复变函数课后习题答案(全)

合集下载

复变函数论第三版课后习题答案解析

复变函数论第三版课后习题答案解析

第一章习题解答(一)1.设z ,求z 及Arcz 。

解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±L 。

2.设121z z =,试用指数形式表示12z z 及12z z 。

解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。

3.解二项方程440,(0)z a a +=>。

解:12444(),0,1,2,3k ii za e aek πππ+====。

4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。

证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。

5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。

证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。

证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。

因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。

复变函数课后部分答案

复变函数课后部分答案
34 z , 2
3 5 z i, 2 2
.
5 Argz arctan 2k , k 0, 1, 3
2.当x, y等于什么实数时,等式 x 1 i( y 3) 1 i 5 3i 成立。
解: 原式等价于x 1 i( y 3) 2 8i,
由这四个偏导数连续,可知u,v在整个复平面可微;
柯西 黎曼方程在x 0, y 1时成立,
所以f ( z)只在z i点可导,在整个复平面上处处不解析。
知识点7.
课堂练习:
5.若e2z-1 = 1,求z的值。
解:
2 z 1 Ln1 ln1 2k i 2k i,
5.指出下列各题中点z的轨迹,并作图: 1 ) z 2 3i 5;
解: 1 )设z = x+iy,
x iy 2 3) 5,
( x 2) 2 ( y 3) 2 5,
为一圆周: ( x 2)2 ( y 3)2 25;
知识点3.
课堂练习:
2.若(1 i)n (1 i)n , 试求n的值。
解:由已知可得,
n n n n n 2 2 (cos i sin ) 2 (cos i sin ), 4 4 4 4 即 n n n n sin sin 2 k . 4 4 4 4 n 2
解: 1 )函数的奇点是 z 0, z i.
2)函数的奇点是z 1, z i.
exp[exp( i)] exp[cos 1 i sin 1]
ecos1[cos(sin1) i sin(sin1)]
Im{exp[exp(i)]} ecos1 sin(sin1);

复变函数(第四版)课后习题答案

复变函数(第四版)课后习题答案

(3 + 4i )(2 − 5i ) = 5
2i
29 , 2
26 ⎡ (3 + 4 i )(2 − 5 i ) ⎤ ⎡ (3 + 4 i )(2 − 5 i ) ⎤ = arg ⎢ Arg ⎢ + 2kπ = 2 arctan − π + 2kπ ⎥ ⎥ 2i 2i 7 ⎣ ⎦ ⎣ ⎦ = arctan 26 + (2k − 1)π , 7 k = 0,±1,±2, " .
{
}
{
}
Arg i8 − 4i 21 + i = arg i8 − 4i 21 + i + 2kπ = arg(1 − 3i ) + 2kπ
(
)
(
)
= −arctan3 + 2kπ 2.如果等式 解:由于
k = 0,±1,±2, ".
x + 1 + i(y − 3) = 1 + i 成立,试求实数 x, y 为何值。 5 + 3i x + 1 + i(y − 3) [x + 1 + i(y − 3)](5 − 3i ) = 5 + 3i (5 + 3i )(5 − 3i ) =
2 2
= ( z1 + z2 )( z1 + z2 ) + ( z1 − z2 )( z1 − z2 ) = 2( z1 z1 + z2 z2 )几何意义平行四边形的对角线长度平方的和等于四个边的平方的和。 12.证明下列各题: 1)任何有理分式函数 R ( z ) =
2 2
1 ; 3 + 2i
1 3i (2) − ; i 1− i

复变函数课后部分答案

复变函数课后部分答案

1 u v . 4
2 2
7.已知映射 z , 求:
3
2)区域0 arg z
解: 2)设z = re ,
3

3
在平面上的像。
i 3 3 3i
i
w (re ) r e ,

3 映成0 arg z .
映射 z 将区域0 arg z
8.下列函数何处可导?何处解析? 1 )f ( z) x2 yi; 3) f ( z) xy 2 ix 2 y;
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!

复变函数课后部分习题解答

复变函数课后部分习题解答

1.2求下列各式的值。

〔1<3-i>5 解:3-i=2[cos< -30°>+isin<-30°>]=2[cos30°- isin30°] <3-i>5=25[cos<30°⨯5>-isin<30°⨯5>]=25<-3/2-i/2> =-163-16i1.2求下列式子的值〔2〔1+i 6解:令z=1+i 则x=Re 〔z=1,y=Im 〔z=1 r=z =22y x +=2tan θ=x y =1x>0,y>0∴θ属于第一象限角∴θ=4π ∴1+i=2〔cos4π+isin 4π ∴〔1+i 6=〔26〔cos 46π+isin 46π =8〔0-i=-8i1.2求下式的值 <3>61-因为-1=〔cos π+sin π所以61-=[cos<ππk 2+/6>+sin<ππk 2+/6>] <k=0,1,2,3,4,5,6>. 习题一1.2〔4求<1-i>31的值。

解:<1-i>31 =[2<cos-4∏+isin-4∏>]31 =62[cos<12)18(-k ∏>+isin<12)18(-k ∏>] <k=0,1,2> 1.3求方程3z +8=0的所有根。

解:所求方程的根就是w=38-因为-8=8〔cos π+isin π 所以38-= ρ [cos<π+2k π>/3+isin<π+2k π>/3] k=0,1,2 其中ρ=3r =38=2即1w =2[cos π/3+isin π/3]=1—3i2w =2[cos<π+2π>/3+isin<π+2π>/3]=-23w =2[cos<π+4π>/3+isin<π+4π>/3]= 1—3i习题二1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。

复变函数论第三版课后习题答案

复变函数论第三版课后习题答案

第一章习题解答(一)1.设z ,求z 及Arcz 。

解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。

2.设121z z =,试用指数形式表示12z z 及12z z 。

解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。

3.解二项方程440,(0)z a a +=>。

解:12444(),0,1,2,3k ii za e aek πππ+====。

4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。

证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。

5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。

证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。

证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。

因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。

复变函数课后部分答案

复变函数课后部分答案

1 u v . 4
2 2
7.已知映射 z , 求:
3
2)区域0 arg z
解: 2)设z = re ,
3

3
在平面上的像。
i 3 3 3i
i
w (re ) r e ,

3 映成0 arg z .
映射 z 将区域0 arg z
8.下列函数何处可导?何处解析? 1 )f ( z) x2 yi; 3) f ( z) xy 2 ix 2 y;
3)u xy2 , v x 2 y,
u u v v y2, 2 xy, 2 xy, x 2 , u, v在复平面上可微; x y x y
y 2 x,2 xy 2 xy,
f ( z)在原点(0,0)上满足C R条件;
f ( z)仅在(0,0)上可导,在复平面上处处不解析。
9.指出下列函数的解析性区域,并求其导数。 1 3 1 )z 2iz; 3) 2 ; z 1
解: 1 )在整个复平面上解析 ,f ' ( z ) 3z 2i; 2z 3)除z 1点外处处解析, f ' ( z ) 2 ; 2 ( z 1)
2
11.求下列函数的奇点: z 1 z 3 1 ) 2 ; 2) . 2 2 z ( z 1) ( z 1) ( z 1)
x 1 2 有 , y 3 8
x 1 即 . y 11
3.将下列复数化为三角式和指数式: 1 ) 5i; 3)1 i 3;
解: 1 )z


i 2

;
3) z 2[cos( ) i sin( )] 2e ; 3 3

复变函数与积分变换 全套 课后答案

复变函数与积分变换 全套 课后答案
1 4
1 π
k 0,1
i π π ∴ z1 6 4 cos i sin 6 4 e 8 8 8 πi 9 9 z2 6 4 cos π i sin π 6 4 e 8 . 8 8 1 1 9
9.设 z e
3 2 2 2 2 x x 2 y 2 2 xy 2 y x y 2x y i
x3 3xy 2 3x 2 y y 3 i
∴ Re z 3 x 3 3xy 2 ,
Im z 3 3x 2 y y 3 .
z w z 2 Re z w w z w z 2 Re z w w
zw zw 2 z w
2 2
2
2


2
2
2


2

2
2

2
并给出最后一个等式的几何解释. 证明: z w z 2 Re z w w 在上面第五题的证明已经证明了. 下面证 z w z 2 Re z w w . ∵ z w z w z w z w z w
2 i 3 2i 2 i 3 2i 2 i 3 2i 4 7i
④解:
1 i 1 i 2 2 2 2
1 i 1 i 1 i 2 2 2 4、证明:当且仅当 z z 时,z 才是实数.


z z z w w z w w z zw z w w z w

2
2
2
2
2 Re z w
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一答案之南宫帮珍创作2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6= 5.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 7. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥。

(2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++证明:验证即可,首先左端221212()()x x y y =+++,而右端2222112211222Re[()()]x y x y x iy x iy =+++++-2222112212122()x y x y x x y y =+++++221212()()x x y y =+++, 由此,左端=右端,即原式成立。

(3)若a bi +是实系数代数方程101100n n n a z a z a z a --++++=的一个根,那么a bi -也是它的一个根。

证明:方程两端取共轭,注意到系数皆为实数,而且根据复数的乘法运算规则,()n n z z =,由此得到:10110()()0n n n a z a z a z a --++++=由此说明:若z 为实系数代数方程的一个根,则z 也是。

结论得证。

(4)若1,a =则,b a ∀≠皆有1a b a ab-=- 证明:根据已知条件,有1aa =,因此:11()a b a b a b a ab aa ab a a b a---====---,证毕。

(5)若1, 1a b <<,则有11a b ab -<- 证明:222()()a b a b a b a b ab ab -=--=+--,2221(1)(1)1ab ab ab a b ab ab -=--=+--,因为1, 1a b <<,所以, 2222221(1)(1)0a b a b a b +--=--< ,因而221a b ab -<-,即11a b ab -<-,结论得证。

7.设1,z ≤试写出使n z a +达到最大的z 的表达式,其中n 为正整数,a 为复数。

解:首先,由复数的三角不等式有1n n z a z a a +≤+≤+, 在上面两个不等式都取等号时n z a +达到最大,为此,需要取n z 与a 同向且1n z =,即n z 应为a 的单位化向量,由此,n a z a=, 8.试用123,,z z z 来表述使这三个点共线的条件。

解:要使三点共线,那么用向量暗示时,21z z -与31z z -应平行,因而二者应同向或反向,即幅角应相差0或π的整数倍,再由复数的除法运算规则知2131z z Argz z --应为0或π的整数倍,至此得到: 123,,z z z 三个点共线的条件是2131z z z z --为实数。

9.写出过1212, ()z z z z ≠两点的直线的复参数方程。

解:过两点的直线的实参数方程为:121121()()x x t x x y y t y y =+-⎧⎨=+-⎩, 因而,复参数方程为:其中t 为实参数。

10.下列参数方程暗示什么曲线?(其中t 为实参数)(1)(1)z i t =+ (2)cos sin z a t ib t =+ (3)i z t t=+ 解:只需化为实参数方程即可。

(1),x t y t ==,因而暗示直线y x =(2)cos ,sin x a t y b t ==,因而暗示椭圆22221x y a b+= (3)1,x t y t==,因而暗示双曲线1xy = 11.证明复平面上的圆周方程可暗示为 0zz az az c +++=,其中a 为复常数,c 为实常数证明:圆周的实方程可暗示为:220x y Ax By c ++++=, 代入, 22z z z z x y i+-==,并注意到222x y z zz +==,由此 022z z z z zz A B c i+-+++=, 整理,得 022A Bi A Bi zz z z c -++++= 记2A Bi a +=,则2A Bi a -=,由此得到 0zz az az c +++=,结论得证。

12.证明:幅角主值函数arg z 在原点及负实轴上不连续。

证明:首先,arg z 在原点无定义,因而不连续。

对于00x <,由arg z 的定义不难看出,当z 由实轴上方趋于0x 时,arg z π→,而当z 由实轴下方趋于0x 时,arg z π→-,由此说明0lim arg z x z →不存在,因而arg z 在0x 点不连续,即在负实轴上不连续,结论得证。

13.函数1w z=把z 平面上的曲线1x =和224x y +=分别映成w 平面中的什么曲线?解:对于1x =,其方程可暗示为1z yi =+,代入映射函数中,得211111iy w u iv z iy y-=+===++, 因而映成的像曲线的方程为 221, 11y u v y y-==++,消去参数y ,得 2221,1u v u y +==+即22211()(),22u v -+=暗示一个圆周。

对于224x y +=,其方程可暗示为2cos 2sin z x iy i θθ=+=+代入映射函数中,得因而映成的像曲线的方程为 11cos , sin 22u v θθ==-,消去参数θ,得2214u v +=,暗示一半径为12的圆周。

14.指出下列各题中点z 的轨迹或所暗示的点集,并做图: 解:(1)0 (0)z z r r -=>,说明动点到0z 的距离为一常数,因而暗示圆心为0z ,半径为r 的圆周。

(2)0,z z r -≥是由到0z 的距离大于或等于r 的点构成的集合,即圆心为0z 半径为r 的圆周及圆周外部的点集。

(3)138,z z -+-=说明动点到两个固定点1和3的距离之和为一常数,因而暗示一个椭圆。

代入,z x iy ==化为实方程得(4),z i z i +=-说明动点到i 和i -的距离相等,因而是i 和i -连线的垂直平分线,即x 轴。

(5)arg()4z i π-=,幅角为一常数,因而暗示以i 为顶点的与x 轴正向夹角为4π的射线。

15.做出下列不等式所确定的区域的图形,并指出是有界还是无界,单连通还是多连通。

(1)23z <<,以原点为心,内、外圆半径分别为2、3的圆环区域,有界,多连通(2)arg (02)z αβαβπ<<<<<,顶点在原点,两条边的倾角分别为,αβ的角形区域,无界,单连通(3)312z z ->-,显然2z ≠,而且原不等式等价于32z z ->-,说明z 到3的距离比到2的距离大,因此原不等式暗示2与3 连线的垂直平分线即x =x =2后的点构成的集合,是一无界,多连通区域。

(4)221z z --+>,显然该区域的鸿沟为双曲线221z z --+=,化为实方程为 2244115x y -=,再注意到z 到2与z 到-2的距离之差大于1,因而不等式暗示的应为上述双曲线左边一支的左侧部分,是一无界单连通区域。

(5)141z z -<+,代入z x iy =+,化为实不等式,得 所以暗示圆心为17(,0)15-半径为815的圆周外部,是一无界多连通区域。

习题二答案1.指出下列函数的解析区域和奇点,并求出可导点的导数。

(1)5(1)z - (2)32z iz + (3)211z + (4)13z z ++ 解:根据函数的可导性法则(可导函数的和、差、积、商仍为可导函数,商时分母不为0),根据和、差、积、商的导数公式及复合函数导数公式,再注意到区域上可导一定解析,由此得到:(1)5(1)z -处处解析,54[(1)]5(1)z z '-=-(2)32z iz +处处解析,32(2)32z iz z i '+=+(3)211z +的奇点为210z +=,即z i =±, (4)13z z ++的奇点为3z =-, 2.判别下列函数在何处可导,何处解析,并求出可导点的导数。

相关文档
最新文档