小学奥数精选举一反三
小学奥数举一反三(全三年级)

第1讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。
寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。
善于发现数列的规律是填数的关键。
二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。
(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,(),()(4)2,3,7,18,47,(),()【例题4】根据前面图形里的数的排列规律,填入适当的数。
学习参考多动脑多动手,是开启数学大门的钥匙! 2(1)(3)练习4:找出排列规律,在空缺处填上适当的数。
奥数典型题举一反三(小学3年级)

奥数典型题举一反三(小学3年级)
1、有两只猪,每只猪共有12只腿,那么这两只猪共有多少只腿?
即计算:有两只猪,每只猪共有12只腿,总共有24只腿。
2、有20本书,每本书都是100页,那么这20本书共有多少页?
即计算:有20本书,每本书都是100页,总共有2000页。
3、一个包子内有10颗米,如果有3个包子,那么共有多少颗米?
即计算:一个包子有10颗米,如果有3个包子,那么共有30颗米。
4、有18只小鸭子,共有几只脚?
即计算:有18只小鸭子,共有36只脚。
5、一个盒子里有25个苹果,如果有5个盒子,那么一共有多少个苹果?
即计算:一个盒子里有25个苹果,如果有5个盒子,那么一共有125个苹果。
6、有20个苹果,每个苹果有4颗籽,那么一共有多少颗籽?
即计算:有20个苹果,每个苹果有4颗籽,那么一共有80颗籽。
7、一箱子里有25只兔子,又有35只羊,那么总共有多少只动物?
即计算:一箱子里有25只兔子,又有35只羊,那么总共有60只动物。
8、8个小朋友,共吃了20个苹果,那么每个小朋友吃了多少个苹果?
即计算:8个小朋友,共吃了20个苹果,那么每个小朋友吃了2个苹果。
小学数学举一反三经典50题

小学数学举一反三经典题50题1、已知一张桌子的价钱是一把椅子的8倍,又知一张桌子比一把椅子多287元,一张桌子和一把椅子各多少元?2、甲乙二人从两地同时相对而行,经过3小时,在距离中点6千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?3、小李和小张有同样多的钱去买钢笔,当小李给了小张6元后,小李刚好可买13支,小张则刚好买了7支。
每支钢笔多少钱?4、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)5、学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走5.5千米,第二小组每小时走4.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?6、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?7、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?8、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?9、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?10、一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?12、五年级一中队和二中队要到距学校20千米的地方去春游。
小学二年级举一反三奥数题

间隔趣谈1、把一根长30厘米的铁丝剪成6段,每剪一次要用2分钟,一共需要几分钟?2、一根木料长10米,要把它锯成一些2米长的小段,每锯一次要用4分钟,一共要用多少分钟?3、时钟3点敲3下,用4秒钟,敲9下用几秒?4、时钟10秒敲6下,敲10下需要几秒?5、一根木料,锯成3段要用10分钟,如果要锯成5段需要多少分钟?6、师傅18分钟把一根木头锯成了7段,如果他锯了36分钟,那么这根木头被锯成了几段?7、12米长的钢管锯成3米长的几段,一共要用18分钟,每锯一次用几分钟?8、师傅把一根水管锯成三段,每锯一次用3分钟,他一口气锯了五根水管,一共用了多少分钟?9、时钟5点敲5下需要8秒,那么12点敲12下需要几秒钟?10、一根水管,12分钟把它锯成了4段,另外有同样的一根水管以同样的速度锯成12段,需要多少分钟?11、一根木料锯成3段用了4分钟,另外有同样的一根木料以同样的速度锯,12分钟可锯成多少段?12、老师家住在六楼,他从底楼到三楼要用2分钟,那么从底楼到六楼要用多少分钟?13、一条河堤40米,每隔4米栽一棵树,从头到尾一共要栽多少棵?14、小明把9粒棋子横着摆放在桌上,每两粒间的距离是5厘米,从第一粒到第九粒之间的距离是多少厘米?15、小新把7粒纽扣放在桌上,每两粒之间的距离是5厘米,从第一粒到第七粒的距离是多少厘米?16、在两根柱子间每隔1米系一个汽球,共系了20个汽球,两根柱子间距离是多少?17、两幢房之间相距50米,每隔1米站一个小朋友,一共可以站几个小朋友?18、一根绳子长1米,每隔10厘米打一个结,一共要打几个结?19、绿化小组在学校的过道两边摆放月季花,每隔1米摆1盆,一共摆了42盆,这条过道长多少米?20、一条路长100米,工人叔叔要在路两旁每隔10米竖一根电线杆,从头到尾一共要竖多少根电线杆?21、一条路每隔2米有1根电线杆,连两端共有81根,这条路长多少米?22、一座桥长25米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有多少盏灯?23、在两幢房之间每隔2米放置宣传广告,一共放了10个,两幢楼之间相距多少米?24、两棵树之间相距20米,每隔2米插一面彩旗,一共可以插几面彩旗?1、小宇在A点,他怎样走到公路L,才能使他所走的路程最近?A·─────────────L2、城南新村与光明新村同在虹桥路的北侧,现要在虹桥路上,修建一个大型超市以方便附近居民购物,请问超市应设在公路的什么地方,才能使两个新村的居民到这里的路程之和最短?城南新村··光明新村──────────────────────虹桥路3、1根绳子扎成蝴蝶结后,再沿结口处剪开,可以得到几段?4、将下图加最少的线改成一笔画的图形。
小学奥数举一反三

小学奥数举一反三
小学奥数举一反三是指通过一个问题找出更多的类似问题
来训练学生的思维能力和应用能力。
下面是一个例子:
问题:有一张立方体的正面面积是6平方米,问这个立方
体的体积是多少?
解答:由于立方体的六个面都是正方形,所以每个面的面
积都相同。
由题意可知正面面积是6平方米,那么每个面
的面积是6/6=1平方米。
那么这个立方体的体积就是
1*1*1=1立方米。
举一反三的问题1:如果一个立方体正面的面积是8平方米,这个立方体的体积是多少?
解答:根据原问题的解题思路,可以得知每个面的面积是
8/6=4/3平方米,那么这个立方体的体积就是
(4/3)*(4/3)*(4/3)=(64/27)立方米。
举一反三的问题2:如果一个立方体正面的面积是10平方米,这个立方体的体积是多少?
解答:同样地,每个面的面积是10/6=5/3平方米,那么
这个立方体的体积就是(5/3)*(5/3)*(5/3)=(125/27)立方米。
通过一道题目可以引出多个类似的问题,通过解答这些问
题可以拓展学生的思维和应用能力。
小学四年级举一反三奥数题

小学四年级举一反三奥数题1.小学四年级举一反三奥数题篇一有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
一箱苹果多少个?【思路导航】(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。
1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)2.小学四年级举一反三奥数题篇二A、B两地之间是山路,相距60千米,其中一部分是上坡路,其余是下坡路,某人骑电动车从A地到B地,再沿原路返回,去时用了4.5小时,返回时用了3.5小时。
已知下坡路每小时行20千米,那么上坡路每小时行多少千米?【解析】由题意知,去的上坡时间+去的下坡时间=4.5小时回的上坡时间+回的下坡时间=3.5小时则:来回的上坡时间+来回的下坡时间=8小时所以来回的下坡时间=60÷20=3(小时)则:来回的上坡时间=8-3=5(小时)故:上坡速度为60÷5=12(千米/时)3.小学四年级举一反三奥数题篇三有一个长方体木块,长125厘米,宽40厘米,高25厘米。
把它锯成若干个体积相等的小正方体,然后再把这些小正方体拼成一个大正方体。
这个大正体的表面积是多少平方厘米?分析与解一般说来,要求正方体的表面积,一定要知道正方体的棱长。
题中已知长方体的长、宽、高,同正方体的棱长又没有直接联系,这样就给解答带来了困难。
我们应该从整体出发去思考这个问题。
按题意,这个长方体木块锯成若干个体积相等的小正方体后,又拼成一个大正方体。
小学奥数-举一反三-长方形、正方形面积

8
5
例题2
例2 一个大长方形被两条平行于它的两条边的线段分成四 个较小的长方形,其中三个长方形的面积如下图所求,求 第四个长方形的面积。
分析
因为AE×CE=6,DE×EB=35,把两个式子相乘 AE×CE×DE×EB=35×6,而CE×EB=14,所以 AE×DE=35×6÷14=15。
举一反三
第2题解法1
思路分析:设正方形原边长为a, 增加的这边面积=缩短这边的面积 30 ×(a – 18) = a × 18 30a - 30 ×18 = 18a 30a -18a = 30 ×18 12a = 540 a = 540÷12 a = 45(厘米) 原面积=45×45=2025平方0-18)=45
正方形面积=45×45=2025平方厘米
第3题解法1
思路分析:增加部分的面积正好等于三个 长方形面积之和。如果我们把拼成的正方 形的边长当作a,就可以计算出两个阴影长 方形的面积。 5分米 5 × ( a – 8) + 8 ×(a – 5) = 181-5 ×8 13a – 80 = 141 13a = 141 + 80 a = 221÷ 13 a = 17
面积就非常简单了。
2 A
2
B
举一反三
1,有一块长方形草地,长20米,宽15米。在它的四周向外 筑一条宽2米的小路,求小路的面积。
2,正方形的一组对边增加30厘米,另一组对边减少18厘米, 结果得到一个与原正方形面积相等的长方形。原正方形的面 积是多少平方厘米? 3,把一个长方形的长增加5分米,宽增加8分米后,得到一 个面积比原长方形多181平方分米的正方形。求这个正方形 的边长是多少分米?
18 30
面积=30×(a-18)
小学六年级奥数举一反三单选题100道及答案解析

小学六年级奥数举一反三单选题100道及答案解析1. 甲、乙两车同时从A、B 两地相对开出,4 小时后相遇,甲车再开3 小时到达B 地。
已知甲车每小时比乙车快20 千米,则A、B 两地相距()千米。
A. 560B. 720C. 960D. 1120答案:C解析:相遇后甲3 小时行的路程等于相遇前乙4 小时行的路程,甲乙时间比是3:4,速度比是4:3。
甲比乙快一份,一份是20 千米/小时,甲速度是80 千米/小时,全程80×(4 + 3)= 560 千米。
2. 一个圆柱和一个圆锥的底面半径之比是2:3,体积之比是3:2,它们高的比是()A. 1:3B. 3:4C. 9:8D. 8:9答案:D解析:圆柱体积= 底面积×高,圆锥体积= 1/3×底面积×高。
设圆柱底面半径2r,圆锥底面半径3r,圆柱高h1,圆锥高h2,根据体积比列出方程:(π×(2r)²×h1) : (1/3×π×(3r)²×h2) = 3 : 2,解得h1 : h2 = 8 : 9。
3. 一件商品,先提价20%,再降价20%,现在的价格与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价20%后价格为100×(1 + 20%) = 120 元,再降价20%,价格为120×(1 - 20%) = 96 元,所以价格降低了。
4. 把一个棱长为6 厘米的正方体木块削成一个最大的圆锥,圆锥的体积是()立方厘米。
A. 56.52B. 169.56C. 226.08D. 无法确定答案:A解析:圆锥底面直径和高都是 6 厘米,体积= 1/3×π×(6÷2)²×6 ≈56.52 立方厘米。
5. 有含糖15%的糖水20 千克,要使糖水的浓度为20%,需加糖()千克。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数精选举一反三一.归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量,这类应用题叫做归一问题。
例1:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解题思路与方法:先要求出1支铅笔多少钱,再求出16支铅笔多少钱。
解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱? 0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
练习1:1.3台拖拉机耕地600平方米,照这样计算,5台拖拉机能耕地多少平方米?2.一辆卡车5次运煤22.5吨,照这样计算,再增加2次能运多少吨煤?3.制鞋厂30个人一个月生产皮鞋2250双,照这样计算,现在要生产7950双皮鞋,需要多少人?例2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
练习2.1. 5台磨面机6小时磨面粉42吨,10台磨面机磨面粉98吨,需要几小时?2. 一辆卡车5次运煤22.5吨,5辆同样的卡车6次可以运煤多少吨?3. 一个钢铁厂,一号炉前3天每天产钢354吨,照这样计算,要生产钢17555吨,还需要多少天?例3. 5辆汽车4次可以运送100吨钢材,如用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。
练习31.修一条公路,全长15千米,开工4天修1.6千米。
照这样计算,修完这条公路要多少天?2.一个编织组,原来30人10天生产1500顶草帽,现在增加到120人,按照原来的工效,要生产9000顶草帽需要多少天?3. 修一条公路,6个人5天修了120米。
照这样计算,再修600米路15天修完,需要增加多少人?二.归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套? 2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。
练习1.1.搬运一堆红砖,小冬一次搬5块,要16次才能搬完,如果小冬每次多搬3块,几次就可搬完?2.小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?3.食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?例2. 修一条公路,原计划每天工作7.5小时,8个人6天可以修完,实际增加了2个工人,准备4天完成,这样每天要工作几小时?分析:要求每天工作几小时,先要求出这条公路的总工作量,即由1个工人来做共需要多少小时,7.5 × 8 × 6=360再求如果1人每天工作多少小时360 ÷4=90再求最后问题。
90 ÷(8+2)=9小时答:每天要工作9小时.练习2.1.一项工程,预计30人15天可以完成任务。
工作4天后,又增加3人。
如果每人工作效率相同,这样可以提前几天完成任务?2.一项工程原计划8个人每天工作6小时,10天可以完成。
现在为了加快工作进度,增加2人,每天工作时间增加2小时,这样可以提前几天完成这项工程?3.一个工地上有120名工人,食堂为这些工人准备了30天的粮食。
实际工作5天后,由于工期紧张,又调来30名工人,食堂原来准备的粮食只够吃几天?三.和差问题【特点】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解如果甲班减少6人,就和乙班人数相等;或者乙班增加6人,就和甲班人数相等。
乙班人数=(98-6)÷2=46(人)甲班人数=98 -46=52,或(98+6)÷2=52(人)答:甲班有52人,乙班有46人。
解题关键:小数=(和-差)÷2,大数=(和+差)÷2练习11.甲乙两个工程队合挖一条长48千米的水渠,甲队比乙队多挖了6千米,求甲、乙工程队各挖了多少千米?2.有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
3. 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?例2.长方形的周长是36厘米,长比宽多2厘米,求长方形的面积。
解先要求出长和宽各是多少因为长和宽的和是36÷2=18厘米所以长=(18+2) ÷2=10厘米宽=18-10=8厘米面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米练习21.甲、乙两个仓库共运进货物1260吨,如果从甲仓库调出120吨货物到乙仓库,则两个仓库的货物一样多,求甲乙两仓库原来运进货物各多少吨?2.电视机厂一、二、三车间共有工人360人,第一车间比第二车间多12人,第三车间比第二车间少18人,三个车间各有工人多少人?3.养兔场共养兔8800只,有白兔、黑兔和灰兔三品种,白兔比黑兔多600只,黑兔比灰兔少400只,求白兔、黑兔、灰兔各有多少只?四. 和倍问题【特点】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解把杏树棵树看作1份,总棵树就是3+1份(1)杏树有多少棵? 248÷(3+1)=62(棵)(2)桃树有多少棵? 62×3=186(棵)答:杏树有62棵,桃树有186棵。
解题关键:1倍数=和÷(1+倍数)练习11. 某校四年级和六年级的同学参加植树活动,两个年级共栽树苗141棵。
已知六年级同学栽的树苗是四年级同学载树苗棵数的2倍,四年级栽树苗多少棵?2. 大小两辆卡车8次共运货物64吨,大卡车一次运货的吨数是小卡车一次运货吨数的3倍,大小卡车每次各运货多少吨?3. 甲、乙两箱苹果共重84千克,从甲箱取出15千克的苹果放入乙箱,乙箱的重量就是甲箱的3倍,两箱原来各有苹果多少千克?例2 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解分析:每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。
把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为(52+32)÷(2+1)=28(辆)所求天数为(52-28)÷(28-24)=6(天)答:6天以后乙站车辆数是甲站的2倍。
练习21.学校中四、五年级的学生为“希望工程”共捐款241元,从五年级捐款的总数中取出25元后,就是四年级捐款数的2倍,五年级比四年级的学生多捐款多少元?2.甲、乙两个仓库共存货物238吨,如果从乙库中运出84吨放入甲库,则甲库存货比乙库的存货吨数多5倍。
原来甲、乙两个仓库的货物吨数各是多少?3.果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?例3.甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(170+4-6)就相当于(1+2+3)倍。
那么,甲数=(170+4-6)÷(1+2+3)=28乙数=28×2-4=52丙数=28×3+6=90答:甲数是28,乙数是52,丙数是90。
练习31.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?2.图书馆共有故事书、科技书和连环画三种图书1252本,其中科技书是故事书的3倍,连环画的本数比科技书的2倍多40本。
三种书各有多少本?3. 549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?五.差倍问题【特点】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?解桃树的棵数是杏树的3倍,也就是桃树比杏树多(3-1)倍(1)杏树有多少棵? 124÷(3-1)=62(棵)(2)桃树有多少棵? 62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。
解题关键:1倍数=差÷(倍数-1)练习11、服装厂的女工比男工多78人,女工人数是男工人数的3倍,求有男工、女工各多少人?2.甲仓库比乙仓库多存粮240千克,甲仓库存粮是乙仓库存粮的4倍,两仓库各存粮多少千克?3.有两层书架,第二层的书是第一层的4倍,如果从第二层取236本放第一层,两就一样多.那么两层书架各有多少本书?例2.粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。
把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此剩下的小麦数量=(138-94)÷(3-1)=22(吨)运出的小麦数量=94-22=72(吨)运粮的天数=72÷9=8(天)答:8天以后剩下的玉米是小麦的3倍。