA溶于水,不溶于酒精)质粒提取中溶液的配制(准备工作)1. 0.5M EDTA(pH=8.0)(10mL)称取1.8g Na2EDTA•2H2O加入约8mL的去离子水,充分搅拌均匀,用NaOH调节pH至8.0(约0.2gNaOH)pH值为8.0时,EDTA才能完全溶解,加入去离子水将溶液定溶至10mL,高温高压灭菌后室温保存。

2. 1M Tris-HCL(pH=8.0)10mL称量1.211g Tris,加入约8mL去离子水,充分搅拌溶解,加入0.42mL浓盐酸,定容至10mL,高温高压灭菌后,室温保存。

质粒提取步骤及原理

质粒提取步骤及原理

质粒提取是分子生物学中常用的实验技术,其目的是从细菌中提取出质粒DNA,用于后续的基因操作和分析。

下面是质粒提取的主要步骤和原理的详细解释。

一、质粒提取原理
质粒是细胞内的一种环状的小分子DNA,是进行DNA重组的常用载体。

作为一个具有自身复制起点的复制单位独立于细胞的主染色体之外,质粒DNA上携带了部分的基因信息,经过基因表达后使其宿主细胞表现相应的性状。

在DNA重组中,质粒或经过改造后的质粒载体可通过连接外源基因构成重组体。

从宿主细胞中提取质粒DNA,是DNA重组技术中最基础的实验技能。

二、质粒提取步骤
培养细菌使质粒扩增:将含有目标质粒的细菌接种在适当的培养基上,提供适当的条件(如温度、湿度和营养)使细菌生长和繁殖,从而使质粒得到扩增。

收集和裂解细菌:通过离心等方法收集培养好的细菌,然后使用适当的裂解液裂解细菌,使细菌的细胞壁和细胞膜破裂,释放出内部的质粒DNA。

分离和纯化质粒DNA:通过离心、过滤或层析等方法,将裂解液中的蛋白质、细胞碎片等杂质去除,得到相对纯净的质粒DNA。

这个过程中可能需要使用一些特殊的试剂或柱子来提高分离和纯化的效率。

通过以上步骤,我们可以从细菌中提取出高质量的质粒DNA,用于后续的基因操作和分析。

质-粒-提-取-原理及步骤

质-粒-提-取-原理及步骤

质-粒-提-取-原理及步骤概述质粒提取,又称DNA提取,是一种分离和提取所需DNA的过程。

质粒提取在许多实验中都是非常重要的步骤,例如基因工程、分子生物学、遗传学和其他DNA相关实验。

本文将介绍质粒提取的原理及步骤。

原理DNA提取的过程通常包括细胞破碎、DNA纯化、DNA溶解和复性等步骤。

对于质粒提取,主要步骤通常包括以下内容:1.细菌培养:在质粒提取之前,需要将细菌培养在含有适当抗生素的培养基中,用于扩增质粒数量。

2.细胞破碎:使细胞破裂以释放出含有质粒的细胞内物质,此步骤需要进行严格的抗污染措施,以避免污染质粒样本。

3.除去污染物:除去细胞壁、蛋白质、核酸和其他污染物。

4.离心分离:将上述步骤中提取出的样本进行离心分离,使DNA沉淀,以便进一步纯化。

5.溶解:通过加入一定的缓冲液或去离子水,使DNA重新溶解。

步骤以下是一种常见的质粒提取步骤:1.处理样本:将含有所需质粒的细胞收集,并进行初始处理,包括细胞壁破裂、核酸纤维溶解等。

2.傅里叶纯化:通过傅里叶变换纯化,将细胞内杂质和有机污染物清除。

3.离心分离:将细胞样本离心,使DNA沉淀到底部,并且将上层样本移除。

4.乙醇沉淀:加入乙醇沉淀,将DNA纯化到上清液。

5.重振溶解:最后使用适当缓冲液重振重振溶解DNA,也可以使用去离子水重振。

以上就是质粒提取的原理和步骤,这是一个非常重要的操作,在DNA研究和实验中有着广泛的应用。

我们需要注意的是,在操作过程中需要进行高标准的质量控制,以确保实验结果的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.菌液接种到500ml培养基中,加抗生素至工作浓度,37℃,300rpm过夜2.4000rpm,15min离心菌液收集菌体。

3.用20ml solutionⅠ溶解菌团,充分打散混合均匀。

4.称取0.1g溶菌酶加入菌液,室温放置5min。

5.加入40ml solution Ⅱ,轻轻混合至澄清,冰上放置5min。

6.加30ml solution Ⅲ,轻轻混匀,冰浴10min。

7.4000rpm,20min,离心后将上清液倒到200ml量筒里面。

8.加入0.6倍体积的异丙醇混匀并室温放置10min。

10000rpm离心15min。

9.用6.5ml的TE重悬沉淀,转移到4个EP管中,13000rpm 离心5min。

10.上清转移到15ml的离心管中,加7.2gCsCl和 200ul的10mg/ml的EB,混匀。

11.在超速离心管中加样并封口。

60000rpm 10℃离心16h。

12.用一个注射器在超速离心管中上面戳一个孔,留下针头,并用另外一个注射器从红色质粒带旁边管壁戳进去,吸取1-1.5ml,装入新的离心管中。

13.加5ml TE饱和丁醇,混匀后静置各相分离后去掉上层桃红色丁醇,重复这一步,直到下层水相中没有桃红色。

转移下层水相到EP管中。

14.加入1/10体积5M的Nacl和2倍体积的无水乙醇。

在-20℃下放置20min。

15.13000rpm,10min离心后去上清,重悬沉淀于1ml的TE然后转移至EP管。

16.用1倍体积的25/24/1的酚/氯仿/异戊醇抽提两次。

17.每管加1/10体积的2.5M的乙酸钠和2倍体积的乙醇, -20℃下放置20min。

13000rpm离心10min,然后用70%的乙醇轻轻润洗并晾干EP管。

18.重悬于1ml TE中,并在OD260下测量浓度。

LB培养基配方:试剂1LTryptone(胰蛋白胨) 10gYeast extract(酵母膏;酵母提取物)5gNaCl 5gAgar(琼脂糖)15g碱裂解法原理:本实验采用碱裂解法进行质粒的小量制备。

十二烷基磺酸钠(SDS)一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性。

1、用SDS 处理细菌后,会导致细菌细胞破裂,释放出质粒 DNA和染色体 DNA 两种 DNA 在强碱环境都会变性。

2、当加入 pH4.8 的酸性乙酸钾降低溶液 pH 值后,质粒 DNA 迅速复性,而染色体 DNA 分子巨大,难以复性。

3、通过离心,大部分细胞碎片、染色体 DNA RNA 及蛋白质沉淀( SDS 的作用下)除去,而质粒 DNA 留在上清中。

4、再用异丙醇沉淀、乙醇洗涤,可得到纯化的质粒 DNA 。

实验内容所有分离质粒DNA的方法都包括三个基本步骤:1、培养细菌使质粒扩增。

2、收集和裂解细菌。

3、分离和纯化质粒DNA。

影响质粒提取的因素:宿主菌的种类和培养条件,细胞的裂解,质粒的拷贝数,质粒的稳定性,抗生素,吸附柱的吸附量等。

宿主菌的种类:一般从宿主菌如DH5α,TOP10中可以得到高质量的质粒DNA,但也有些菌株有非常高的内切酶活性或裂解时产生大量的糖类,会降低质粒得率。

培养时间:一般过夜(12-16h),最好不要超过16h,因为这时抗性开始下降,细胞开始裂解,使得质粒得率降低,也会导致质粒丢失或变异。

抗生素:在菌株的各阶段都应加入抗生素筛选,因为无质粒的细胞在无抗生素性时复制速度远大于含质粒的细胞。

抗生素贮存浓度(mg/ml)保存条件(℃)严紧型质粒(ug/ml)松弛型质粒(ug/ml)氨苄青霉素50(溶于水)-20 20 100羧苄青霉素50(溶于水)-20 20 100 氯霉素34(溶于无水乙醇)-20 34 170 卡那霉素10(溶于水)-20 10 50 链霉素10(溶于水)-20 10 50 四环素5(溶于无水乙醇)-20 10 50质粒提取常见问题:Q1:未提出质粒或得率低?A1:大肠杆菌老化。

重新涂平板,挑新克隆A2:菌体中无质粒。

有些质粒不能在某些菌体中稳定存在,经多次转接后有可能造成质粒丢失,因此不要频繁转接,每次接种时应接种单菌落。

A3:碱裂解不充分。

菌体过多导致裂解不充分,加倍Solution I,II,III的量。

A4:乙醇残留。

漂洗液洗涤后应离心尽量除出残留液体,再加入洗脱液洗脱。

Q2:质粒纯度不高?A1:混有蛋白。

不要使用过多菌体。

A2:基因组DNA污染。

加入Solution II,III后应温和混匀;不要剧烈震荡。

A3:加入Solution IIII不要过长,否则可能会有小片段DNA污染。

质粒(Plasmid):独立于染色体外的,能自主复制且稳定遗传的遗传因子。

是一种环状的双链DNA分子。

存在于细菌、放线菌、真菌以及一些动植物细胞中,在细菌细胞中最多。

质粒具有自主复制性、不相容性、多拷贝性、转移性、选择性遗传标记、质粒DNA链上有1到几个限制性内切酶单一识别位点等特点。

它可独立游离于细胞质内,也可以整合到细菌染色体中,它离开宿主细胞就不能存活,而它控制的许多生物学功能也是对宿主细胞的补偿。

质粒类型:1、严谨型:这些质粒的复制是在寄主细胞严格控制之下的,与寄主细胞的复制偶联同步。

所以,往往在一个细胞中只有一份或几份拷贝;2、松驰型:这些质粒的复制是在寄主细胞的松弛控制之下的,每个细胞中含有10-200份拷贝,如果用一定的药物处理抑制寄主蛋白质的合成还会使质粒拷贝数增至几千份。

如较早的质粒pBR322即属于松弛型质粒,要经过氯霉素处理才能达到更高拷贝数。

质粒提取的原理碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。

碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖 / 25 mM Tris-ClpH 8.0 / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾 / 2 M 醋酸溶液I的作用:适当浓度的和适当pH值的Tris-Cl溶液:控制好溶液的pH。

葡萄糖:加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。

因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。

所以说溶液I中葡萄糖是可缺的。

EDTA: EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。

溶液II的作用:NaOH:破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。

事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle (微囊)结构的相变化所导致。

SDS:也是碱性的,只是弱了点而已。

很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。

有人不禁要问,既然是NaOH溶解的细胞。

SDS为下一步操作做的铺垫。

这一步要记住两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。

溶液III的作用:乙酸钾:加入后就会有大量的沉淀,大量沉淀的出现,显然与SDS的加入有关系。

如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。

既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。

因此高浓度的盐导致了SDS的沉淀。

但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。

这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。

如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。

大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。

这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。

醋酸:是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。

基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。

所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。

很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都是溶解的。

NaOH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。

溶液III加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。

酚/氯仿/异戊醇:不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用进行酚/氯仿/异戊醇抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。

这里用25/24/1的酚/氯仿/异戊醇是有很多道理的,这里做个全面的介绍。

酚(Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M的异硫氰酸胍),离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应),因此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行。

至于异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收。

回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇,在室温放置几分钟后离心就可以将质粒DNA沉淀出来。

这时候如果放到-20℃,时间一长反而会导致大量盐的沉淀,这点不同于普通的DNA酒精沉淀回收,所以不要过分小心了。

高浓度的盐会水合大量的水分子,因此DNA分子之间就容易形成氢键而发生沉淀。

相关文档
最新文档