通风系统的风量风压测量
管道风压、风速、风量测定

仪器中还设有P-N结温度测头,可以在测量风速的同时, 测定气流的温度。这种仪器适用于气流稳定输送清洁空 气,流速小于4m/s的场合。
管道风压、风速、风量测定
四、风道内流量的计算
天竹夭的店
2020年6月27日
管道风压、风速、风量测定
管道风压、风速、风量测定
一、测定位置和测定点
(一) 通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的
真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对 测量结果的影响很大。
测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形 部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。
1 在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同 心环。 对于圆形风道,测点越多,测量精度越高。
2 矩形风道 可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小 矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。
管道风压、风速、风量测定
当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。 当测试现场难于满足要求时,为减少误差可适当增加测点。 但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5
管道风压、风速、风量测定
一、测定位置和测定点
(一)
测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面 不宜作为测定断面。
如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面 (检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这
风量风压风速的计算方法

风量风压风速的计算方法一、测定点位置的选择:通风管道内风速及风量的测定,是通过测量压力再换算取得的。
要得到管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面,减少气流扰动对测量结果的影响,也很重要。
测量断面应选择在气流平稳的直管段上。
由于速度分布的不均匀性,压力分布也是不均匀的,因此必须在同一断面上多点测量,然后求出平均值。
圆形风道在同一断面设两个互相垂直的测孔,并将管道断面分成一定数量的等面积同心环。
矩形风道可将风道断面分成若干等面积的小矩形,测点布置在每个小矩形的中心。
二、风道内压力的测定。
测试中需测定气体的静压、动压和全压。
测全压的孔应迎着气流的方向,测静压的孔应垂直于气流的方向,全压和静压之差即为动压。
气体压力的测量通常是用插入风道中的测压管将压力信号取出,常用的仪器是皮托管和压力计。
标准皮托管是一个弯成90°的双层同心圆管。
压力计有U形压力计和倾斜式微型压力计。
皮托管和压力计相配合测出压力。
三、风速的测定。
常用的测定管道内风速的方法有间接式和直读式。
间接式先测得管内某点动压,再算出该点风速。
此法虽然繁琐,由于精度高,在通风测试系统中得到广泛应用。
直读式测速仪是热球式热电风速仪,测头会受到周围空气流速的影响,根据温升的大小即可测出气流的速度。
四、局部吸排风口风速的测定:1,匀速移动法:使用叶轮式风速仪,沿风口断面匀速移动,测得风口平均风速。
2,定点测定法:使用热球式热电风速仪,按风口断面大小,分成若干面积相等的小方块,在小方块的中心测定风速,取其平均值。
五、局部吸排风口风量的测定:1,用动压法测定断面动压,计算出风速,算出风量。
2,用动压法不易找到稳定的测压断面时,使用静压法求得风量。
通风系统风量风压的测量

通风系统风量风压的测量SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#实验一风管风压、风速、风量的测定一、实验目的在通风除尘工程中,需要对系统中风压、风速及风量进行测定调整,使系统能在正常运行工况下工作。
测量风压、风速及风量的方法有许多种,现场测定一般采用毕托测压管和不同种类的微压计或U型管来进行测量。
通过实验,使学生掌握风管截面的测点布置方法,熟悉风压、风速及风量测量仪表的结构及工作原理,掌握风压、风速及风量的测量方法和计算公式,为专业测试打下基础。
二、实验装置通风系统综合测定实验装置如图1-1所示,该装置由风管、风机及测量箱组成。
图1-1 通风系统综合测定实验装置实验系统的正压管段与负压管段均设有测压孔,可用毕托管直接在测量断面上进行测量。
在风机入口,出口侧各安装有测量风量的测量箱,在箱内安装有标准空气流量喷嘴,为了使测量段的空气流速场较为均匀、在喷咀前后各设有整流板,其穿孔率约为40%,测量箱断面尺寸按空气流速不大于O.76m/s考虑。
I号测量箱,安装有标准喷嘴计3个,其规格为:D100 2个 D50 1个实验系统风量可通过调节多叶调节阀来改变其大小。
三、实验原理及实验方法(一) 毕托管与微压计测量风压、风速及风量空气在风管中流动时,管内空气与管外空气存在有压力差,这个压力差是直接由风管管壁来承受的,称为静压P j ,就空气某一质点来说,所承受的静压的方向为四面八方。
由于空气在风管内流动,形成一定的动压d P ,即为气流的动能。
动压数学表达式 22ρν=d P (Pa )或 gP d 22γν='P (O mmH 2)动压的方向为空气流动的方向。
静压与动压之和称为总压,数学表达式为d j q P P P +=(Pa )在毕托管上有测量总压、静压的测孔,与微压计配合使用,就可测出流体的静压、总压与动压。
静压和总压有正负之分,动压只为正值。
在测量总压和静压时,如数值超过微压计的量程,则采用U 型管压力计。
通风系统风量、风压的测量

实验一风管风压、风速、风量的测定一、实验目的在通风除尘工程中,需要对系统中风压、风速及风量进行测定调整,使系统能在正常运行工况下工作。
测量风压、风速及风量的方法有许多种,现场测定一般采用毕托测压管和不同种类的微压计或U型管来进行测量。
通过实验,使学生掌握风管截面的测点布置方法,熟悉风压、风速及风量测量仪表的结构及工作原理,掌握风压、风速及风量的测量方法和计算公式,为专业测试打下基础。
二、实验装置通风系统综合测定实验装置如图1-1所示,该装置由风管、风机及测量箱组成。
图1-1 通风系统综合测定实验装置实验系统的正压管段与负压管段均设有测压孔,可用毕托管直接在测量断面上进行测量。
在风机入口,出口侧各安装有测量风量的测量箱,在箱内安装有标准空气流量喷嘴,为了使测量段的空气流速场较为均匀、在喷咀前后各设有整流板,其穿孔率约为40%,测量箱断面尺寸按空气流速不大于O.76m/s考虑。
I号测量箱,安装有标准喷嘴计3个,其规格为:D100 2个 D50 1个实验系统风量可通过调节多叶调节阀来改变其大小。
三、实验原理及实验方法(一) 毕托管与微压计测量风压、风速及风量空气在风管中流动时,管内空气与管外空气存在有压力差,这个压力差是直接由风管管壁来承受的,称为静压P j ,就空气某一质点来说,所承受的静压的方向为四面八方。
由于空气在风管内流动,形成一定的动压d P ,即为气流的动能。
动压数学表达式 22ρν=d P (Pa )或 gP d 22γν='P (O mmH 2)动压的方向为空气流动的方向。
静压与动压之和称为总压,数学表达式为d j q P P P +=(Pa )在毕托管上有测量总压、静压的测孔,与微压计配合使用,就可测出流体的静压、总压与动压。
静压和总压有正负之分,动压只为正值。
在测量总压和静压时,如数值超过微压计的量程,则采用U 型管压力计。
测出空气动压值后,即可求得相应的空气流速。
空气流速 ρdP v 2=(m/s )或 γd P g v '=2(m/s )测出测量断面面积F 及计算出空气的平均流速v 后即可计算空气体积流量L 。
通风管道风压、风速、风量测定(精)

第八节通风管道风压、风速、风量测定(p235)(熟悉)一、测定位置和测定点(一测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。
测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。
测量断面应尽量选择在气流平稳的直管段上。
测量断面设在弯头、三通等异形部件前面(相对气流流动方向时,距这些部件的距离应大于2倍管道直径。
当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。
测量断面位置示意图见p235图2.8-1。
当测试现场难于满足要求时,为减少误差可适当增加测点。
但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。
测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。
如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角。
选择测量断面,还应考虑测定操作的方便和安全。
(二测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。
因此,必须在同一断面上多点测量,然后求出该断面的平均值。
1 圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,同心环的划分环数按(236)表2.8-1确定。
对于圆形风道,同心环上各测点距风道内壁距离列于表2.8—2。
测点越多,测量精度越高。
图2.8-2是划分为三个同心环的风管的测点布置图,其他同心环的测点可参照布置。
2 矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,如(p236)图2.8-3矩形风道测点布置图所示。
圆风管测点与管壁距离系数(以管径为基数表2.8-2 二、风道内压力的测定(一原理测量风道中气体的压力应在气流比较平稳的管段进行。
通风管道风压风速风量测定DOC

通风管道风压风速风量测定通风管道在工业生产和建筑物中起着重要的作用。
为确保通风管道的安全和有效,需要对通风管道进行风压、风速、风量测定。
以下是一些测量通风管道的基本方法。
一、风压测量仪器•喜马拉雅差压计•数字多功能仪表步骤1.在通风管道的两边墙壁上钻孔,使孔之间的距离相等。
2.将差压计连接在通风管道上,调整读数到设置零点。
3.打开通风机,记录差压计的读数。
如果差压计涉及到密封效应,需要进行更多调整以得到更准确的读数。
如果机器噪音太大,可以考虑将差压计放置在远离机器的地方。
计算通风管道的压强等于差压计的读数。
使用以下公式计算通风管道的风速: •风速(m/s)= 差压计的读数 * (角度系数 / 因素系数)•风速(英尺/分钟)= 差压计的读数 * (角度系数 / 因素系数) * 196.85其中,角度系数和因素系数根据差压计的型号而异。
二、风速测量仪器•热线风速仪•热膜风速仪步骤1.在通风管道上安装风速仪器。
尽量远离通风系统的进口和出口,以避免干扰。
2.打开通风机,等待五到十分钟,直到温度和湿度稳定。
3.风速仪器将记录并显示当前风速。
计算通风管道的风量等于风速和扇叶面积的乘积。
使用以下公式计算通风管道的风速:•风量(立方米/小时)= 风速 (米/秒) × 扇叶面积 (平方米) × 3600•风量(立方英尺/分钟)= 风速 (英尺/分钟) × 扇叶面积 (平方英尺) ×60三、风量测量仪器•平衡法风量计•流量计步骤1.在通风管道上安装风量计。
平衡法风量计需要根据通风管道的直径进行调整。
2.打开通风机,将通风管道进行平衡,直到读数稳定。
3.查看风量计上的读数。
计算无需计算。
风量计上的读数已经是通风管道的实际风量。
四、对于工业生产和建筑物中的通风管道,测量其风压、风速、风量是十分重要的。
使用合适的仪器和正确的测量方法,可确保通风管道的安全和有效。
不同的测量方法有不同的精度和调整要求,需要选择合适的测量方法和仪器。
通风空调系统总风量测试记录

通风空调系统总风量测试记录一、测试背景测试单位:XXX公司测试时间:2024年5月20日测试地点:XXX公司办公大楼测试目的:测试通风空调系统的总风量,确保其符合设计要求。
二、测试仪器1.测风仪:型号XXX2.温湿度计:型号XXX3.电子天平:型号XXX三、测试步骤1.测量测试区域面积:利用测量仪器测量测试区域的长宽高,并计算得出面积。
2.准备测试设备:将测风仪、温湿度计及电子天平等测试设备放置于合适位置,并进行校准。
3.打开通风空调系统:在测试区域内打开通风空调系统,并设定合适的温度和湿度。
4.测量空气流速:利用测风仪在不同位置和高度处进行空气流速的测量,包括送风口、回风口等位置,确保测量数据的准确性。
5.测量温湿度:利用温湿度计对测试区域内的温度和湿度进行测量,并记录数据。
6.测量风量:将电子天平放置于通风系统的出风口,测量出风口周围空气的质量,通过测风仪测量出风量。
7.计算总风量:根据测得的出风量及测试区域的面积,计算出通风空调系统的总风量。
四、测试结果根据以上测试步骤,得到如下测试结果:1.测量区域面积:100平方米2.空气流速测量结果:送风口1号测量值为0.5m/s,送风口2号测量值为0.6m/s,回风口1号测量值为0.4m/s。
3.温湿度测量结果:测试区域内温度为25℃,湿度为50%。
4.出风量测量结果:经过测量,通风空调系统的出风量为800立方米/小时。
5.总风量计算结果:根据出风量和测试区域面积的计算,通风空调系统的总风量为8立方米/小时/平方米。
五、测试结论根据上述测试结果,通风空调系统的总风量为8立方米/小时/平方米,符合设计要求。
系统能够达到建筑物内部的通风效果和空气质量要求。
测试结果为公司提供了有效的数据支持,为进一步改进和维护通风空调系统提供了方向。
六、测试建议根据测试结果,建议XXX公司在使用通风空调系统期间,定期进行维护保养工作,包括更换过滤器、清洁风道等,以确保系统正常运行并提供良好的室内空气质量。
风管风压风速风量测定实验报告册

学生实验报告实验课程名称:风管风压、风速、风量测定开课实验室:建筑设备与环境工程实验研究中心学院年级专业、班级学生姓名学号开课时间至学年第学期风管中风压、风速、风量的测定一.实验目的及任务风管/水管内压力、流速、流量量的测定是建筑环境与设备工程专业学生应该掌握的基本技能之一。
通过本实验要求:1) 掌握用毕托管及微压计测定风管中流动参数的方法。
2) 学会应用工程中常见的测定风管中流量的仪表。
3) 将同一工况下的各种流量测定方法的结果进行比较、分析。
4) 学习管网阻力平衡调节的方法二:测定原理及装置系统的测试拟采用毕托管和微压计测压法进行。
1- 集流器 2-静压环 3-整流器 4-风量测定仪 5电加热器 6流行测压器 7-热电偶 8-均衡器 9-压力测量器 10-实验试件 11-调节阀 12- 风机 13-电机图1:管道内风速测量装置三:实验测试装置及仪器1) 毕托管加微压计测压法测试原理测试过程中,首先选定管内气流比较平稳的断面作为测定界面,为了测断面的静压、全压,经断面划分为若干个等面积圆环或小矩形(本实验为获取较高精度的测试结果,将等面积小矩形设定为100x100mm ),然后用毕托管和微压计测得断面上个测点的静压和风管中心的全压,并计算平均动压P jp 、平均全压P qp ,由此计算P dp 及管中风量L : 静压的测量平均值:j1j2jnj p p p p P n++⋅⋅⋅=;全压的测量平均值q1q2qnq p p p p P n++⋅⋅⋅=qp jp dp P P P =+管内平均流速:dp V ==风管总风量:P L F V =⋅ 式中:n-----------断面上测点数 F ——— 断面面积㎡适用毕托管及微压计测量管内风量是基本方法,精度较高。
本测定装置多功能实验装置,除可测定风管内气流的压力、流速及流量外,还设有电加热器、换热器来测定换热量、空气阻力等。
2) 毕托管、微压计测压适用方法1- 准备好毕托管、微压计和连接胶管,并对微压计进行水平校正和倾斜管中的液面凋零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 通风系统的风量风压测量
一、实验目的:
通过实验掌握通风系统的风量风压测量方法 二、实验内容:
选择某一通风系统风管断面进行静压、动压、全压的测量。
计算该断面的平均风速及风量。
三、通风系统全压、静压、动压的测定
(一) 毕托管的结构如图1所示,把毕托管按规定放入通风管道内。
测头对准气
流。
A 、B 两端分别连接微压计时,A 端测出的压力值为全压,B 端测出的压力值为静压,把A 、B 两端连接在同一个微压计上时,测出的压差值就是动压。
即:
q j d P P P -=
(二) 倾斜式微压计的工作原理如图2所示。
微压计感受压力或压差时,玻璃管 内液面从零点上升。
其垂直高度,容器内的液面则从零点下降,下降到高度为h 2
1
22
F h Z
F = (1-1) 式中,F 1——玻璃管断面积;
F 2——容器的断面积。
B
A
图1 毕托管
因此,两端的液面差
1122sin F h h h Z F α⎛⎫
=+=+
⎪⎝⎭
(1-2) 被测的压差值 12sin F p h Z g F γγρρα⎛⎫∆==+
⎪⎝⎭
式中,γρ——液体的密度,kg/m 3
令 12sin a F K F γρα⎛⎫
+
= ⎪⎝⎭
(1-3) 则 a p K Zg ∆= Pa (1-4) 由(1-3)可以看出,a K 值是随α角及γρ的变化而变化的。
对应不同的α值及γρ会有不同的a K 值。
在y-1型微压计中,以3
0.81/kg m γρ=的酒精作为工作介质。
不同的α角所对应的a K 值直接在微压计上标出。
测定的压力值大于大气压力时,应接在M 上。
测定的压力值小于大气压时,应接在N 上。
在测定压差值时,压力大的一端接M 上,压力小的一端接N 上。
在通风机的吸入段或压出段进行测量时,测压管与微压计的连接方式见“工业通风”
图2 倾斜式微压计原理图
P184图3-4。
(三) 测定断面的选择
为了减少气流扰动对测定结果的影响,测定断面应选择在气流平直扰动少的直管段
上。
测定断面设在局部构件前,距离要大于3倍以上管道直径,设在局部构件后相隔 距离应大于6倍管道直径。
详见“工业通风”图8-1。
四、用动压法测定管道内的风量
通风系统内某一点的动压 2
2
d v P ρ= Pa (1-5) 式中, v ——某一点的空气流速,m/s
ρ——空气的密度,3/kg m
因此 v =
(1-6)
由于气流速度在测定断面上的分布是不均匀的,为了测得该断面上的平均风速,必须多点测量,测点位置按“工业通风”第八章中图8-2、图8-3来确定。
测定断面的平均风速
p v =
⎭
m/s (1-7)
测定断面的体积流量为:
p L v F = m 3
/s (1-8)
F ——测定断面的面积,m 2
测定除尘系统的风量时,为了避免毕托管的测压孔堵塞,可用“工业通风”图8-5所示的S 型测压管。
由于该测压管测出的压差并不是该点的实际动压,因此,每根S 型测压管在使用前必须校正,在测压管上标出它们的校正系数。
对不同的测压管校正系数Kb 是不同的。
五、测定注意事项: 1、微压计内必须放入0.81/g ml ρ=的酒精,如果采用ρ不同的液体时,微压计系数必须修正。
2、检查微压计内是否有气泡,并设法排除。
3、调节微压计,使其保持水平,把玻璃管内液面调至零点。
4、检查毕托管的测压孔是否堵塞,注意毕托管与微压计的连接是否正确,以免微压计内进入空气或酒精溢出。
5、 测定时毕托管端部应该对准气流,与风管轴线平行,毕托管头部不应触及风管的内 表面。
6、测定前应预先估计测定压力值的范围,如果超过了微压计的最大值,应改用其它的测值大的微压计。
如估计可能超过,测定时应缓慢转动旋钮,发现玻璃管内液位迅速上升,应及时关闭微压计,以免酒精进入橡皮管。
7、由于断面上各点的静压值是相同的,只要测出一点的静压,就是该断面的静压。
8、用毕托管测定管道内气流速度,仅适用于5/v m s ≥的场合。
六、测定数据按下列表格逐项填出。
管道内空气温度 t = 大气压力B = 空气容重 ρ=
测定断面直径 D = 分环数 n =
测定断面的静压j P = 测定断面的全压q j d P P P =+ 测定断面的风量p L V F =⨯=
六、通风设备阻力的测量
空气流过通风系统重的设备(如加热器、消声器、除尘器等)或部件(如弯头、渐扩管等) 等都要产生阻力,消耗能量。
这些阻力通常要通过实测来确定。
设备或部件的阻力按下式计算:12q q P P P ∆=- (1-9) 式中,1q P ——设备前的全压,Pa ;2q P ——设备后的全压,Pa 。
上式可以改写为:1122()()d j d j P P P P P ∆=+-+()()
1212d d j j P P P P =-+- (1-10) 式中,1d P 、1j P ——设备前的动压和静压,Pa;
2d P 、2j P ——设备后的动压和静压,Pa 。
当设备前后管径相同,而又没有漏风时,公式(1-10)可简化为:
12j j P P P ∆=- (1-11) 根据不同情况,测出公式(1-10)或公式(1-11)中的动压、静压值即可算出设备或部件阻力。
由于断面的平均动压要多点测量,较为麻烦,而断面上的静压基本上是一致的,只要测出一点的静压即可。
用公式(1-11)所示的静压法测量较为方便。
(注:素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注!)。