微波辐射计技术手册

合集下载

微波辐射计

微波辐射计

运行mpv.exe,进入Manul Mode。进入主菜单,按3即开始标 定。直到用户按“Q” 退出。如果天气比较干燥,标定时间最好在1-1.5小时。如果 天气比较潮湿,箱体底部 有凝结现象,那么标定时间在半小时以内。
标定后
• 两种方法看结果 一、mp.cfg是最新的,自动将标定结果保存了, 旧的cfg文件名为日期时间.cfg.对比两者,看 12通道的温度差别(Tnd应该比较接近,12%的偏差) 二、打开yyyy-mm-dd_hh-mm-ss_ln2.csv,画 出各通道温度Tnd随时间变化。如果数值比较 稳定,没怎么变化,说明标定是好的
运行时的图像
• • • • • • 以下四个字母键对应不同的图像切换 P 看的是液水、温度、水汽的廓线 R 相对湿度的廓线 O TIP标定结果(K band Tnd and Opacity graphs) B 12个通道的亮温 廓线等都是实时的图像,横坐标为时间,纵坐标 为高度 • 按字母Q为退出运行程序
显示软件Vizmet
一些应用
• 了解作业高度的温度 • 云中液态含水量的多少 • 与卫星资料对比(云光学厚度,一小 时一次,看是否和总液态水量有关系 吗?) • 云底高度与云顶高度
2006年7月24日暴雨过程
微波辐射计 微波辐射计
主要内容
• • • • • 仪器的安装 基本操作方法 仪器的标定 显示软件 一些应用
仪器的安装
仪器的基本情况
• 重量29公斤 • 大小:50*28*76cm(加上了17cm的IRT高度) • 电源:微波辐射计100-250V /50-60Hz 200瓦 吹风机100-125V / 50-60Hz 100瓦 • 数据接口:RS232 38.4k波特 • 数据格式:ASCII CSV(逗号隔开文件,可以 用excel直接打开)

第七章微波辐射计

第七章微波辐射计

表1:各种卫星携带的微波辐射计的名称和波段特征
卫星
Nimbus-7 & Seasat-A
美国雨云7号和海洋 卫星A
传感器
SMMR (Scanning Multi-frequency Microwave
Radiometer) [美国] 多频率扫描微波辐射计
DMSP (Defense Meteorological Satel含云中的液
态水
不同波段的微波辐射计有不同的专长和用 途
按测量目的区分,微波辐射计可分为探测 仪和成像仪:
➢ 探测仪主要应用在气象卫星上,波段多选 择在氧气和水汽吸收带和附近频率,用于 测量大气垂直温度和湿度廓线,要求大尺 度低分辨率,通常采用垂直轨道扫描方式
➢ 成像仪主要应用在海洋卫星上,波段(C、 X、K波段)频率通常较低,分辨率要求较 高,通常采用圆锥形扫描方式。
10.7 (v,h) 19.4 (v,h) 21.3 (v,h) 37.0 (v,h) 89.0 (v,h)
6.8 (v,h) 10.7全极化 18.7全极化 23.8 (v,h) 37.0全极化
350 100 200 400 1,000 3,000
75 x 43 51 x 29 27 x 16 32 x 18 14 x 8 6x4
89.0 5km 3,000
1.1K
表4:AMSR Characteristics
Frequency(GHz)
6.9 10.65 18.7 23.8 36.5 89.0 50.3 52.8
Ground Resolution
50km
25km
15km
Bandwidth (MHz)
350 100 200 400 1,000

HY-2A卫星校正微波辐射计数据用户手册

HY-2A卫星校正微波辐射计数据用户手册

HY-2A卫星校正微波辐射计数据用户手册国家卫星海洋应用中心2011年5月更改页目录1 数据产品介绍 (1)1.1 产品级别划分 (1)1.2 产品文件命名 (1)1.2.1 一级产品文件命名 (1)1.2.2 二级产品文件命名 (1)2 一级数据产品 (2)2.1 数据处理流程 (2)2.2 L 1A数据格式 (3)2.2.1 产品数据结构 (3)2.2.2 产品头文件 (4)2.2.3 产品科学数据 (6)2.2.4 科学数据各参数介绍 (9)2.3 L 1B数据格式 (14)2.3.1 产品数据结构 (14)2.3.2 产品头文件 (14)2.3.3 产品科学数据 (16)2.3.4 科学数据各参数介绍 (19)3 二级数据产品 (19)3.1 数据产品制作流程 (19)3.2 L 2A数据格式 (20)3.2.1 产品数据结构 (20)3.2.2 产品头文件 (20)3.2.3 产品科学数据 (23)3.2.4 科学数据各参数介绍 (25)3.3 L 2B数据格式 (25)3.3.1 产品数据结构 (25)3.3.2 产品头文件 (26)3.3.3 产品科学数据 (28)3.3.4 科学数据各参数介绍 (31)3.4 L 2C数据格式 (31)3.4.1 产品数据结构 (31)3.4.2 产品科学数据 (31)1数据产品介绍国家卫星海洋应用中心将载荷的HY-2卫星校正辐射计0级数据经过预处理、重采样和数据反演分别生成1级、2级产品。

1.1 产品级别划分一级产品1A:经过时间标识和地理定位后的数据。

包括扫描时间,每扫描点地理定位;存储观测、定标计数的数据;天线温度校正系数,轨道运行状态、平台姿态等辅助信息;记录质量信息等。

1B:经过分pass,亮温计算,以及带有定位信息及描述信息的数据。

二级产品2A:经过亮温重采样的数据,将1B中观测亮温平均成每秒一次。

2B:经过反演计算,将2A数据反演成海洋大气物理产品,并且包含2A的亮温产品。

科学家微波器 操作手册说明书

科学家微波器 操作手册说明书

3B SCIENTIFIC® PHYSICS1009950 (10,5 GHz, 115 V, 50/60 Hz)1009951 ( 9,4 GHz, 230 V, 50/60 Hz)Bedienungsanleitung09/17 ERL/ALFBetriebsgerät1 Anschluss für Empfänger2 Verstärkerausgang3 Verstärkerausgang (Masse)4 Anschluss für Sender5 Modulationseingang (Masse)6 Modulationseingang7 Wahlschalter für Modulation(intern/off/extern),8 Schalter für internen Laut-sprecher9 Regler für SignalverstärkungEmpfänger10 Buchse für Steckernetzgerät12 V AC (Gehäuserückseite)Zubehör11 Sender mit Hornantenne12 Auflageplatte für Prisma13 Prisma aus Paraffin14 Reflektorplatte15 Abdeckplatte für Doppelspalt16 Platte mit Doppelspalt17 Absorptionsplatte18 Polarisationsgitter19 Empfänger mit Hornantenne20 Mikrowellenbank21 Mikrowellensonde22 Mikrowellen-Gelenkbank mitPlattenhalterHF-Felder können in biologisches Gewebe ein-dringen und dieses erwärmen. Der enthaltene Mikrowellensender ist so leistungsschwach, dass Gefährdungen bei sachgemäßem Betrieb des Gerätes nicht auftreten.Bei bestimmungsmäßigem Gebrauch ist der si-chere Betrieb des Gerätes gewährleistet. Die Sicherheit ist jedoch nicht garantiert, wenn das Gerät unsachgemäß bedient oder unachtsam behandelt wird.∙Vor Inbetriebnahme sind Gehäuse und Netzleitung auf Beschädigungen zu über-prüfen.∙Wenn anzunehmen ist, dass ein gefahrlo-ser Betrieb nicht mehr möglich ist (z.B. beisichtbaren Schäden), ist das Gerät unver-züglich außer Betrieb zu setzen.∙Der Anschluss des Senders ist nur an das 3B-ELWE Betriebsgerät zulässig.∙In Schulen und Ausbildungseinrichtungen ist der Betrieb des Gerätes durch geschul-tes Personal verantwortlich zu überwachen. ∙Direktes Hineinblicken in den Antennen-trichter des Senders sowie in das reflek-tierte Strahlenbündel ist zu vermeiden.∙Gerät nur durch eine Fachkraft öffnen las-sen.Mit dem Gerätesatz können Mikrowellen er-zeugt und empfangen werden.Mit den enthaltenen Komponenten und Geräten sind vielfältige Experimente möglich, die sowohl qualitative als auch quantitative Aussagen er-möglichen.Das vom Sender ausgesandte und eng be-grenzte Bündel elektromagnetischer Wellen im cm-Bereich kann mit der Hornantenne (19) oder der Sonde (21) empfangen werden. Die Modu-lation des Empfängersignals kann über den in-ternen Lautsprecher hörbar gemacht werden, wobei die Intensität des akustischen Signals mit der Stärke des empfangenen Signals zu- oder abnimmt.Das Mikrowellengerät wird über ein Stecker-netzgerät 12 V AC gespeist.Das Mikrowellengerät 10,5 GHz (1009950) ist für eine Netzspannung von 115 V (±10 %) aus-gelegt, das Gerät 9,4 GHz (1009951) für 230 V (±10 %).1 Betriebsgerät1 Sender mit Hornantenne1 Empfänger mit Hornantenne1 Mikrowellensonde1 Mikrowellenbank, 800 mm1 Mikrowellen-Gelenkbank, 400 mm mit Plat-tenhalter1 Reflektorplatte 180 x 180 mm²1 Polarisationsgitter, 180 x 180 mm²1 Absorptionsplatte aus Faserstoff, 180 x 180mm²1 Prisma aus Paraffin1 Auflageplatte für Prisma1 Platte mit Doppelspalt1 Abdeckplatte für Doppelspalt1 BedienungsanleitungSender mit Hornantenne:Frequenz des Oszillators: 9,4 GHz (1009951)10,5 GHz (1009950)Sendeleistung: 10 mW bis 25 mW Modulationsart: AM Modulationssignal: über WahlschalterIntern /aus /extern Modulation intern: ca. 3 kHzca. 80 % AM Modulation extern: 100 Hz bis 20 kHzmax. 1 V Akustisches Signal: intern (schaltbar) Ausgangsspannung: max. 10 V Akustisches Signal: intern (schaltbar) Ausgangsspannung: max. 10 VEmpfänger mitHornantenne: Siliziumdiode mitResonator Mikrowellensonde: Siliziumdiode mitResonator Versorgungsspannung: 12 V AC über Ste-ckernetzgerät AbmessungenBetriebsgerät: 170 x 200 x 75 mm³5.1 Aufbau Schienensystem (Grundeinstel-lung)∙Zentrische Schraube unter der Skalen-scheibe in die Bohrung der langen Schiene einsetzen.Ausgangslage ist ein gestrecktes Schienensys-tem (Pfeil auf der langen Schiene weist auf …0°“ der Winkelskala).∙Gelenkfuß durch Schieben an der Zeiger-spitze auf Skalennullpunkt einstellen.Die Zeigerspitze weist in die Lotrichtung des Plattenhalters und ermöglicht somit das direkte Ablesen oder Einstellen des Einfallswinkels (Ablesung an der äußeren Ziffernskala). 5.2 Systemaufbau∙Netzanschluss herstellen.∙Empfänger mit Hornantenne bzw. Empfän-gersonde an Anschluss für Empfänger (1) an-schließen.∙Sender mit Hornantenne an Anschluss für Sender (4) anschließen.∙Sender und Empfänger entsprechend den Abbildungen zu den Experimenten auf Schienensystem anordnen.∙Lautstärke mit Regler für Signalverstärkung(9) auf mittlere Position stellen.∙Lautsprecher mit Schalter (8) einschalten. ∙Modulator mit Schalter (7) auf …INT“ schal-ten.Das abgestrahlte Mikrowellensignal wird recht-eckförmig moduliert, die Modulationsfrequenz kann über den eingebauten Lautsprecher hör-bar gemacht werden.An den Buchsen (2) und (3) kann das verstärkte Signal des Empfängers als Gleichspannung (nach abgeschalteter Modulation), als Recht-eckspannung (bei interner Modulation) oder als NF-Signal (durch externe Modulation) abgegrif-fen werden.Die Modulation ist mit der Mittelstellung des Schalters (7) deaktiviert. Am Buchsenpaar (3)(4) liegt eine, dem Pegel und der Verstär-kung proportionale Gleichspannung, die z.B. über ein Zeigerinstrument (z.B. Analogmultime-ter Escola 30 1013526) angezeigt werden kann. Wird mit Schalter (7) die Stellung …EXT“ ge-wählt, so können NF-Signale (z.B. von einem MP3 Player) über die Buchsen (5) und (6) ein-gekoppelt und über den internen Lautsprecher im Basisgerät wiedergegeben werden. (Adapter Klinkenstecker auf 4-mm Buchse erforderlich). Die Informationsübertragung erfolgt hierbei über das Mikrowellensignal zwischen Sender und Empfänger.(19) einander senk-Maximaler Empfang, wenn Öffnungen direkt ge-geradlinig aus (in homogenem Medium und auch im Va-(elektri-scher Isolator) zwischen Sender und Emp-Verstärkung (9) im mittleren Bereich einstel-Isolato-und einspannen Verstärkung im unteren Bereich einstellen.Mikro-da kein Empfangssig-angefeuchtete AbsorptionsplatteFolgerung: Beim Durchdringen von Stoffen mit ab-Reflektorplatte im Winkel von ca. 30°, 40°, einstellen; Winkel der langen Schiene ändern, bis ma-durchführen Folgerung: An elektrischen Leitern werden Mik-rowellen reflektiert. Das Reflexionsgesetz wirdcmgegenüberstellen Gesendete und reflektierte Welle überlagern(Markierungoben)Minima (Knoten) oder Maxima (Bäuche) bestim-/2).Frequenz≈6.6 BrechungGrundeinstellung vornehmen (5.1).Auflageplatte für Prisma (12) in die dem Prisma (13) auf Auflageplatte legen und Lange Schiene axial drehen, bis maxima-Folgerung: Mikrowellen durchdringen Paraf-fin. Beim Übergang der Welle von Luft in Pa-derende-Sender (11) ca. 20 cm vom Plattenhalter entfernt und Empfänger (19) in einem Ab-Plattenhaltereiner Kreisbahn so weit aus Wellenbündel her-aus bewegen, bis das Signal deutlich ab-Einfachspalt in den Plattenhalter einset-auf Folgerung: Die Mikrowelle wird am Spalt ge-dem Spalt wieder nachweisbar (hörbare Zunahmeder Sender ca. 20 cm vor der Metallplatte an-Platteabgeschattetendenabge-Platte mit Doppelspalt (16) im Plattenhal-Sender ca. 12 cm vor der Platte positio-Abstandzuauftretenden Maxima die Anzahl der Spalte übersteigt, istPlattenhalterhorizontalerPolarisationsgitters Empfangsmöglichkeit bei vertikaler Aus-richtung des Polarisationsgitters überprü-Folgerung: Da einmal ein Empfang nachge-kein Signal den Empfänger erreicht, wird demons-triert, dass die Hornantenne ein Wechselfeld erzeugt, das nur in einer Richtung schwingt, Mit dem Experiment wird der Nachweis einerWerden Sender und Empfänger gegeneinan-der horizontal und vertikal ausgerichtet, so istin den Strahlengang eingebracht und in der dar-ein abgeschwächtes Signal empfangen. Die Po-Sender und Empfänger einander gegen-Empfänger außerhalb der Schiene senk-Maximaler Empfang, wenn Öffnungen di-An Hand der internen Modulation (3 kHz Sig-nal) oder der externen Modulation (z.B. Ton-signal eines MP3 Players) kann InformationFolgerung: Mikrowellen (elektromagnetischedie-3B Scientific GmbH ▪ Ludwig-Erhard-Str. 20 ▪ 20459 Hamburg ▪ Deutschland ▪ 。

HY-2A卫星校正微波辐射计数据用户手册

HY-2A卫星校正微波辐射计数据用户手册

HY-2A卫星校正微波辐射计数据用户手册国家卫星海洋应用中心2011年5月更改页目录1 数据产品介绍 (1)1.1 产品级别划分 (1)1.2 产品文件命名 (1)1.2.1 一级产品文件命名 (1)1.2.2 二级产品文件命名 (1)2 一级数据产品 (2)2.1 数据处理流程 (2)2.2 L 1A数据格式 (3)2.2.1 产品数据结构 (3)2.2.2 产品头文件 (4)2.2.3 产品科学数据 (6)2.2.4 科学数据各参数介绍 (9)2.3 L 1B数据格式 (14)2.3.1 产品数据结构 (14)2.3.2 产品头文件 (14)2.3.3 产品科学数据 (16)2.3.4 科学数据各参数介绍 (19)3 二级数据产品 (19)3.1 数据产品制作流程 (19)3.2 L 2A数据格式 (20)3.2.1 产品数据结构 (20)3.2.2 产品头文件 (20)3.2.3 产品科学数据 (23)3.2.4 科学数据各参数介绍 (25)3.3 L 2B数据格式 (25)3.3.1 产品数据结构 (25)3.3.2 产品头文件 (26)3.3.3 产品科学数据 (28)3.3.4 科学数据各参数介绍 (31)3.4 L 2C数据格式 (31)3.4.1 产品数据结构 (31)3.4.2 产品科学数据 (31)1数据产品介绍国家卫星海洋应用中心将载荷的HY-2卫星校正辐射计0级数据经过预处理、重采样和数据反演分别生成1级、2级产品。

1.1 产品级别划分一级产品1A:经过时间标识和地理定位后的数据。

包括扫描时间,每扫描点地理定位;存储观测、定标计数的数据;天线温度校正系数,轨道运行状态、平台姿态等辅助信息;记录质量信息等。

1B:经过分pass,亮温计算,以及带有定位信息及描述信息的数据。

二级产品2A:经过亮温重采样的数据,将1B中观测亮温平均成每秒一次。

2B:经过反演计算,将2A数据反演成海洋大气物理产品,并且包含2A的亮温产品。

微波运动传感器手册

微波运动传感器手册

MS31Specifications are subject to change without prior notice.All values measured in specific conditions.SINGLE-GANGJAMB DOUBLE-GANG6” ROUND Visit website foravailable languages ofthis document.Touchless-activation switch for automatic doors ENGLISH** not provided by BEA19When wiring multiple devices together to create a system configuration, it is best to ensure that each device works independently. This will reduce troubleshooting if a discrepancy occurs. 9Prior to installing any equipment in either new or existing circuits, verify correct line voltage and line stability. Always remember to shut off the power before performing circuit wiring. 9Do not place the sensor in the door’s opening range, where the sensor may see door movement. 9Do not place moving objects in front of the sensor.PRECAUTIONSWIRINGShut off all power going to header before attempting any wiring procedures. Maintain a clean and safe environment when working in public areas. Constantly be aware of pedestrian traffic around the door area.Always stop pedestrian traffic through the doorway when performing tests that may result in unexpected reactionsby the door. ESD (electrostatic discharge): Circuit boards are vulnerable to damage by electrostatic discharge. Before handlingany board, ensure you dissipate your body’s ESD charge. Always check placement of all wiring before powering up to ensure that moving door parts will not catch any wiresand cause damage to equipment. Ensure compliance with all applicable safety standards (i.e. ANSI A156.10) upon completion of installation. DO NOT attempt any internal repair of the components. All repairs and/or component replacements must beperformed by BEA, Inc. Unauthorized disassembly or repair:1. May jeopardize personal safety and may expose one to the risk of electrical shock.2. May adversely affect the safe and reliable performance of the product resulting in a voided warranty.Wire the MAGIC SWITCH to the door control according to the diagram shown here.NOTE: Use either green (N.O.) or yellow (N.C.) wire, not both. Refer to thedoor control manual to determine which must be used.322134 INSTALLATIONSET-UP1. Install an electrical box.If using a metal eletrical box, ensure that the sensor does not come incontact with the box to avoid shorting the unit.2. Clip the MAGIC SWITCH cube to the face plate.3. Secure the face plate to the electrical box with the provided screws.Four adjustments can be made to the sensor:Sensitivity potentiometer: adjust detection fieldfrom 4 to 24 inches (rotate clockwise to increase)factory default: 4 inches (fully CCW)Hold time potentiometer: adjust relay hold timefrom 0.5 to 30 seconds (rotate clockwise to increase)factory default: 0.5 sec (fully CCW)Output Mode switch: determines Toggle mode orTimer mode-Toggle (switch up) = detection activates the relayand the relay holds until a second detectiondeactivates the relay (recommended for switchapplications)-Timer (switch down, factory default) = detectionactivates the relay for 0.5 to 30 seconds; relay willhold as long as detection occursLED mode switch: determines if LED illuminates when in detection or when not indetection-switch up (factory default) = LED on when sensor is NOT in detection, LED off when indetection-switch down = LED on when sensor is is in detection, LED off when not in detectiongang box(metal/plastic)MAGIC SWITCHassemblyDepending on the door installation, the weather-resistant foam gasket may be used.Verify that all appropriate industry signage, warning labels, and placards are in place.Tech Support & Customer Service: 1-800-523-2462GeneralTechQuestions:******************************|TechDocs:Door does not open when swiping hand in front of sensorSensor stays in detectionDoor remains open after detection/activation©B E A | O r i g i n a l I n s t r u c t i o n s | P L E A S E K E E P F O R F U R T H E R U S E - D E S I G N E D F O R C O L O R P R I N T I NGThis device complies with Part 15 of the FCC Rules and with RSS-210 of Industry Canada.Operation is subject to the following two conditions:*this device may not cause harmful interference, and*this device must accept any interference received, including interference that may cause undesired operation.This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:*Reorient or relocate the receiving antenna*Increase the separation between the equipment and receiver*Connect the equipment into an outlet on a circuit different from that to which the receiver is connected *Consult the dealer or an experienced radion/TV technician for helpWARNING: CHANGE S OR MODIFICATIONS TO THIS E QUIPME NT NOT E XPRE SSLY APPROVE D BY BE A INC. MAY VOID THE FCC AUTHORIZATION TO OPERATE THIS EQUIPMENT.。

第七章微波辐射计

第七章微波辐射计

水汽 冰云、冰、雪
19.35v, 22.235v, 37.0v 85.5v, 85.5h
植被监测
19.35v, 19.35h
表3 AMSR-E Characteristics
Frequency(GHz) Ground Resolution Bandwidth (MHz) Polarization Inclination Cross polarization Swath Dynamic Range Precision Sensitivity [NEΔT(K)] Quantization
根据基于小斜率近似的海面发射率模型seasurfaceemissivitymodelbasedsmallslopeapproximation风所引起的海面发射率变化e是741分别代表根据小斜率近似理论导出的在水平和垂直极化条件下的权重因子f是电磁波的频率亦即微波辐射计的工作频率是观测的天顶角是观测的方位角代表观测方向在海面的投影与风向之间的夹角故既是观测的方位角又代表风向是海水的复相对电容率k和代表所在积分方向上波浪的波数和方向积分方向上波浪与主波浪方向之间的夹角w从上述公式可以看到风所引起的海面发射率变化e通过风浪方向谱的模型wk与风速u10和风向相联系通过权重因子g的变化曲面图5
根据适合两介质界面处的基尔霍夫定律, 海面发射率e与菲涅耳反射率ρ关系是
eH () 1 H ()
eV () 1 V ()
(7-36) (7-37)
式中右下角的“H”和“V”分别表示水平极 化和垂直极化,θ是观测角。
在平静海面条件下,菲涅耳反射率ρ由第四章的公 式(4-56)和(4-57)给出。
表1:各种卫星携带的微波辐射计的名称和波段特征
卫星
Nimbus-7 & Seasat-A

第 五 讲 微波辐射计对地物亮度温度的测量

第 五 讲    微波辐射计对地物亮度温度的测量

热辐射: 热红外8-14微米; 14微米; 微波1毫米-1米。
关于皮克工作和朗伯面的进一步讨论
对于关系式: 1 = α + r + τ
α 为吸收率, r 为反射率,
τ
为透射率。
入射 吸收 透射
反射
在Hale Waihona Puke 平衡状态下有:ε =αε
为发射率。
如果地表物体是不透明的,则:
ε = α = 1− r
按照皮克的观点,对于粗糙地物表面,散射是各个方向 都有的。这实际上把镜面反射、漫反射和透射统一起来认识了。
地物的热辐射微波亮度温度
根据瑞利-金斯定律: 考虑到一般物体出射度: 则一般地物的辐射亮度为: 定义:
Tb = ε .T
M b(υ , T ) = 2π
λ
2
kT

M (υ , T ) = εM b(υ , T ) = ε
L=ε 2k
λ
2
kT
λ
2
T = εL b
为地物的亮温度,即地物
L= 2k
的微波辐射温度,则有:
天线的极化设置天线的极化设置天线的空间分辨能力天线的空间分辨能力微波辐射计的微波辐射计的空间分辨力是指空间分辨力是指能够分辨彼此相邻能够分辨彼此相邻很近两个相同辐射很近两个相同辐射体的能力通常用体的能力通常用刚好能够分辨的两刚好能够分辨的两个点源的夹角来表个点源的夹角来表示如果两个相同示如果两个相同点源的夹角大于天点源的夹角大于天线波束角的半功率线波束角的半功率宽度就可以分宽度就可以分辨
ΩA T b= ⋅ ∆T A ΩS
天空背景
大气 大气 大气
背景地物
地物
对于
T A=T b⋅ ΩS ΩA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地基多频段微波辐射计技术手册(HSMR)长春市海思电子信息技术有限责任公司2011年10月目录1 技术概况 (1)2 接收机的原理与设计 (4)3.1 技术要求和试验方法 (6)3.2 接收机通道的测试 (7)3.2.1噪声系数(A) (7)3.2.2 接收机线性度测量(A) (7)3.2.3 接收机灵敏度测量(A) (8)3.2.4 接收机中频带宽测试(A) (9)3.2.5 接收机工作频率测试 (9)3.2.6系统抽样进行环境试验 (10)3.3 设备检验 (10)3.3.1 常规检验 (10)3.3.2 交收检验 (10)4 标志、保管和运输 (10)5 软件技术条件 (11)5.1 软件平台 (11)5.2 软件功能 (11)6 微波辐射计电缆连接标识 (12)7 系统电磁兼容 (13)8 系统的可靠性设计 (13)9 系统接地要求 (14)10 探测环境条件要求 (14)10.1探测环境条件的要求 (14)10.2探测场地的要求 (15)10.3工作室要求及设备安置 (15)1 技术概况微波辐射计是宽频带、高增益、高灵敏度的被动微波遥感仪器,能够在很强的背景噪声中提取微弱的信号变化量。

通过接收被测目标自身的微波辐射获取相应的物理特性,经过有效的数据反演进行定量分析。

本套产品的微波辐射计主要包括7个频率的仪器,在微波频率划分上分别是L、S、C、X、Ku、K和Ka,具体设计对应频率为1.4GHz,2.65GHz,6.6GHz,10.65GHz,13.9GHz,18.7GHz,37GHz。

其中1.4GHz和2.65GHz为双极化天线,6.6GHz,10.65GHz,13.9GHz,18.7GHz,37GHz为喇叭天线,可以旋转机身转换极化测量,以求对岩石加载过程中微波多个频率点有深入细致的了解。

单极化接收各波段微波辐射计的原理框图如图1所示。

图1 微波辐射计接收通道原理框图双极化微波辐射计利用双极化接收天线同时接收目标的微波辐射信息,由线性极化分离器分别获取水平极化和垂直极化信息,经两路接收通道进行处理。

数字控制单元完成射频开关的控制,并将测量得到的原始数据通过串行通讯送到主计算机。

L、S波段属于微波遥感应用频率的低端,极易受到其它电磁辐射源的影响,因此需要在通道中增加高精度滤波器。

L波段采用了7阶契比雪夫带通介质滤波器,工作频带为1400MHz~1427MHz,过渡带宽15MHz,带内损耗为1dB,过渡带损耗大于60dB;S波段采用了5阶契比雪夫腔体滤波器,工作频带为2.65GHz~2.85GHz,过渡带宽20 MHz,带内损耗为2dB,过渡带损耗大于60dB。

系统原理框图如图2所示。

图2 双极化微波辐射计接收通道原理框图为了提高L波段双极化微波辐射计的抗干扰性,采用了电源与接收机分离的技术方案,即二者为两个独立结构的箱体单元。

单极化微波辐射计采用了标准矩形喇叭天线接收目标的辐射,双极化微波辐射计采用前馈式抛面天线型式,馈源为高性能的波纹喇叭,在近场的情况下,可以进行独立测量。

矩形喇叭天线的3dB波束角为15 ,增益18dB;抛物面天线的3dB波束角为15︒(L波段)、7.5︒(S波段),增益为25dB。

天线表面结构如图3所示。

图3 天线表面结构示意图系统的主要技术指标如表1所示。

2 接收机的原理与设计根据Planck 辐射定律,处于绝对零度以上的任何物体在所有的频率上均辐射电磁能。

一般认为,物体在微波波段向外辐射能量是由分子旋转和反转以及电子自转与磁场之间的相互作用产生的。

物体的微波辐射能量强弱首先与其本身性质有关,还与物体的温度和表面状态、频率、极化、传播方向等因素有关。

接收机采用数字增益自动补偿技术方案,系统框图如图4所示。

数字增益自动补偿微波辐射计是将一个基准参考源信号通过微波辐射计系统,在输出端检测出系统增益的变化量,用专门设计的数字单元控制系统,按此变化量去修正所接收目标的辐射量,达到系统增益不变的目的。

数字增益自动补偿微波辐射计由天线、射频开关,微波基准源,接收组件(射频放大器、中频放大器、平方律检波器、视频放大器及积分器),A/D 变换,数字控制单元及显示等电路组成。

数字控制单元给出输入开关的控制信号,数字控制单元按此信号同步地分别采集基准源和天线接通时辐射计的输出信号进行处理。

当系统增益稳定时,基准源T1及天线与接收机相连时所对应的微波辐射计输出电压分别为:)(11REC S T T G V += (1))(R E C A S A T T G V += (2)当系统增益变化时,基准源T1及天线与接收机相连接所对应的微波辐射计输出电压分别为:)(1''1REC S T T G V += (3))(''REC A S A T T G V += (4)利用基准源T1通过系统后的输出电压检测系统增益的变化,对系统增益变化时天线输入所对应的输出电压进行补偿,其补偿式为:''11''AA V V V V =(5)如果1'1V V >,说明系统增益变大,'11/V V 将小于1。

用它乘以因系统增益变大而升高的'AV ,达到系统增益补偿的目的,反之亦然。

将(1)、(3)及(4)代入(5),可得补偿后的电压值''AV 为:(''RECA S A T T G V += (6)比较(6)式和(2)式可知,无论系统增益如何变化,经过补偿后系统的增益始终保持不变,从而达到稳定系统增益的目的。

图4数字增益自动补偿微波辐射计系统框图微波辐射计的最小可检测信号由系统噪声的不确定性和系统增益的不确定性共同决定,而系统增益起主要作用。

数字增益自动补偿微波辐射计能很好地实现增益补偿,使系统增益波动引起的不确定性趋于零,起到稳定系统增益的作用,从而达到提高微波辐射计灵敏度的目的。

在高灵敏度的需求下,为了避免控温装置电流切换引起的脉冲扰动,且在夏日太阳照射下机箱环境温度难以控制,数字增益自动补偿微波辐射计没有采用恒温源和控温方案,而采用与机箱具有相同温度的匹配负载作为参考源。

因此当辐射计长时间处于一个温度变化的环境中,当机箱温度随着环境温度发生变化时,辐射计参考源的噪声温度也会随着机箱温度的变化而改变,辐射计输出数据会随环境温度变化而变化,导致测量误差。

传统方法是采取环境温度变化修正方法对测量数据进行修正,从而保持系统的稳定。

在本系统的实施方案中采用计算机数字补偿技术。

该种型式的微波辐射计结构简单、工作稳定、调试方便,由于存储了多种原始数据便于进一步的数据处理,解决了其它型式微波辐射计存在的慢漂移问题,实现了高稳定、高灵敏度测量。

在辐射计输出的数据文件中,存储原始数据、修正后数据和辅助数据。

在接收机的设计中采用了温度补偿算法,确保了仪器的温度稳定性。

3技术条件本技术条件适用于地基多频段微波辐射计(以下简称本整件)供承研制方检验和订购方验收之用。

在检验前本整件应按其调试细则进行调试。

本整件应在下列环境条件下正常工作:工作温度:-20︒C~+55︒C存储温度:-40︒C~+60︒C相对湿度:95±3%(25︒C时)大气压力:不低于74.6kPa3.1 技术要求和试验方法(1)本套产品的微波辐射计主要包括7个频率的仪器,在微波频率划分上分别是L、S、C、X、Ku、K和Ka,具体设计对应频率为1.4GHz,2.65GHz,6.6GHz ,10.65GHz,13.9GHz,18.7GHz,37GHz。

)、天线、中低频处理单元、单片机主控单元。

试验方法:对照设计任务书查对符合性。

并用能保证达到设计文件规定的测量精度的仪器进行测量。

(2)本整件装配过程中所采用之成套产品,外购器材及元器件,应符合其相应的技术标准或技术条件,并附有入库检验合格证和印鉴。

半导体器件应按全机可靠性要求规定的筛选项目进行老化筛选。

试验方法:按规定核对证件,用外观法检查。

本整件内所有的零、部、整件均应有技术检验合格证。

(3)测试等级分四级:A级,为必测项,有较严格的指标要求,反映了分系统的技术性能;B级,为检查项,一般作为抽测项,主要原因○1,是该指标不是本系统技术要点,○2,是测试较烦琐;C级,为数据分析项;D级,为系统内部模块测试数据,是本套辐射计接收机系统关键部分的技术状态,是分系统维修的重要参数,不作为交验指标;交验时一般测A项。

3.2 接收机通道的测试3.2.1噪声系数(A)测试方法:系统噪声系数测试采用噪声测试仪,测试框图见图5:图5 噪声系数测试框图测试步骤:开机工作正常后,按图5首先将固态噪声源直接与噪声系数测试仪连接,进行系统校准;然后将微波接收前端组件连入测试系统,在工作中频带宽内以10MHz步进扫频测量。

说明事项:测噪声系数时,全机信号应全部连接。

测试结果如表2所示。

表2 多频段微波辐射计接收机噪声系数(dB)3.2.2 接收机线性度测量(A)本系统的接收机采用了低势垒肖特基平方律检波二极管组成高线性度检波器,线性相关系数为: 0.9999。

测试框图见图6所示低温冷源由液氮制冷,输出噪声温度为80.3K 。

图6 接收机线性度测试框图测试步骤: a. 记录环境温度;b. 改变精密可变衰减器的衰减量L,按照式(1)得到不同的噪声温度,在每一噪声温度点测量N 个输出电压值(N ≥20); 0)11(T LL T T A B -+=(7)c. 将各点的噪声温度作为因变量,输出的电压平均值作为自变量,进行线性回归,即可得到线性相关系数。

微波辐射计的检波灵敏度为-55dBm 。

3.2.3 接收机灵敏度测量(A )测试框图与线性度的测试框图一致,如图6所示。

测试步骤: a. 记录环境温度;b. 改变精密可变衰减器的衰减量L,按照式(1)得到不同的噪声温度,在每一噪声温度点测量N 个输出电压值(N ≥20);d. 计算各点输入噪声温度对应的输出电压均值和方差,从中选取任意两个温度点的数据,按照式(8)计算灵敏度min T ∆。

)()(2min j i j i ji V V T T T -++=∆σσ (8)灵敏度测试结果如表3所示。

表3 多频段微波辐射计接收机灵敏度(K )3.2.4 接收机中频带宽测试(A ) 测试框图见图7。

图7 接收机中频带宽测试框图测试方法:将匹配负载接入接收机前端,利用HP8592B 频谱仪测量主中频放大器输出的中频信号频谱,设置频率测量范围1MHz ~500MHz 。

记录中频频谱低频端低于最大值3dB 处的频率L f 和高频端低于最大值3dB 处的频率H f,接收机带宽为H f —L f 。

3.2.5 接收机工作频率测试 测试框图见图8。

相关文档
最新文档