自动控制原理离散系统知识点总结
自动控制原理第7章线性离散控制系统

状态方程
状态方程是描述线性离散控制系统动态行为的数学模型,其形 式为 X(k+1) = A*X(k) + B*U(k),其中X(k)表示在时刻k的系统 状态向量,U(k)表示在时刻k的控制输入向量,A和B是系统矩 阵。
自动控制原理第7章 线性离散控制系统
目录
CONTENTS
• 引言 • 线性离散控制系统的数学模型 • 线性离散控制系统的稳定性分析 • 线性离散控制系统的性能分析 • 线性离散控制系统的设计方法 • 线性离散控制系统的应用案例
01
引言
线性离散控制系统的定义与特点
定义
线性离散控制系统是指系统的动态行为由差分方程或离散状态方程描述的一类控制系统。
适性。
常见的智能家居控制系统包括智 能照明、智能安防、智能环境监
测等。
案例三:工业自动化控制系统设计
工业自动化控制系统是线性离散 控制系统的另一个重要应用领域, 主要用于实现生产过程的自动化
和智能化。
工业自动化控制系统通常采用分 布式控制结构,通过各种传感器、 执行器和主控制器实现对生产设
备的监测和控制。
离散控制系统的稳定性判据
劳斯-赫尔维茨稳定性判据
通过计算离散控制系统的传递函数的极点和零点,判断系统的稳定性。如果所有极点都位于复平面的左半部分,则系 统稳定;否则系统不稳定。
奈奎斯特稳定性判据
通过分析离散控制系统的频率响应,判断系统的稳定性。如果频率响应的相位曲线在-π~π范围内,则系统稳定;否则系 统不稳定。
系统实现
将设计好的控制器应用于实际系统中,并进 行实验验证。
离散控制系统设计的常用方法
自动控制原理 ch 6-5 离散系统的稳定性和稳态误差

z 平面
010→-∞:ω不变,作周期性变化不变,z ∠01
2:0s ωω-=,2:s ωω+0-ω3-主频区辅频区
辅频区
()j sT e e ωσ=+模sT e e z ==e z sT =∠=∠相角
00
1-ω3-主频区辅频区
辅频区
a -001:s a ωω-=,:s ωω+-ω3-主频区辅频区
辅频区
()j sT e e ωσ=+模sT e e z ==e z sT =∠=∠相角→-∞:ω不变,作周期性变化不变,z ∠
0-ω3-主频区辅频区
辅频区
01
01
=0:0σω,0-ω3-=0:0σω,()j sT e e ωσ=+模sT e e z ==e z sT =∠=∠相角0:σω不变,0
→z z 不变,
010-ω3-二、离散系统稳定的充要条件
稳定性定义
控制系统原处于平衡状态。
扰动消失以后,偏差渐小,能恢复到原来平衡状态,则偏差渐大,不能恢复到原来平衡状态,则
可否用劳斯判据直接判断这些根是否都在程的根是否全在复平面的
z 平面
010
稳定域
平面上应用劳斯代数判据!
连续(G
离散
位置误差系数
0 型系统可以跟踪阶跃输入,但是稳态误差。
速度误差系数
v
型系统无法跟踪速度输入,稳态误差无穷大。
加速度误差系数
、I 型系统无法跟踪加速度输入,稳态误差无穷大。
自动控制原理第7章离散控制系统

Z变换
01
Z变换是分析离散时间信号和系统 的有力工具,它将离散时间信号 或系统转化为复平面上的函数或 传递函数。
02
Z变换的基本思想是通过将离散时 间信号或系统进行无限次加权和 ,将其转化为一个复数域上的函 数或传递函数。
离散状态方程
离散状态方程是描述离散控制系统动 态行为的数学模型,它的一般形式为 $mathbf{dot{x}}(k) = Amathbf{x}(k) + Bu(k)$,其中 $mathbf{x}(k)$表示在时刻$k$的系 统状态向量,$u(k)$表示在时刻$k$ 的输入向量,$A$和$B$是系统的系 数矩阵。
稳态误差主要来源于系统本身的结构 和参数,以及外部干扰和测量噪声。
离散控制系统的动态响应分析
动态响应定义
动态响应是指系统在输入信号作 用下,系统输出信号随时间变化 的特性。
动态响应的描述方
式
动态响应可以通过系统的传递函 数、频率特性、根轨迹图等方式 进行描述。
优化动态响应的方
法
通过调整系统参数、改变系统结 构、引入反馈控制等方法,可以 优化系统的动态响应。
离散控制系统的仿真工具与实例
仿真工具介绍
离散控制系统的仿真工具用于模拟和测试系统的性能和稳定性。常见的仿真工具包括MATLAB/Simulink、 LabVIEW等。这些工具提供了丰富的数学函数库和图形化界面,方便用户进行系统建模和仿真。
仿真实例分析
通过具体的仿真实例,可以深入了解离散控制系统的性能和特点。例如,可以设计一个温度控制系统,通过调整 系统参数和控制算法,观察系统在不同工况下的响应特性和稳定性。通过对比不同方案,可以评估各种参数和控 制策略对系统性能的影响,为实际应用提供参考和依据。
自动控制原理-第9章 离散系统初步

232第9章 线性离散系统初步从控制系统中信号的形式来划分控制系统的类型,可以把控制系统划分为连续控制系统和离散控制系统,在前面各章所研究的控制系统中,各个变量都是时间的连续函数,称为连续控制系统。
随着计算机被引入控制系统,使控制系统中有一部分信号不是时间的连续函数,而是一组离散的脉冲序列或数字序列,这样的系统称为离散控制系统。
离散控制系统是以微处理器及微型计算机为基础,融汇计算机技术、数据通信技术、CRT 屏幕显示技术和自动控制技术为一体的计算机控制系统,它对生产过程进行集中操作管理和分散控制。
离散系统与连续系统相比,有许多分析研究方面的相似性。
利用z 变换法研究离散系统,可以把连续系统中的许多概念和方法,推广应用于离散系统。
本章首先给出信号采样和保持的数学描述,然后介绍z 变换理论和脉冲传递函数,最后研究线性离散系统稳定性、稳态误差、动态性能的分析与综合方法。
9.1 离散系统通常,当离散控制系统中的离散信号是脉冲序列形式时,称为采样控制系统或脉冲控制系统;而当离散系统中的离散信号是数码序列形式时,称为数字控制系统或计算机控制系统。
在理想采样及忽略量化误差情况下,数字控制系统近似于采样控制系统,将它们统称为离散系统。
9.1.1 采样控制系统采样器在采样控制系统中可以有多个位置,用得最多的是误差采样控制的闭环采样系统,其典型结构图如图9-1所示。
图中,S 为采样开关,)(s G h 为保持器的传递函数,)(0s G 为被控对象的传递函数,)(s H 为测量元件的传递函数。
233*图9-1 采样系统典型结构图9.1.2 数字控制系统数字控制系统的典型原理图如图9-2所示。
它由工作于离散状态下的计算机(数字控制器))(s G c ,工作于连续状态下的被控对象)(0s G 和测量元件H(s)组成。
在每个采样周期中,计算机先对连续信号进行采样编码(即D A 转换),然后按控制律进行数码运算,最后将计算结果通过A D 转换器转换成连续信号控制被控对象。
自动控制原理(离散控制系统 )共43页文档

一、离散/采样系统
线性连续系统 1、线性系统
线性离散系统
采样 / 脉冲控制系统 (信号为脉冲序列)
数字系统 / 计算机控制系统 (信号为数字序列)
2、离散系统的特点(P311)
采样系统中一处或多处的信号是脉冲序列或数字序列。因此, 离散系统中必须具备的两个特殊环节。
采样器(采样开关):连续信号 采样
图(c) 采样信号频谱 s < 2 h
由此可见,要想使连续信号不失真地从采样信号中恢复过来, 则必须满足条件:
s 2h
5、采样定理(Shannon定理)
Shannon定理:如果采样器的输入信号e(t)的频谱具有有限带宽,
并且有T 直 到22ωh h的频率分即量,则s 只≥要2 采 样h 周期T满足:
0
因为0 : tesd t t1
所以 E*S: L enT tnT enT LtnT
n0
n0
en TenTS
n0
故
E*SenTenTS
n0
4、采样信号的频谱分析
设连续信号的傅氏变换为,则采样信号的傅氏变换为:
E*(j)T 1n E [j(nS)]
由于连续信号 e ( t )的频谱 E( j)是单一的连续频谱,其最大角频率
二、信号恢复(保持) 1、信号的输出形式 直接输出数字信号; 输出连续信号(需要保持器将数字信号恢复成连续信号)。
2、保持器的类型 (1)、零阶保持器
a、工作原理
b、输出表达式: e h n T e nT n 0 ,1 ,2 ,
c、传递函数:
Gh
S
1eTS S
d、频率特性
(2)、一阶保持器
a、工作原理 b、输出表达式:
自动控制原理--离散系统

① 给出E*(s)与E(s)之间的联系;
② 一般写不成封闭形式;
③ 用于e*(t)的频谱分析。
6.2 信号采样与保持 E*(s)
1 T
E(s
n
jns )
例3 e(t) 1(t),求 E*(s)
解 E*(s) 1
1
T n s jns
eTs eTs 1
例4 e(t ) eat,求 E*(s)
T (t) (t nT )
n0
e*(t) e(t) T (t) e(t) (t nT ) e(nT ) (t nT )
n0
n0
(2) L : E*(s) L e*(t)
L e(nT) (t nT) e(nT ) enTs
n0
n0
6.2 信号采样与保持6.来自 离散系统离散系统: 系统中有一处或几处信号是脉冲串或数码
离散系统类型:
采样系统 数字系统
— —
时间离散,数值连续 时间离散,数值量化
计算机控制系统的优缺点
(1)控制计算由程序实现,便于修改,容易实现复杂的控制律; (2)抗干扰性强; (3)一机多用,利用率高; (4)便于联网,实现生产过程的自动化和宏观管理。
D/A: 用 ZOH 实现
Shannon定理
s
2
T
2h
或
T<
h
6.2 信号采样与保持
E * (s) e(nT ) e-nTs n0
① 给出E*(s)与e(t)在采样点上取值之间的关系; ② 一般可写成封闭形式;
③ 用于求e*(t)的z变换或系统的时间响应。
E*(s)
1 T
E(s
n
jns )
(1)采样点间信息丢失,与相同条件下的连续系统相比,性能 会有所下降;
自动控制原理(第三版)第七章线性离散系统分析与设计

要点二
离散系统稳态误差的计算方法
离散系统稳态误差的计算方法包括解析法和仿真法,其中 解析法是通过求解差分方程得到稳态误差,仿真法则是通 过模拟系统的动态过程得到稳态误差。
05
线性离散系统的控制器设计
离散系统的状态反馈控制
01
状态反馈控制
通过测量系统的状态变量,并利 用这些信息来产生控制输入,以 实现系统的期望性能。
THANKS
感谢观看
01
离散系统响应的分类
离散系统的响应可以根据不同的标准进行分类,如根据时间响应可以分
为瞬态响应和稳态响应,根据系统参数可分为超调和调节时间等。
02
离散系统响应的数学模型
离散系统的数学模型通常采用差分方程或状态方程表示,通过求解这些
方程可以得到系统的响应。
03
离散系统响应的分析方法
离散系统响应的分析方法包括时域分析和频域分析,其中时域分析主要
基于系统的输出方程和性能指标,通过设计适当的观测器来估计状 态变量,并利用这些估计值来设计输出反馈控制器。
输出反馈控制的局限性
对于非线性系统和不确定性可能存在较大的误差,并且对于状态变 量的测量可能存在噪声和延迟。
离散系统的最优控制
最优控制
01
通过优化性能指标来选择控制策略,以实现系统性能的最优化。
自动控制原理(第三版)第七章 线性离散系统分析与设计
• 线性离散系统概述 • 线性离散系统的数学模型 • 线性离散系统的稳定性分析 • 线性离散系统的动态性能分析
• 线性离散系统的控制器设计 • 线性离散系统设计案例分析
01
线性离散系统概述
定义与特点
自动控制原理第7章 离散控制系统分析

y (t )
y * (t )
A/ D
y(kT ) - +
r (kT )
D( z )
u (kT )
u (t ) G ( s) D/ A p
模拟信号
模拟信号 采样信号 数字信号
数字信号
二、信号的数学表示(math form of signal )
1、理想采样开关的数学表示
(t ) 单位脉冲函数是一个幅值为1, 1
T (t ) (t nT )
其中
1
1, t nT (t nT ) (n 0,1,2,) 0 t nT
n 0
t 0 T 2T 3T 4T
2、采样信号的数学表示
连续信号用 f (t ) 表示,采样信号用 f * (t ) 表示。
f(t) K T
1. 系统动态指标(dynamic
一般取 T (1 15 ~ 1 4)t s
criterion)
time)为过渡时间(调节时间):被 控量进入偏离稳态值的误差为±5%(或±2%)的 范围并且不再越出这个范围所需的时间。
t s (settling
2、系统的动态特性(dynamic
character)
Tmax 采样定理给出了采样周期的上限值: T 2 2、实际过程中T的选择因素
f 2 f max
理论上,采样周期越小,离散信号复现连续信号的 精度越高,但在实际操作中,采样周期不应小于设 备输入/输出及计算机执行程序消耗的时间 Tmin, 即 Tmin T Tmax T太小:增加计算机的计算负担;同时,采样间 隔太短,偏差变化不大且调节过于频繁,使得执行 机构不能及时响应。 T太大:调节时间隔长,干扰输入得不到及时调 节,系统动态品质变坏,对某些系统,过大的采样 周期可能导致系统不稳定。 因此, 实际操作中,选择采样周期时,要综合 考虑系统的下列因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理离散系统知识点总结自动控制原理中的离散系统是指在时间域和数值范围上都是离散的系统。
在离散系统中,信号是以离散时间点的形式传递和处理的。
本文将对自动控制原理离散系统的知识点进行总结,包括离散系统的概念、离散信号与离散系统的数学表示、离散系统的稳定性分析与设计等。
一、离散系统的概念与特点
离散系统是指系统输入、输出和状态在时间上都是以离散的方式存在的系统。
与连续系统相比,离散系统具有以下特点:
1. 离散时间:离散系统的输入、输出和状态是在离散时间点上采样得到的,而不是连续的时间信号。
2. 离散数值:离散系统的输入、输出和状态都是以离散数值的形式存在的,而不是连续的模拟数值。
二、离散信号与离散系统的数学表示
离散信号是指在离散时间点上采样得到的信号。
离散系统可以通过离散信号的输入与输出之间的关系进行描述。
常见的离散系统数学表示方法有差分方程和离散时间传递函数。
1. 差分方程表示:差分方程是通过离散时间点上的输入信号和输出信号之间的关系来描述离散系统的。
差分方程可以是线性的或非线性的,可以是时不变的或时变的。
2. 离散时间传递函数表示:离散时间传递函数描述了离散系统输入
与输出之间的关系,类似于连续时间传递函数。
离散时间传递函数可
以通过Z变换得到。
三、离散系统的稳定性分析与设计
离散系统的稳定性是指系统的输出在有限时间内收敛到有限范围内,而不是无限增长或震荡。
离散系统的稳定性分析与设计是自动控制原
理中的重要内容。
1. 稳定性分析:离散系统的稳定性可以通过判断系统的极点位置来
进行分析。
若系统的所有极点都位于单位圆内,则系统是稳定的;若
存在至少一个极点位于单位圆外,则系统是不稳定的。
2. 稳定性设计:若离散系统不稳定,可以通过调整系统的参数或设
计控制器来实现稳定性。
常见的稳定性设计方法包括PID控制器调整、根轨迹设计等。
四、离散系统的性能指标与优化
离散系统的性能指标与优化是指通过调整控制器参数或控制策略,
使离散系统的性能得到优化。
常见的性能指标包括系统的稳态误差、
响应速度、稳态误差、阻尼比等。
1. 稳态误差:稳态误差是指系统在稳态时输出与期望值之间的差距。
通过调整控制器参数或控制策略,可以减小稳态误差。
2. 响应速度:响应速度是指系统从输入变化到输出稳定所需要的时间。
通过调整控制器参数或控制策略,可以提高系统的响应速度。
在离散系统的优化中,常常需要考虑上述指标之间的折衷与平衡,
根据实际需求来进行参数调整和控制策略设计。
总结:
本文对自动控制原理离散系统的知识点进行了总结,包括离散系统
的概念与特点、离散信号与离散系统的数学表示、离散系统的稳定性
分析与设计以及性能指标与优化等内容。
了解和掌握离散系统的知识
对于自动控制原理的学习和应用具有重要意义。
通过深入学习离散系
统的理论和方法,可以为实际工程问题的解决提供有效的方法和策略。