自动控制原理 第7章 离散系统 题库习题
自动控制原理例题详解线性离散控制系统的分析与设计考习题及答案

精心整理----------2007--------------------一、(22分)求解下列问题: 1. (3分)简述采样定理。
解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。
(要点:h s ωω2>)。
2.(3分)简述什么是最少拍系统。
解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。
3.(34.(x()∞5.(5解:(G 6.(5试用Z 解:二、((i X s )z 图11.(5分)试求系统的闭环脉冲传递函数()()o i X z X z ; 2.(5分)试判断系统稳定的K 值范围。
解:1.101111111()(1)(1)11(1)1(1)()1e11e 1e G G z z Z s s z Z s s z z z z z z z e z -------⎡⎤=-⎢⎥+⎣⎦⎡⎤=--⎢⎥+⎣⎦=-----=---=-11010*******1e ()()e 1e ()1()1e (1e )(e )(1e )(1e )e e o i K X z KG G z z X z KG G z K z K z K K z K K ------------==-++--=-+--=-+- 2.(5三、(8已知(z)1Φ=1.(3分)简述离散系统与连续系统的主要区别。
解:连续系统中,所有信号均为时间的连续函数;离散系统含有时间离散信号。
2.(3分)简述线性定常离散系统的脉冲传递函数的定义。
解:在系统输入端具有采样开关,初始条件为零时,系统输出信号的Z 变换与输入信号的Z 变换之比。
3.(3分)简述判断线性定常离散系统稳定性的充要条件。
解:稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。
4.(5分)设开环离散系统如图所示,试求开环脉冲传递函数)(z G 。
解:22522510252510()[[25e e (e e )eT T T T Tz z z G z Z Z s s z z z z -----=⨯==++---++ 5.(5分)已知系统差分方程、初始状态如下:0)(2)1(3)2(=++++k c k c k c ,c(0)=0,c(1)=1。
《自动控制原理》典型考试试题

《 自动控制原理 》典型考试试题(时间120分钟)院/系 专业 姓名 学号第二章:主要是化简系统结构图求系统的传递函数,可以用化简,也可以用梅逊公式来求一、(共15分)已知系统的结构图如图所示。
请写出系统在输入r(t)和扰动n(t)同时作用下的输出C(s)的表达式。
G4H1G3G1G 2N(s)C(s)R(s)--+++二 、(共15分)已知系统的结构图如图所示。
试求传递函数)()(s R s C ,)()(s N s C 。
三、(共15分)已知系统的结构图如图所示。
试确定系统的闭环传递函数C(s)/R(s)。
G1G2R(s)-++C(s)-+四、(共15分)系统结构图如图所示,求X(s)的表达式G4(s)G6(s)G5(s)G1(s)G2(s)N(s)C(s)R(s)--G3(s)X(s)五、(共15分)已知系统的结构图如图所示。
试确定系统的闭环传递函数C(s)/R(s)和C(s)/D(s)。
G1G2R(s)-++C(s)-+D(s)G3G4六、(共15分)系统的结构图如图所示,试求该系统的闭环传递函数)()(s R s C 。
七、(15分)试用结构图等效化简求题图所示各系统的传递函数)()(s R s C一、(共15分)某控制系统的方框图如图所示,欲保证阻尼比ξ=0.7和响应单位斜坡函数的稳态误差为ss e =0.25,试确定系统参数K 、τ。
二、(共10分)设图(a )所示系统的单位阶跃响应如图(b )所示。
试确定系统参数,1K 2K 和a 。
三、(共15分)已知系统结构图如下所示。
求系统在输入r(t)=t 和扰动信号d(t)=1(t)作用下的稳态误差和稳态输出)(∞C2/(1+0.1s)R(s)-C(s)4/s(s+2)E(s) D(s)四、(共10分)已知单位负反馈系统的开环传递函数为:2()(2)(4)(625)KG s s s s s =++++试确定引起闭环系统等幅振荡时的K 值和相应的振荡频率ω五、(15分)设单位反馈系统的开环传递函数为12 )1()(23++++=s s s s K s G α若系统以2rad/s 频率持续振荡,试确定相应的K 和α值第三章:主要包括稳、准、快3个方面稳定性有2题,绝对稳定性判断,主要是用劳斯判据,特别是临界稳定中出现全零行问题。
胡寿松《自动控制原理》课后习题及详解(线性离散系统的分析与校正)【圣才出品】

第 7 章 线性离散系统的分析与校正 7-1 试根据定义 确定下列函数的 和闭合形式的 E(z): 解:(1)由题意可得
令
,可得:
(2)将
展成部分分式得:
其中,
则有
经采样拉氏变换得:
令
,可得:
。
7-2 试求下列函数的 z 变换:
将 z 1 代入到 D z ,得
1 由劳斯稳定判据可知使系统稳定的 K 值取值范围是 0 K 1.6631。
解:(1)对输入 对 作 z 变换得: 则有: 用幂级数法可得
图 7-3 开环离散系统 作 z 变换得:
所以
(2)由题可知: 且有
则 所以
。
10 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
7-14 试判断下列系统的稳定性: (1)已知闭环离散系统的特征方程为
解:(1)由题可知
图 7-4 离散系统
z 域特征方程为: 特征值为: 由于 z1 1,因此闭环系统不稳定。
将 z 1 代入到 D z ,得 特征方程为:
1 特征值为: 由于 2 0 ,故闭环系统不稳定。 (2)特征方程为
12 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
则有:
。
7-9 设开环离散系统如图 7-1 所示,试求开环脉冲传递函数 G(z)。
解:系统 a
图 7-1 开环采样系统
系统 b
6 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
7-10 试求图 7-2 闭环离散系统的脉冲传递函数 Φ(z)或输出 z 变换 C(z)。
(仅供参考)自动控制原理第七章习题答案

第七章 线性离散系统的分析与校正7-1 试根据定义∑∞=-*=0)()(n nTs e nT e s E确定下列函数的)(s E *和闭合形式的)(z E :⑴ t t e ωsin )(=;⑵ ))()((1)(c s b s a s s E +++=,b a ≠,c a ≠,c b ≠。
解:Ts e z =;⑴ )()sin()(0z E enT s E n nTs==∑∞=-*ω;1)cos(2)sin(21}{21)(20+-=⎥⎦⎤⎢⎣⎡---=-=-∞=--∑z T z z T e z z e z z j e e e j z E T j T j n nTsjwnT jwnT ωωωω。
⑵ ))()((1))()((1))()((1)(c s c b c a b s b c b a a s a c a b s E +--++--++--=; ∑∑∑∞=--∞=--∞=--*--+--+--=000))((1))((1))((1)(n nTs cnT n nTsbnT n nTs anT e e c b c a e e b c b a e e a c a b s E ; ))()(())()(())()(()(cTbT aT e z c b c a ze z b c b a z e z a c a b z z E ------+---+---=; 记))()((c b c a b a ---=∆,∆-=b a k 1,∆-=ca k 2,∆-=cb k 3;))()(()()()()(3)(2)(12321cTbT aT T c b T c a T b a aT bT cT e z e z e z ze k e k e k z e k e k e k z E ---+-+-+-------+-++-=。
7-2 采样周期为T ,试求下列函数的Z 变换:⑴ n a nT e =)(; ⑵ t e t t e 32)(-=;⑶ 3!31)(t t e =; ⑷ 21)(ss s E +=;⑸ )1(1)(2+-=-s s e s E sT 。
自动控制原理 第七章 第二讲 离散系统的稳定性分析

—
1 − e −Ts s
K s( s + 1)
C(s)
解:系统的开环传递函数为 Tz 1 (1 − e−T )z G(z) = (1 − z −1 )Z 2 = (1 − z −1 ) − 2 s (s + 1) (z − 1) (z − 1)(z − e−T ) 把T=0.1代入化简得 代入化简得
整理后可得 Routh表为 表为 0.158Kω2+1.264ω+(2.736-0.158K)=0 w2 0.158K 2.736-0.158K w1 1.264 w0 2.736-0.158K
要使系统稳定, 必须使劳斯表中第一列各项大于零, 要使系统稳定 必须使劳斯表中第一列各项大于零 即 0.158K>0 和 2.736-0.158K>0 > > 所以使系统稳定的K值范围是 < < 所以使系统稳定的 值范围是0<K<17.3。 值范围是 。 结论2: 一定 一定, 越大 系统的稳定性就越差 越大, 稳定性就越差。 结论 :T一定,K越大 系统的稳定性就越差。
(1) 单位阶跃输入时 r(t)=1(t) (2) 单位斜坡输入时 r(t)=t (3) 单位加速度输入时 r(t)=t2/2
z R( z ) = z −1
z →1
K p = lim[1 + G ( z )]
Tz R( z ) = ( z − 1) 2
K v = lim( z − 1)G ( z )
π T π ω =− 0 T
Im z平平
π j T
ω=
0
σ
π
-1
ω =0 1 Re
-jT
2 、离散系统稳定的充要条件: 离散系统稳定的充要条件 稳定的充要条件:
自动控制原理(第三版)第七章线性离散系统分析与设计

要点二
离散系统稳态误差的计算方法
离散系统稳态误差的计算方法包括解析法和仿真法,其中 解析法是通过求解差分方程得到稳态误差,仿真法则是通 过模拟系统的动态过程得到稳态误差。
05
线性离散系统的控制器设计
离散系统的状态反馈控制
01
状态反馈控制
通过测量系统的状态变量,并利 用这些信息来产生控制输入,以 实现系统的期望性能。
THANKS
感谢观看
01
离散系统响应的分类
离散系统的响应可以根据不同的标准进行分类,如根据时间响应可以分
为瞬态响应和稳态响应,根据系统参数可分为超调和调节时间等。
02
离散系统响应的数学模型
离散系统的数学模型通常采用差分方程或状态方程表示,通过求解这些
方程可以得到系统的响应。
03
离散系统响应的分析方法
离散系统响应的分析方法包括时域分析和频域分析,其中时域分析主要
基于系统的输出方程和性能指标,通过设计适当的观测器来估计状 态变量,并利用这些估计值来设计输出反馈控制器。
输出反馈控制的局限性
对于非线性系统和不确定性可能存在较大的误差,并且对于状态变 量的测量可能存在噪声和延迟。
离散系统的最优控制
最优控制
01
通过优化性能指标来选择控制策略,以实现系统性能的最优化。
自动控制原理(第三版)第七章 线性离散系统分析与设计
• 线性离散系统概述 • 线性离散系统的数学模型 • 线性离散系统的稳定性分析 • 线性离散系统的动态性能分析
• 线性离散系统的控制器设计 • 线性离散系统设计案例分析
01
线性离散系统概述
定义与特点
胡寿松《自动控制原理》(第6版)笔记和课后习题(含考研真题)详解2

6-2 设单位反馈 统 开环 函 为
试设计 联 前校正装置, 统满
(1) 角裕度r≥45°;
(2) 单位
入下 态 差
下 标:
(3)截止频率ωc≥7.5rad/s。
解: 开环
取
则开环 函 为:
令
,解得校正前
rad/s
则校正前 角裕度为:
不 合题 要求,
前校正。
取
rad/s,可得:
,可得:
则 前校正环节 校正后 统开环 其 角裕度为
统性能得:
3.某 反馈 统开环 函
合要求。
(1)求 统 角裕度 幅 裕度。
(2) 角裕度
联 前校正 联滞后校正 主要特点。为 统
,试分 统应
联 前校正还 联滞后校正?
[
技 2009 ]
解:(1)求截止频率与
裕度:
求幅 裕度:
(2)要 节 校正。
统 角裕度
,
前校正,则需要校正环
不合
前校正,可以
联滞后
为 习重点, 此,本 分也就没
考 题。
第二部分 课后习题
第6章 线性系统的校正方法
6-1 设 单位反馈 火炮
统,其开环 函 为
若要求 统最 2°,试求:
出速度为12°/s, 出位置
许 差小
(1) 满 上 幅 裕度;
标 最小K ,计 该K 下 统
角裕度
(2) 前
前校正网络
计 校正后 统 能影。
角裕度 幅 裕度,
解:(1) 题可
则 统 特征表 式为
统特征 为:
令
,则
则
可得:
所以 统 状态 应为
(2)求 统 出范 最小 刻t
《自动控制原理》第七章 离散控制系统

式中, ( z ) 称为离散信号e* (t ) 的z变换,记为 E( z) Z[e* (t )] E
7.3.2 z变换的方法
常用的求取离散函数的z变换方法有级数求和法、部分分式法和留数计算法。
1.级数求和法
根据z变换的定义,将连续信号 e(t ) 按周期 T 进行采样,级数展开可得
教学难点
离散时间函数的数学表达式及采样定理, 线性常系数差分方程与脉冲传递函数,采 样控制系统的时域分析,采样控制系统的 频域分析。
概述:
近年来,随着脉冲技术、数字式元器件、数字计算机,特别是微处理器
的迅速发展,数字控制器在许多场合取代了模拟控制器,比如微型数字 计算机在控制系统中得到了广泛的应用。离散系统理论的发展是非常迅 速的。 因此,深入研究离散系统理论,掌握分析与综合数字控制系统的基 础理论与基本方法,从控制工程特别是从计算机控制工程角度来看,是 迫切需要的。
图7-3 信号复现过程
7.1.2 数字控制系统
数字控制系统是一种以数字计算机为控制器去控制具有连续工作状态的 被控对象的闭环控制系统。 其原理方框图如图7-4所示。
图7-4 数字控制系统方框图
过程分析:A/D转换器将连续信号转换成数字序列,经数字控制器处理后生 成离散控制信号,再通过D/A转换器转换成连续控制信号作用于 被控对象。
第7章 离散控制系统
教学重点
了解线性离散系统的基本概念和基本定理,把握 线性连续系统与线性离散系统的区别与联系; 熟练掌握Z变换的方法、Z变换的性质和Z反变换; 了解差分方程的定义,掌握差分方程的解法; 了解脉冲传递函数的定义,熟练掌握开环与闭环 系统脉冲传递函数的计算方法; 与线性连续系统相对应,掌握线性离散系统的时 域和频域分析方法和原则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7-16离散时间系统如图7.53所示,采样周期 秒,试确定
(a)求系统的开环脉冲传递函数
(b)求系统稳定时 的取值范围。
(b)当 , 时,求系统的稳态误差 。
图7.53习题7-16图
7-17采样系统如图7.54所示,采样周期 秒。
图7.54习题7-17图
7-25被控对象环节如图7.62所示。
图7.62习题7-25图
(a)试求它的脉冲传递函数。
(b)给定采样周期 、 几组参数值,验证(a)中得到的脉冲传递函数的零点都是在单位圆内的。
(c)证明对于任意的 、 ,(b)中的结论总是对的。
7-26采样控制系统如图7.63所示,采样周期 秒。
(a)试设计数字调节器 使闭环脉冲传递函数 。
7-1已知下列时间函数 ,设采样周期为 秒,求它们的 变换 。
(a)
(b)
(c)
(d)
(e)
(f)
7-2已知 的拉氏变换为下列函数,设采样周期为 秒,求它们的 变换 。
(a)
(b)
(c)
(d)
(e)
(f)
7-3求下列函数的 反变换。
(a)
(b)
(c)
7-4已知时, , 为如下所示的有理分式
则有
以及
(b)对(a)中得到的设计,求脉冲传递函数 ,说明系统响应阶跃输入是有纹波的。
(c)重新设计 ,使系统响应阶跃输入是无纹波的。
图7.63习题7-26图
(a)求系统的开环脉冲传递函数和闭环脉冲传递函数 。
(b)确定闭环系统为稳定时 的取值范围。
(c)求系统的稳态误差。
7-20已知离散系统如图7.57所示,采样周期 秒。当 时,要使稳态误差小于 ,求 的值。
图7.57习题7-20图
7-21某离散时间系统如图7.58所示,图中采样周期 秒,控制算法 的差分方程描述为 。
的相对阶数。
图7.60习题7-23图
7-24采样控制系统如图7.61所示,采样周期 秒,试设计数字调节器 ,实现
(a)阶跃输入下的最小拍控制。
(b)斜坡输入下的最小拍控制。
(c)抛物线输入下的最小拍控制。
(d)最小拍设计只适用于被控对象的脉冲传递函数为最小相位的情况,用根轨迹的方法说明其原因。
图7.61习题7-24图
式中 时, 。
(a)试证明上面的结果。
(b)设
应用(a)的结论求 、 、 、 、 、 。
7-5试用部分分式法、幂级数法和反演积分法,求下列函数的 反变换:
(a)
(b)
(c)
(d)
7-6用 变换法求下面的差分方程
并与用迭代法得到的结果 、 、 、 、 相比较。
7-7求传递函数为
(a)
(b)
的部件的脉冲传递函数。
(a)求闭环脉冲传递函数。
(2)设 ,求使闭环特征根在 平面原点时 和 的取值。
(3)求此时系统阶跃响应和稳态误差。
7-18采样系统如图7.55所示,采样周期 秒( )。求 使闭环脉冲传递函数
图7.55习题7-18图
7-19离散时间控制系统如图7.56所示,其中采样周期 , 。
图7.56习题7-19图
(b)为使 成为系统闭环的一对共轭极点,给出应满足的条件。
(c)应用(b)中给出的条件求出 和 的具体取值。
7-23脉冲传递函数
分母多项式的阶次与分子多项式的阶次之差 称为它的相对阶次。一个离散环节如果它当前拍的输出只是当前拍和过去拍输入,以及过去拍输出的函数,这个环节就称为是因果的。显然,当脉冲传递函数的相对阶数 ,它代表的环节就是因果的。实际中被控对象的脉冲传递函数都是因果的。在图7.60所示的采样控制系统中,设串联调节器 和反馈调节器 都是因果的,试证明系统闭环脉冲传递函数的相对阶数总大于等于被控对象
7-8试应用终值定理确定下列函数的终值。
(a)
(b)
7-9图7.48中 为零阶保持器的传递函数,即
试证明
图7.48习题7-9图
7-10一阶保持器的输入输出波形如图7.49所示。在一阶保持器中,当 时,输出是前两个采样时刻采样值 和 外推得到的直线,即
图7.49习题7-10图
假设输入 是 时的单位脉冲函数,绘制一阶保持器的输出波形,求一阶保持器的传递函数。
图7.58习题7-21图
(a)求使系统为稳定的 的取值范围。
(b)求当 , 时系统的稳态误差。
(c)为使系统的阶跃响应是单调无振荡的, 的取值范围等于多少?
7-22采样控制系统如图7.59所示,采样周期 秒,数字调节器 为 调节器,即
图7.59习题7-22图
(a)试写出被控对象的脉冲传递函数和系统的开环脉冲传递函数。
7-11设开环离散系统如图7.50所示,试求开环脉冲传递函数 。
(a)
(b)
图7.50习题7-11图
7-12试求图7.51闭环离散系统的脉冲传递函数 或 。
(a)
(b)
(c)
图7.51习题7-12图
7-13设有单位反馈误差采样的离散系统,连续部分传递函数为
输入 ,采样周期 秒。试求:
(a)输出 变换 。
(b)采样瞬时的输出响应 。
(c)输出响应的终值 。
7-14试判断下列系统的稳定性。
(a)已知闭环离散系统的特征方程为
(b)已知闭环离散系统的特征方程为
(c)已知误差采样的单位反馈离散系统,采样周期 ,开环传递函数
7-15采样系统如图7.52所示,采样周期 秒。
图7.52习题7-15图
(a)绘制 时系统的闭环根轨迹图,求分离点坐标。