量子密码学理论基础共17页

合集下载

量子密码学的原理和实践

量子密码学的原理和实践

量子密码学的原理和实践随着现代互联网的高速发展,保障网络安全已经成为了全球范围内的一项重要任务。

然而,传统的密码学技术已经难以满足对安全性的高要求。

因此,量子密码学作为一种全新的密码学技术,正逐渐被业界所关注。

本文将从理论和实践两个方面,介绍量子密码学的基本原理和应用。

1、量子密码学理论基础量子技术的最大特点是“纠缠”和“不可观测性”等概念。

在传统密码学技术中,加密过程是通过使用好的算法来保护密钥的安全性。

而在量子密码学中,却是通过物理规律来实现的。

量子密码学的主要基础就在于量子态中的保密性。

量子态的保密性是利用了物理实验发现的量子规律,不同于传统的加密算法。

首先,量子算法基于非常小的物理系统,即单个光子、电子、原子等。

由于单个基元的稳定性有限,所以信息交换过程中,即使在被攻击的情况下,量子态的安全性始终能够得到保证。

其次,量子保密技术具有自校验和完整性保护等特点。

量子纠错和量子认证等技术,不仅仅能够保证加密信息的安全性,还能有效地抵御内部和外部的攻击,使之更具有完整性。

2、量子密码学实践应用随着量子密码学原理的发展,量子加密技术在实践中也得到了应用。

目前,量子密钥分发(QKD)被认为是量子加密技术中最具有潜力的应用之一。

其基本实现原理是利用公共信道分发干扰信息,将密钥共享过程保持在互不干扰的情况下进行。

此外,量子隐形传态、量子签名以及量子认证技术,同样也在实践中得到了广泛的应用。

量子签名技术和量子认证技术的安全模型完美地解决了公证和信任问题,可在金融、医疗、电子商务等领域中得到充分应用。

3、量子密码学的发展与前景与传统的加密技术相比,量子密码学具有很多优势,例如信息的安全性更强,攻击成本更高等。

因此,量子密码学具有巨大的发展潜力和市场价值。

然而,量子密码学在实践上也存在着困难和挑战。

其中,光学仪器的制造难度、高成本、设备技术复杂性等问题,都成为了限制其发展的瓶颈。

总的来说,量子密码学是一项前沿领域的技术,对于确保网络交换信息的安全保障意义重大。

基础

基础

1、量子密码技术的原理:量子密码体系采用量子态作为信息载体,经由量子通道在合法的用户之间传送密钥。

量子密码的安全性由量子力学原理所保证。

所谓绝对安全性是指:即使在窃听者可能拥有极高的智商、可能采用最高明的窃听措施、可能使用最先进的测量手段,密钥的传送仍然是安全的。

通常,窃听者采用截获密钥的方法有两类:一种方法是通过对携带信息的量子态进行测量,从其测量的结果来提取密钥的信息。

但是,量子力学的基本原理告诉我们,对量子态的测量会引起波函数塌缩,本质上改变量子态的性质,发送者和接受者通过信息校验就会发现他们的通讯被窃听,因为这种窃听方式必然会留下具有明显量子测量特征的痕迹,合法用户之间便因此终止正在进行的通讯。

第二种方法则是避开直接的量子测量,采用具有复制功能的装置,先截获和复制传送信息的量子态。

然后,窃听者再将原来的量子态传送给要接受密钥的合法用户,留下复制的量子态可供窃听者测量分析,以窃取信息。

这样,窃听原则上不会留下任何痕迹。

但是,由量子相干性决定的量子不可克隆定理告诉人们,任何物理上允许的量子复制装置都不可能克隆出与输入态完全一样的量子态来。

这一重要的量子物理效应,确保了窃听者不会完整地复制出传送信息的量子态。

因而,第二种窃听方法也无法成功。

量子密码术原则上提供了不可破译、不可窃听和大容量的保密通讯体系。

在介绍量子密码学之前,先引进量子力学若干基础知识,其中之一是“测不准原理”。

测不准原理是量子力学的基础原理。

微观世界的粒子有许多共轭量,比如位置和速度,时间和能量就是一对共轭量,人们能对一对共轭量之一进行测量,但不能同时测得另一个与之共轭的量,比如对位置进行测量的同时,破坏了对速度进行测量的可能性。

量子密码学便是利用量子的不确定性,构造一安全的通信通道,使任何在信道上的窃听行为不可能对通信本身产生影响,使达到窃听失败的目的,以保证信道的安全。

根据量子力学,微观世界的粒子不可能确定它存在任何位置,它以不同的概率存在于若干不同的地方。

量子密码学

量子密码学
2 小五郎隨機使用 type A or B 的filter接 A A B B A B B B A 收
3 小五郎解出的資料
example cont’d
4 在另一個頻道中(public
channel) 目暮告訴小五
郎他的filter是否選擇正

5 小五郎得知何者為正
確的資料 (不需要透露
任何資料)
目暮的 data
Quantum channel Public channel
防阻斷攻擊 : 若有人惡意攔截光子 則會 因無法複製出一個一模一樣 的封包 接收端可以he middle)
Quantum channel Public channel
黑社會無法再對目暮和小五郎竊 聽 導致小五郎破案連連 許多 角頭老大都被抓走了 不得已只 好派出沃卡和琴酒出馬調查量子密 碼學的弱點
example cont’d
6 目暮和小五郎在public channel 中check某 些bit 確定是否有人監聽
7 若發現資料有損壞(可能有人竊聽)目暮 和小五郎就重傳資料 直到確定沒有人 竊聽為止 那這筆資料 就可以當做key 來編碼其他資料
量子密碼的威力
防竊聽 :因為發送光子所用的filter為 隨機 不能夠正確地找到對 應的filter 竊聽失敗
針對此問題 阿笠博士嘔心瀝血地研究
最後 發明了………..
密碼學之救星 -----量子密碼學
使用環境 : 光纖傳輸 設備 : 兩台filter (polarizer) 一把photon
gun (每位使用者) 兩個頻道 (quantum channel & public channel)
編碼方式 : 利用光子的極化方向代表0 or 1 透過 polarizer 送出光子

量子密码学理论基础

量子密码学理论基础
kp x
pxx kp
h p
相关公式:d·sinθ= பைடு நூலகம்·λ 其中d为为两狭缝之间 的间距,θ为衍射角度, n为光栅级数,λ为波
长。
pxx kh h
13
px x h
经严格证明此式应为:
px x 2 py y 2 pz z 2
h
2
称为约化普朗克常数或普朗克常数
这就是著名的海森伯测不准关系式
h
1 2
mv
m
2
A
测不准关系
微观粒子的空间位置要由概率波来描述,概率波只能给出粒子 在各处出现的概率。任意时刻不具有确定的位置和确定的动量。
x

电子束
a缝
2

X方向电子的位置不准确量为: x a
x
电子束
a
x a

2 px
X方向的分动量px的测不准量为:

p幕
py
px p sin x sin k
量子密码学的诞生
19世纪末20世纪初,物理学处于新旧交替的时期。生产的发 展和技术的提高,导致了物理实验上一系列重大发现,使当时 的经典物理理论大厦越发牢固,欣欣向荣,而唯一不协调的只 是物理学天空上小小的"两朵乌云"。但是正是这两朵乌云却揭 开了物理学革命的序幕:一朵乌云下降生了量子论,紧接着从 另一朵乌云下降生了相对论。量子论和相对论的诞生,使整个 物理学面貌为之一新。
量子理论在密码学重的应用
谢谢观看! 2020
(μm)
0123456
6
普朗克的量子假设
普朗克的新思想是与经典理论相违背的,它冲 破了经典物理传统观念对人们的长期束缚,这 就为人们建立新的概念,探索新的理论开拓了 一条新路.在这个假设的启发下,许多微观现 象得到了正确的解释,并在此基础上建立起一 个比较完整的,并成为近代物理学重要支柱之 一的量子理论体系。

信息安全中的量子密码学

信息安全中的量子密码学

信息安全中的量子密码学随着通信技术的迅速发展,信息安全问题越来越受到关注。

为了保护信息的安全性,传统的密码学已经不再足够安全。

在这种情况下,量子密码学作为一种绝对安全的信息加密技术,受到越来越多的关注。

本文将从量子密码学的基础理论、技术原理、应用及未来发展等方面进行探讨。

一、量子密码学基础理论在传统密码学中,信息的安全性主要依赖于密码算法的复杂度和密钥的保密性。

然而,量子计算机的发展已经使传统密码学面临着巨大的威胁。

相比之下,量子密码学是一种基于量子力学原理的新型密码学,它具有绝对安全性,无法被破解。

量子密码学的基础理论主要包括两部分:量子密钥分发协议和量子公钥密码学。

量子密钥分发是一种建立秘密密钥的方法,它利用量子通信中的观测效应来实现信息的传输。

量子公钥密码学则是一种使用公钥和私钥实现加解密过程的方法,它利用量子力学中的超级位置和纠缠效应来实现信息的加密和解密。

二、量子密码学技术原理量子密钥分发协议是量子密码学最重要的技术之一。

它基于量子叠加和量子纠缠的原理,实现了无条件安全的密钥交换。

在这个过程中,双方使用相同的密钥协议,在量子通信中传输量子纠缠态。

这种情况下,第三方窃听者无法窃取密钥,因为他们的干扰会破坏量子态,并导致通信中的错误。

量子公钥密码学的原理也是基于量子纠缠和超级位置的原理。

在量子通信中,只要信息的量子态被观测,就会被改变。

因此,量子公钥加密利用这种纵向不连续性来保证信息的安全性。

通常,发送方使用公钥加密信息,并将其发送给接收方。

接收方使用私钥解密信息并读取消息。

这样,即使第三方读取了加密信息,也不能破解信息,因为只有拥有私钥的人才能解密信息。

三、量子密码学的应用量子密码学有广泛的应用。

例如,在量子通信中,量子密钥分发协议可以确保信息的安全性。

在量子计算中,量子公钥密码学可以节省计算机算力和存储能力。

同时,量子密码学也适用于购物和银行交易等场景下的安全传输。

四、量子密码学的未来发展量子密码学的未来发展非常广阔。

量子密码

量子密码

对于量子比特 u a 0 b 1 和 c 0 d 1 定义一下运算:其中 a2 b2 1,c2 d 2 1 1)、内积 ( , u ) u a*c b*d 其中 a* 和 b* 分别是a,b的共轭复数,可见内积结果是数。 2)外积 量子态自身的外积是 u u ,是一个算符 且有 ( u u ) v u u v u v u 3)投影算符 以 u 和 v 两个投影算符: Pu 1 v v 和 Pv 1 u u
BB84协议的安全性分析: 在光子的四个偏振态中 { , } 是线偏振态, { , } 是圆偏振态,线偏振态和圆偏振态是共轭 态,满足测不准原理。根据测不准原理,对线偏 振光子的测量结果越精确意味着对圆偏振光子的 测量结果越不精确。因此,任何攻击者的测量必 定会带来对量子比特的扰动,而合法通信者可以 根据测不准原理检测出该扰动,从而检测出窃听 者的存在与否。此外,线偏振态和圆偏振态是非 正交的,因此它们是不可区分的,攻击者不可能 精确的测量所截获的每一个量子态。量子的测不 准原理和不可克隆定理保证了BB84协议的无条件 安全性。
量子密码学
——量子密钥分配
一、量子密码的起源
• 1969年哥伦比亚大学的学者S.Wiesner(威 斯纳)最先提出利用量子效应保护信息,开 创了量子密码的先河,遗憾的是没有引起量 子密码的蓬勃发展 • 十年之后,IBM的研究人员Bennett(贝内 特)和加拿大的G.Brassard(布拉萨德) 在第20次IEEE计算机基础会议上讨论了威 斯纳的思想,自此之后,量子密码学才缓慢 发展起来。90年代之后,量子密码受到高度 重视,取得了迅速进展
2、量子密码的安全性基础
量子密码的两个基本特征是:无条件 安全性和对窃听的可检测性 。所谓密码 系统的无条件安全性是指在攻击者具有无 限计算资源的条件下仍不可能破译此密码 系统。 所谓对窃听者或其他各种扰动的可检 测性是指两个用户之间通信受到干扰时, 通信者根据测不准原理可以同步检测出干 扰存在与否。 上述的两个特征的理论基础是: 1)、海森堡测不准原理 2)、量子不可复制定理

量子密码学

量子密码学

量子密码学密码学(cryptography)简单的说就是通过某种方式只能将信息传递给特定的接受者。

实现的手段基本上就是对要传递的信息实行加密 (encryption) 和解密 (decryption) 算法,从而使任何其它人没有办法获得原始信息。

密钥 (key) 指的是一串特定的参数,发送信息的一方用密钥和原始信息进行加密运算得到密文 (cryptogram),接收方用密钥和密文进行解密运算得到原始信息。

加密和解密的算法是公开的,密文的保密性依赖于密钥的保密性。

密钥的保密性依赖于密钥的随机性和有足够的长度。

密钥分两类,一类是对称密钥 (Symmetric key) ,发送和接收方用同样的密钥进行加密解密,比如DES (Data Encryption Standard) 算法;另一类是非对称密钥 (Asymmetric key) ,发送和接收方用不同的密钥进行加密解密,发送方用公用密钥 (Public key) 加密,接收方用私有密钥 (Private key) 解密。

两个密钥有一定的数学关系,但是很难从公用密钥获得私有密钥,比如RSA算法采用的分解大数法。

一旦双方获得相应的密钥,密文就可以在公共信道上传递而不必顾忌公共信道上可能存在的窃听者,因为窃听者没有密钥,无法成功解密。

但是为了通信双方成功建立密钥,必须要有一个可靠和高度机密的信道传递密钥。

然而从理论上说,任何经典的密钥传递 (key distribution) 都不能保证总能察觉密钥是否被窃听。

因为经典的信息是无法区分的 (跟量子相比) ,窃听者可以读取信息然后还原该信息,接收方无法知道中间是否发生过窃听。

非对称密钥的好处就在于避免了密钥的传递,由于双方的密钥有一定的数学关系,但又不是用现有的计算能力能够快速破解的,比如RSA的分解大数关系,所以达到保密的目的。

这种方法的缺陷在于如果有一种比现有快很多的计算方法出现,就很容易获得私有密钥。

量子密码

量子密码

量子密码术用我们当前的物理学知识来开发不能被破获的密码系统,即如果不了解发送者所使用的密钥,接受者几乎无法破解并得到内容。

基本概念编辑量子密码术与传统的密码系统不同,它依赖于物理学作为安全模式的关键方面而不是数学。

实质上,量子密码术是基于单个光子的应用和它们固有的量子属性开发的不可破解的密码系统,因为在不干扰系统的情况下无法测定该系统的量子状态。

理论上其他微粒也可以用,只是光子具有所有需要的品质,它们的行为相对较好理解,同时又是最有前途的高带宽通讯介质光纤电缆的信息载体。

工作原理编辑理论模式理论上,量子密码术工作在以下模式(这个观点是由Bennett和Brassard于1984年开发的传统模式,其他的模式也存在):假设两个人想安全地交换信息,命名为Alice和Bob。

Alice通过发送给Bob一个键来初始化信息,这个键可能就是加密数据信息的模式。

是一个随意的位序列,用某种类型模式发送,可以认为两个不同的初始值表示一个特定的二进制位(0或1)。

我们暂且认为这个键值是在一个方向上传输的光子流,每一个光子微粒表示一个单个的数据位(0或1)。

除了直线运行外,所有光子也以某种方式进行振动。

这些振动沿任意轴在360度的空间进行着,为简单起见(至少在量子密码术中可简化问题),我们把这些振动分为4组特定的状态,即上、下,左、右,左上、右下和右上、左下,振动角度就沿光子的两极。

过滤器,它允许处于某种振动状态的原子毫无改变的通过,令其他的原子改变震动状态后通过(它也能彻底阻塞光子通过,但我们在这里将忽略这一属性)。

Alice有一个偏光器允许处于这四种状态的光子通过,实际上,她可以选择沿直线(上、下,左、右)或对角线(左上、右下,右上、左下)进行过滤。

Alice在直线和对角线之间转换她的振动模式来过滤随意传输的单个光子。

这样时,就用两种振动模式中的一种表示一个单独的位,1或0。

当接受到光子时,Bob必须用直线或对角线的偏光镜来测量每一个光子位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档