简述密码学发展史
密码学是什么

密码学是什么1、什么是密码学密码学(Cryptography)是一门研究保护信息安全的学科,旨在发明和推广应用用来保护信息不被未经授权的实体获取的一系列技术。
它的研究规定了认证方式,加密算法,数字签名等技术,使得信息在网络上传输的安全性得到有效保障。
2、密码学发展历史从古代祭祀文本,到中世纪以前采用信封保护信息,再到如今运用根据科学原理设计的隐藏手段来免受攻击,形成了自己独特的新时代——密码学从古至今飞速发展。
在古代,人们提出基于门限理论的“将信息隐藏在古文献中”的想法,致使密码学技术的研究进入一个全新的研究水平。
噬血无声的18世纪,密码学技术得到了按比例加密法、变换锁以及一些其他加密技术的发明,使得发送者可以保护其传输的信息安全性。
20世纪,随着计算机科学、数学和通信学的迅猛发展,对于密码学的研究不断深入,密码破译也得到了彻底的结束。
3、密码学的应用密码学技术的应用正在不断的扩大,已经影响到计算机安全,电子商务,社交媒体,安全性协议。
其中,在计算机安全领域,应用的最广的就是网络安全了,例如使用数字签名,校验数据完整性及可靠性;实现密码认证,提高网络安全性;确保交易安全,实现交易无痕迹。
此外,在其他领域,还应用于支付货币,移动通信,数字信息传输,数字家庭,多媒体看门狗等。
4、密码学体系建设根据国家科学研究规划,国家建立自己的密码体系,推动密码学发展,建立一套完整的标准化体系,促进社会的网络安全发展,促进新的网络体系的快速发展,并且提出国家大力研究密码学,在国际技术水平上更具有单调作用和竞争优势。
5、总结综上所述,我们可以看到,密码学是一门相对年轻的学科,但是它在近十数年中有着突飞猛进的发展,并且把它妥善运用到了当今信息时代。
密码学研究实际上在不断推动并加强现代通信网络的安全性,使得更多的人群乐于在网上购买等等,为人们的网络安全提供了有效的保障。
只要把它的研究应用得当,密码学必将为更多的人带来更多的安全保障。
密码学的发展历史简介

密码学的发展简史中国科学院研究生院信息安全国家重点实验室聂旭云学号:2004 密码学是一门年轻又古老的学科,它有着悠久而奇妙的历史。
它用于保护军事和外交通信可追溯到几千年前。
这几千年来,密码学一直在不断地向前发展。
而随着当今信息时代的高速发展,密码学的作用也越来越显得重要。
它已不仅仅局限于使用在军事、政治和外交方面,而更多的是与人们的生活息息相关:如人们在进行网上购物,与他人交流,使用信用卡进行匿名投票等等,都需要密码学的知识来保护人们的个人信息和隐私。
现在我们就来简单的回顾一下密码学的历史。
密码学的发展历史大致可划分为三个阶段:第一个阶段为从古代到1949年。
这一时期可看作是科学密码学的前夜时期,这段时间的密码技术可以说是一种艺术,而不是一门科学。
密码学专家常常是凭直觉和信念来进行密码设计和分析,而不是推理证明。
这一个阶段使用的一些密码体制为古典密码体制,大多数都比较简单而且容易破译,但这些密码的设计原理和分析方法对于理解、设计和分析现代密码是有帮助的。
这一阶段密码主要应用于军事、政治和外交。
最早的古典密码体制主要有单表代换密码体制和多表代换密码体制。
这是古典密码中的两种重要体制,曾被广泛地使用过。
单表代换的破译十分简单,因为在单表代换下,除了字母名称改变以外,字母的频度、重复字母模式、字母结合方式等统计特性均未发生改变,依靠这些不变的统计特性就能破译单表代换。
相对单表代换来说,多表代换密码的破译要难得多。
多表代换大约是在1467年左右由佛罗伦萨的建筑师Alberti发明的。
多表代换密码又分为非周期多表代换密码和周期多表代换密码。
非周期多表代换密码,对每个明文字母都采用不同的代换表(或密钥),称作一次一密密码,这是一种在理论上唯一不可破的密码。
这种密码可以完全隐蔽明文的特点,但由于需要的密钥量和明文消息长度相同而难于广泛使用。
为了减少密钥量,在实际应用当中多采用周期多表代换密码。
在16世纪,有各种各样的多表自动密钥密码被使用,最瞩目的当属法国人Vigtnère的Vigenère密码体制。
密码学的发展史

其中m 是明文字母对应的数,c 是与明文对应的密文的数。
随后,为了提高凯撒密码的安全性,人们对凯撒密码进行了改进。选取k,b 作为两个参数,其中要求k 与26互素,明文与密文的对应规则为 1 2 3 4 5 1 a b c d e 2 f g h ij k 3 l m n o p 4 q r s t u 5 v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
于是对应于明文secure message ,可得密文为XJHZWJRJXXFLJ 。此时,k 就是密钥。为了传送方便,可以将26个字母一一对应于从0到25的26个整数。如a 对1,b 对2,……,y 对25,z 对0。这样凯撒加密变换实际就是一个同余式
上一页下一页
二、 古典密码
世界上最早的一种密码产生于公元前两世纪。是由一位希腊人提出的,人们称之为棋盘密码,原因为该密码将26个字母放在5×5的方格里,i,j 放在一个格子里,具体情况如下表所示 这样,每个字母就对应了由两个数构成的字符αβ,α是该字母所在行的标号,β是列标号。如c 对应13,s 对应43等。如果接收到密
若存在这样的公钥体制就可以将加密密钥象电话簿一样公开任何用户当它想经其它用户传送一加密信息时就可以从这本密钥薄中查到该用户的公开密钥用它来加密而接收者能用只有它所具有的解密密钥得到明文
密码学的发展史
密码学的发展史
一、 引论
密码学是以研究秘密通信为目的,即对所要传送的信息采取一种秘密保护,以防止 第三者对信息的窃取的一门学科。密码通信的历史极为久远,其起源可以追溯到几千年前的埃及,巴比化,古罗马和古希腊,古典密码术虽然不是起源于战争,但其发展成果却首先被用于战争。交战双方都为了保护自己的通信安全,窃取对方情报而研究各种方法。这正是密码学主要包含的两部分内容:一是为保护自己的通信安全进行加密算法的设计和研究;二是为窃取对方情报而进行密码分析,即密码破译技术。因而,密码学是这一矛盾的统一体。任何一种密码体制包括5个要素:需要采用某种方法来掩盖其要传送的信息或字符 串称为明文:采用某种方法将明文变为另一种不能被非授权者所理解的信息或字符串称为明文;采用某种方法将明文变为另一种不能被非授权者所理解的信息或字符串的过程称为加密变换;经加密过程将明文变成的信息或字符串称为密文;用于具体加密编码的参数称为密钥,将密文还原为明文的过程称为解密变换。秘密通信的过程可用下面表格来表示:
中国密码学发展史

中国密码学发展史
中国密码学起源于古代,比如最早文献《周礼》中就有“卜筮卜辞之术”和“密曲”的记载。
随着社会发展,人们对信息安全的需求越来越高,密文传输和加密技术的发展也成为了当务之急。
20世纪30年代,中国的密码学开始有所突破。
面对日本军事侵略,
中国军方急切需要提高通信保密能力。
当时国内的密码学研究主要由武汉
大学和南京大学等学校开展,并且取得了一些成果,如南京大学研制出了“龙门”密码机等。
在此后的几十年里,中国密码学研究取得了一系列重要成果,如自主
研制的“神威太湖之光”超级计算机,在2012年被全球认可为世界最快
的计算机。
神威太湖之光的出现标志着中国密码学的实力已受到国际的高
度认可。
此外,在加密算法方面,中国也取得了重要突破。
比如,2005年国
家密码管理委员会发布了对称密码标准SM4和公钥密码标准SM2,均成功
应用于金融、电子政务等领域,并受到广泛认可。
总之,随着中国密码学的不断发展,现在的中国已经成为了世界密码
学领域的一个重要力量,无论是在国内还是国际上都有广泛应用和深刻影响。
密码学的历史

密码学的历史可以追溯到古代文明,当时人们就已经开始使用各种方法来保护信息的安全。
以下是密码学历史的一些重要阶段:
1. 古代密码学:最早的密码学形式出现在公元前2000年左右的埃及和美索不达米亚地区。
这些早期的密码系统主要依赖于替换和置换技术,例如凯撒密码。
2. 中世纪密码学:在中世纪,随着基督教的传播,教会开始使用密码来保护其秘密。
这一时期出现了许多新的加密技术,如维吉尼亚密码和栅栏密码。
3. 现代密码学的起源:19世纪,随着电报的出现,密码学进入了一个新的阶段。
这一时期出现了许多新的加密技术,如摩尔斯电码和弗纳姆密码。
4. 二战期间的密码学:二战期间,密码学成为了战争的关键部分。
德国的恩尼格玛机是这一时期最著名的加密设备,而美国的图灵则设计出了破解恩尼格玛机的“炸弹”。
5. 计算机密码学:随着计算机的出现,密码学进入了一个全新的阶段。
这一时期出现了许多新的加密技术,如DES、AES等。
6. 公钥密码学:1976年,美国斯坦福大学的两名研究人员提出了公钥密码学的概念,这是密码学的一次重大突破。
公钥密码学的出现使得信息的加密和解密可以分开进行,大大提高了信息的安全性。
7. 现代密码学:现在,密码学已经成为了信息安全的重要组成部分。
随着量子计算的发展,未来的密码学将面临更大的挑战。
保密通讯中的数学模型

加密时,首先把明文m分成比n小的数据分组,
加密公式: 解密公式:
ci mie mod n mi cid mod n
验证:
ci d
(mie )d
mied
m k (n)1 i
mi mik (n) mi 1 mi mod n
RSA举例
代替密码(substitution cipher):就是明文中每 一个字符被替换成密文中的另外一个字符。有四 种类型的代替密码:
1 单表代替(monoalphabetic substitution):明文中的一个字符用 相应的一个密文字符代替。
明文字母表 ABCDEFGHIJKLMNOPQRSTUVWXYZ 密文字母表 KLMNOPQRSTUVWXYZABCDEFGHIJ
对称密码的优点是算法的实现速度很快,最大缺点 是密钥的分发和管理非常复杂,代价昂贵。
公钥密码系统:加密密钥公开,解密密钥保密,且 由加密密钥不能推导出解密密钥 其安全性都是基于复杂的数学难题,如大整数的 因子分解(RSA)、椭圆曲线离散对数问题(ECC)、 离散对数问题(DSA) 优点是密钥的分配和管理简单,很容易实现数字签 名,缺点是计算非常复杂,实现速度慢。
2 已知明文攻击:攻击者不仅有一些消息的密文, 而且也知道这些消息的明文。攻击者希望推导出 加密密钥或加密算法。
3 选择明文攻击:攻击者可以选择合适的明文, 并能得到相应的密文
4 选择密文攻击:攻击者能够选择不同的被加 密的密文,并能得到相应的被解密的明文
五 密码系统的分类:
根据加密密钥和解密密钥是否相同,可分为两类: 对称密码系统(symmetric cryptosystem)和公钥密 码系统(public-key cryptosystem)
2密码学的历史

吉奥万· 巴蒂斯塔· 贝拉索 (Giovan Battista Bellaso, 1505-?),意大利学者。其实维 吉尼亚密码之前的名字是贝拉索密 码,是贝拉索1553年发明的。 但是由于维吉尼亚在1586年 的改进,使得其加密得更为可靠, 久而久之,贝拉索密码就被叫成了 维吉尼亚密码。
布莱斯·德·维吉尼亚
现代密码
1949年香农发表了一篇题为“保密系统的通信理论”的著 名论文,该文首先将信息论引入了密码,从而把已有数千年 历史的密码学推向了科学的轨道,奠定了密码学的理论基础。 1977年美国国家标准局颁布了数据加密标准DES用于非国 家保密机关 1978年,由美国麻省理工学院的里维斯特,沙米尔和阿德 曼提出了RSA公钥密码体制,它是第一个成熟的、迄今为止 理论上最成功的公钥密码体制。
密文:TUVW
多表代替密码
多表代替密码是依次对明文的各组信息 单元使用有限个周期性重复的或无限多的固 定代替表进行替换来得到密文的: 若是使用无限多的固定代替表(相对于 明文变化是随机的),则称其为一次一密代 替密码; 若是使用有限个周期性重复的固定代替 表,则称其为周期多表代替密码。
周期多表代替密码
古代加密方法
古代加密方法大约起源于公元前440年出现在古希腊 战争中的隐写术。
明天凌晨五点开始攻击!
把信息变换为物件或动作
大胜克敌之符,长一尺; 破军杀将之符,长九寸; 降城得邑之符,长八寸; 却敌报远之符,长七寸; 誓众坚守之符,长六寸; 请粮益兵之符,长五寸; 败军亡将之符,长四寸; 失利亡士之符,长三寸。
凯撒密码用于对英文信息进行 加密,它依据下列代替表(由 英文字母表左环移3位得到)对 信息中26个英文字母进行替换:
密码技术发展史

密码技术发展史密码学是一个即古老又新兴的学科。
密码学(Cryptology)一字源自希腊文"krypto's"及"logos"两字,直译即为"隐藏"及"讯息"之意。
密码学有一个奇妙的发展历程,当然,密而不宣总是扮演主要角色。
所以有人把密码学的发展划分为三个阶段:第一阶段为从古代到1949年。
这一时期可以看作是科学密码学的前夜时期,这阶段的密码技术可以说是一种艺术,而不是一种科学,密码学专家常常是凭知觉和信念来进行密码设计和分析,而不是推理和证明。
早在古埃及就已经开始使用密码技术,但是用于军事目的,不公开。
1844年,萨米尔·莫尔斯发明了莫尔斯电码:用一系列的电子点划来进行电报通讯。
电报的出现第一次使远距离快速传递信息成为可能,事实上,它增强了西方各国的通讯能力。
20世纪初,意大利物理学家奎里亚摩·马可尼发明了无线电报,让无线电波成为新的通讯手段,它实现了远距离通讯的即时传输。
马可尼的发明永远地改变了密码世界。
由于通过无线电波送出的每条信息不仅传给了己方,也传送给了敌方,这就意味着必须给每条信息加密。
随着第一次世界大战的爆发,对密码和解码人员的需求急剧上升,一场秘密通讯的全球战役打响了。
在第一次世界大战之初,隐文术与密码术同时在发挥着作用。
在索姆河前线德法交界处,尽管法军哨兵林立,对过往行人严加盘查,德军还是对协约国的驻防情况了如指掌,并不断发动攻势使其陷入被动,法国情报人员都感到莫名其妙。
一天,有位提篮子的德国农妇在过边界时受到了盘查。
哨兵打开农妇提着的篮子,见里头都是煮熟的鸡蛋,亳无可疑之处,便无意识地拿起一个抛向空中,农妇慌忙把它接住。
哨兵们觉得这很可疑,他们将鸡蛋剥开,发现蛋白上布满了字迹,都是英军的详细布防图,还有各师旅的番号。
原来,这种传递情报的方法是德国一位化学家提供的,其作法并不复杂:用醋酸在蛋壳上写字,等醋酸干了后,再将鸡蛋煮熟,字迹便透过蛋壳印在蛋白上,外面却没有任何痕迹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密码学发展史简述
密码学作为一门古老而又充满活力的学科,经历了漫长的发展历程。
以下是密码学发展史的主要阶段和特点:
1. 古典密码阶段:古典密码阶段主要指古代至20世纪初的密码技术。
这一时期的密码技术以简单的替换和置换为基础,如凯撒密码和维吉尼亚密码等。
古典密码的加密方法较为简单,容易被破解,但为后续密码学的发展奠定了基础。
2. 近代密码阶段:随着20世纪初数学的发展,密码学逐渐进入近代密码阶段。
这一时期的密码技术开始利用数学工具进行加密,如频率分析、线性代数和概率论等。
近代密码阶段的代表性成果包括二战期间德国的恩尼格玛密码机和美国的斯诺登密码等。
3. 现代密码阶段:20世纪70年代以后,随着计算机科学和信息论的发展,密码学进入现代密码阶段。
现代密码阶段以公钥密码和哈希函数为代表,这些加密方法能够提供更加安全和可靠的通信和数据保护。
RSA、Diffie-Hellman、SHA-256等算法的出现标志着现代密码学的成熟。
4. 当代密码阶段:进入21世纪,随着互联网和移动通信的普及,密码学在信息社会中的作用越来越重要。
当代密码阶段注重的是隐私保护、安全通信、身份认证等方面的问题,密码学与其他学科的交叉发展也越来越明显。
同时,随
着量子计算技术的发展,量子密码学也成为一个研究热点。
5. 量子密码学:量子密码学是利用量子力学原理进行信息加密和安全通信的学科。
由于量子力学中的一些基本原理,如量子不可克隆定理和海森堡不确定性原理等,量子密码能够提供更加可靠和安全的加密方法,是未来密码学的一个重要发展方向。
6. 密码学与其他学科的交叉发展:随着应用需求的不断拓展,密码学与多个学科领域产生了交叉融合。
例如,生物信息学、量子物理学、人工智能等领域与密码学的结合,为解决复杂的安全问题提供了新的思路和方法。
7. 密码学应用领域的拓展:随着技术的发展和社会需求的增加,密码学的应用领域也在不断拓展。
除了传统的通信和网络安全领域外,密码学还广泛应用于金融、医疗、物联网、区块链等领域。
例如,区块链技术中的加密算法保证了交易的安全性和可信度。
8. 密码学理论基础的完善:随着数学和计算机科学的发展,密码学的理论基础也在不断完善。
例如,哈希函数理论、可证明安全性理论等为设计和分析新型加密算法提供了重要的支撑。
同时,对于现有加密算法的安全性分析也取得了重要进展,提高了人们对加密算法安全性的认识。
9. 密码算法的多样性和创新性:随着技术的发展和安全需求的多样化,密码算法呈现出多样性和创新性的特点。
新型加密算法不断涌现,如基于多线性映射的加密算法、基于不经意函数的加密算法等。
这些新型加密算法在保证安全性
的同时,也具有更好的性能和应用前景。
总之,从古典密码到当代密码,密码学经历了漫长的发展历程。
未来,随着技术的不断进步和应用需求的不断增加,密码学将继续发挥重要作用并取得新的突破。