压电式加速度传感器
振动试验中加速度传感器的选择

振动试验中加速度传感器的选择导语:振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。
振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。
1.灵敏度压电式加速度传感器的灵敏度有两种表示方法,一个是电荷灵敏度Sq,另一个是电压灵敏度Sv,其电学特性等效电路如图1。
图1压电式加速度传感器的是电学特性等效电路压电片上承受的压力为F1=ma,在压电片的工作表面上产生的qa 与被测振动的加速度a成正比:即展开剩余85%Qa=Sqa其中,比例系数Sq就是压电式加速度传感器的电荷灵敏度,量纲是[pC/ms²]。
传感器的开路电压:Ua=Qa/Ca式中,Ca为传感器的内部电容量,对于一个特定的传感器来说,Ca为一个确定值。
所以也就是说,加速度传感器的开路电压Ua也与被测加速度a成正比,比例系数Sv就是压电式加速度传感器的电压灵敏度,量纲是[mV/ms²]。
Ua=(Sq/Ca)*a在压电式加速度传感器的使用说明书上所标出的电压灵敏度,一般是指在限定条件下的频率范围内的电压灵敏度Sv。
在通常条件下,当其它条件相同时,几何尺寸较大的加速度传感器有较大的灵敏度。
使用说明书上还会给出最小加速度测量值,也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可能值,以确保最佳信噪比。
压电式传感器测加速度的原理

压电式传感器测加速度的原理说起来压电式传感器测加速度的原理,这还真是个有意思的话题。
你别看它听起来挺高深,其实啊,咱要是细究起来,也是能品出几分趣味来的。
话说这压电式传感器啊,它可是个机灵的家伙,工作原理也不复杂,说白了就是利用了某些材料的压电效应。
啥是压电效应呢?就好比说你有个宝贝石头,你拿手一碰它,它就能“哎哟”一声叫出来,还给你变出点电来,虽然这比喻不太贴切,但意思就是这么个意思。
实际上呢,这压电效应说的是某些介质材料,你给它施加压力,它就能产生电荷,这就是压电效应。
咱们这压电式传感器里头啊,装了个压电晶体材料,还压了个质量块上去。
你想啊,这质量块可沉了,压在那晶体上,晶体就得受着。
然后呢,这传感器要是跟着啥振动的东西一起振,那质量块也跟着振,它的加速度和振动体的加速度是一样的。
这时候,质量块受到的压力就等于它的质量乘以加速度,这压力就传递到压电晶体上了。
晶体受到压力,就产生电荷,这电荷的多少,还就和那压力成正比呢。
所以啊,这电荷的多少就能表示加速度的大小了。
我这人啊,就喜欢琢磨这些个东西,有时候琢磨得深了,还真能琢磨出点门道来。
就比如说这压电式传感器吧,它不光是测加速度,还能测振动呢。
你想啊,机械设备振动的时候,它也有加速度啊,所以这压电式传感器就能派上用场了。
不光如此,这压电式传感器还有个小优点,就是它体积小、重量轻、抗力强,还不容易受电磁干扰、温度变化的影响。
你说这多好,简直就是个小能手啊。
我记得有一次,我和几个朋友聊起这压电式传感器来,他们也是一脸的好奇。
有个哥们儿还问我:“你说这压电式传感器测加速度,它准不准啊?”我一听这话,就笑了:“准不准?你试试就知道了。
人家可是利用压电效应,那可是物理原理,能不准吗?”说完这话,我自己也忍不住乐了。
所以啊,这压电式传感器测加速度的原理,说起来就是这么个事儿。
它也不神秘,也不复杂,就是利用了压电效应,把加速度转换成电荷,然后再通过电路转换成咱们能读懂的信号。
压电式加速度传感器

压电式加速度传感器(1) 压电式加速度计的结构和安装压电式加速度传感器又称压电加速度计。
它也属于惯性式传感器。
它是利用某些 物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也 随之变化。
当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加 速度成正比。
由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故 输岀能量甚微,这给后接电路带来一定困难。
为此,通常把传感器信号先输到 高输入阻抗的前置放大器。
经过阻抗变换以后,方可用于一般的放大、检测电路 将信号输给指示仪表或记录器。
目前,制造厂家已有把压电式加速度传感器与 前置放大器集成在一起的产品,不仅方便了使用,而且也大大降低了成本。
常用的压电式加速度计的结构形式如图13. 18所示。
S 是弹簧,M 是质块,B 是基座,P 是压电元件,R 是 夹持环。
图13. 18a 是中央安装压缩型,压电元件一质量块一弹簧系统装在圆形中心支柱上,支柱与基座连接。
这种结构有高的共振频率。
然而基座B 与测试对象连接时,如果基座 B 有变形则将直接影响拾振器输出。
此外,测试对象和环境温度变化将影响压电 元件,并使预紧力发生变化,易引起温度漂移。
图13.18c 为三角剪切形,压电 元件由夹持环将其夹牢在三角形中心柱上。
加速度计感受轴向振动时,压电元件 承受切应力。
这种结构对底座变形和温度变化有极好的隔离作用,有较髙的共 振频率和良好的线性。
图13. 18b 为环形剪切型,结构简单,能做成极小型、髙 共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。
由于 粘结剂会随温度增高而变软,因此最髙工作温度受到限制。
(a)中心安装压缩型(b)环形剪切型(c)三角剪切型 图13. 18压电式加速度计n j| li加速度计的使用上限频 率取决于幅频曲线中的 共振频率图(图13. 19)。
一般小阻尼(z<=0. 1)的 加速度计,上限频率若取 为共振频率的1/3,便可 1/5,则可保证幅值误差小于0. 5dB (即6%),相移小于3°。
压电式加速度传感器的信号输出形式

电荷输出型传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。
实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。
由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。
由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。
北智BW-Sensor采用进口陶瓷的加速度计可在温度-40oC~250oC范围内长期使用。
低阻抗电压输出型(IEPE)IEPE型压电加速度计即通常所称的ICP型压电加速度计。
压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。
IEPE型传感器通常为二线输出形式,即采用恒电流电压源供电;直流供电和信号使用同一根线。
通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。
IEPE型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE传感器能与数采系统直接相连而不需要任何其它二次仪表。
在振动测试中IEPE传感器已逐渐取代传统的电荷输出型压电加速度计。
传感器的灵敏度,量程和频率范围的选择压电型式的加速度计是振动测试的最主要传感器。
虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城/。
压电式加速度传感器

摘要现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。
所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,也就是被测量为变量的连续测量过程。
它以动态信号为特征,研究了测试系统的动态特性问题。
而动态测试中振动和冲击的精确测量又显得尤其重要。
振动与冲击测量的核心是传感器,对于冲击和振动信号的获取,最常见的是用压电加速度传感器。
世界各国作为量值传递标准的高频和中频振动基准的标准加速度传感器就是压电式加速度传感器。
由此可见,质量优良的压电加速度传感器在精度、长时间稳定性等方面都是有独到之处的。
压电加速度传感器可以看作是一个能产生电荷的高内阻发电元件。
但是此电荷量很小,不能用一般的测量电路来进行测量,因为一般的测量电路的输入阻抗总是较小的,压电片上的电荷通过测量电路时会被输入电阻迅速泄漏引入测量误差,影响测量效果。
如果压电加速度传感器没有与之配套的测量电路一起配合使用,那么压电加速度传感器的广泛应用就会受到非常大的限制。
因此,与之配套的测量电路的研究及其硬件实现就显得非常重要。
目前最常用的压电加速度传感器的测量电路就是电荷放大器,它能得到与输入电荷成比例的电压输出。
它的特点之一就是使传感器的灵敏度和电缆长度无关,电缆可长达几千米,而在被测对象附近只有一个小的传感器。
这对使用者来说非常方便。
但是现在的电荷放大器电路都比较复杂,机器价格都比较高,性价比不是很理想,这些因素都严重影响了压电加速度传感器的广泛使用,所以研制一种性价比较高的、实用的电荷放大器就非常的有必要。
本文针对上述情况,对传感器的测量电路做了深入的研究工作,分析了各种测量电路的特点,提出采用一种集成芯片来取代大量分离元件实现电荷转换电路的设想,通过实验验证本设计的可行性和可靠性,对存在的干扰信号做了细致的理论分析,并采取相关办法进行解决,最后和标准电荷放大器的性能进行对比。
实验结果表明本设计是可行的。
关键词:压电加速度传感器测量电路电荷放大器 TLO8AbstractModern industrial and automation of the production process, non-electric physical measurement and control technology will involve a large number of Dynamic test. The so-called dynamic testing means to determine the amount of the instantaneous value and its value varies with time is measured for the continuous measurement of the process variable. It is characterized by dynamic signal, the test system Dynamic characteristics. Dynamic test accurate measurement of vibration and shock is particularly important. Vibration and Chong Chance measured core is a sensor for shock and vibration signal acquisition, the most common is to use a piezoelectric accelerometer Sensors. The world as a value transfer standards high and medium frequency reference standard acceleration sensor Piezoelectric acceleration sensor. Thus, the excellent quality of the piezoelectric acceleration sensor accuracy, long Time stability is something unique to offer. The piezoelectric acceleration sensor can be regarded as a generating High internal resistance of the charge generating components. However, this very small amount of electric charge, and not use the measuring circuit to be measured, Usually the input impedance of the measuring circuit are always smaller, when the charge on the piezoelectric sheet by the measurement circuit Is input resistor leak rapidly introduce measurement errors affecting the measurement results. If the piezoelectric acceleration sensor is not The ancillary measurement circuit used in conjunction with a wide range of applications of piezoelectric accelerometer would be Very large limitations. Therefore, the the accompanying measurement circuit and its hardware implementation is very important.Currently, the most commonly used piezoelectric acceleration sensor measuring circuit is a charge amplifier can be obtained input power Charge proportional to the voltage output. One of its features is to makethe sensitivity of the sensor and cable regardless of the length of the electrical The cable can be up to several kilometers, while in the vicinity of the object to be measured, only a small sensor. This user is very Convenient. But now the charge amplifier circuit is more complex, higher than the price of the machine, the price is not very satisfactory, these factors have a serious impact on the widespread use of the piezoelectric acceleration sensor, and so develop a higher bid, practical charge amplifier is very necessary. For the above, the sensor The measuring circuit to do a thorough research work, the analysis of the characteristics of the various measurement circuit is proposed to adopt a set Into the chip to replace a large number of separate components to achieve the charge conversion circuit is envisaged that the present design can be verified by experiment Feasibility and reliability, a detailed theoretical analysis of the existence of the interference signal, and take approach solutionSummary, the final performance of the amplifier and the standard charge of contrast. The experimental results indicate that the present design is feasible.Key words:Piezoelectric acceleration sensor measuring circuit charge amplifier TLO8图表清单图1-1 测试系统的组成------------------------- 图1-2 压电加速度传感器动态测量系统----------- 图2-1 电桥电路-------------------------------- 图2-2 四个桥臂同时工作的直流电桥------------- 图2-3 两个相邻臂工作的电桥---------------图2-4 两个相对臂工作的电桥------------------ 图2-5 变压器式电桥电路图2-6 紧祸合电感臂电桥图2-7 紧祸合电感臂四端网络和T型网路图2-8 紧祸合电感臂等效电路图2-9 电容式传感器的等效电路图2-10 双T二极管交流电桥图2-11 双T二极管电桥等效电路图2-12 运算放大器式电路图2-13 调频一鉴频电路原理图图3-1 晶体的压电效应图3-2 压电加速度传感器原理图图3-3 作用于压电元件两边的力图3-4 压电加速度传感器的等效电路图3-5 压电加速度传感器测试系统等效电路图3-6 压电加速度传感器简化电路图3-7 简化后的压电加速度传感器电压等效电路图3-8 电荷放大器示意图图4-1 传感器与电荷放大器连接的等效电路图图4-2 电荷放大器电压源实际等效测量电路图4-3 电荷放大器等效电路图图4-4 输入电缆影响的等效电路图4-5 电荷放大器框图图4-6 电荷转换部分电路图4-7 干扰源等效电路图图4-8 适调放大电路原理图4-9 电荷转换电路及适调放大电路图4-10 有源滤波电路原理图图4-11 无源滤波器原理图图4-12 有源滤波器电流回路图图4-13 高通滤波和同相放大电路原理图图4-14 过载指示电路原理图图4-15 过载电路输出特性图4-16 稳压电源电路图4-17 本电荷放大器的主要电路图4-18 ICL7135和ICM7212的接口电路图图5-1 实验装置框图图5-2 实验波形和标准电荷放大器输出波形图5-3 有工频干扰下的信号频谱图5-4 标准电荷放大器TS5865的信号频谱图5-5 屏蔽工频干扰后的信号频谱图5-6 未加低通滤波时本设计的信号频谱图5-7 标准电荷放大器低通上限截止频率为lOK Hz时的信号频谱图5-8 加了1K Hz有源低通滤波器后本设计的信号频谱图5-9 标准电荷放大器低通上限截止频率为1KHz时的信号频谱图5-10 都有1KHz低通滤波的两路信号波形图5-11 标准电荷放大器的直流分量分析图5-12 本设计未加高通滤波器时信号图5-13 本设计加高通滤波器后的信号表1 在不同加速度下本设计和TS5865的电压值比较表2 在不同频率下本设计和标准电荷放大器的灵敏度比值1 前言1. 1 压电加速度传感器在动态测试中的意义随着现代科学技术的迅猛发展,非电物理量的测量与控制技术,已越来越广泛地应用于航天、航空、常规武器、船舶、交通运输、冶金、机械制造、化工、轻工、生物医学工程、自动检测与计量等技术领域,而且也正在逐步引入人们的日常生活中。
压电型加速度传感器的频率特性

压电加速度传感器的频率特性1、固有共振频率压电型加速度传感器基本上由质量块m、弹性常数k的压电体、空气阻抗等的阻尼器D 以及基座构成的。
图1压电型加速度传感器的弹性质量系现在我们假设没有阻尼器D和外力的情况,如图1(a)此时的共振频率为:m b:基座的质量上式中f n 是弹性质量系(质量块m)的共振频率,用以下公式表示。
图1(b)中,当基座固定在质量无限大的物体上时,mb远大于m,f0约等于fn。
我们将fn 称为不衰减固有共振频率。
接下来我们假设有衰减的情况,实际上自由振动不可能一直进行,一定会受到某些衰减并随时间变弱。
衰减状态由衰减比h的大小决定,分为3种状态。
另外衰减比h 是衰减系数 D比上临界衰减系数Dc,即D/Dc 得出。
图2 衰减自由振动h<1 时,后续振幅比如下式所示。
由此我们可以得知,包络线会随时间以指数函数减少。
此时将fd 作为共振频率的话,可用以下公式表示。
fd 就称作衰减固有共振频率。
h≥1 时,则fd=0。
变为失去振动性的无周期运动。
从振动测量精度上来看,自由衰减振动需要尽可能快得使其衰减,但衰减比h并不是越大越好。
这一点可从图上记公式中得知。
衰减比h 的大小也受到谐振锐度即Qm 值的影响。
h 越小Qm 就越大,形成尖锐的共振。
其关系由下记公式来表示。
在设计压电型加速度传感器时,会尽可能使h 值小,Qm 值大,形成尖锐共振后,扩大平坦的频率范围。
2、 电荷增幅中的低频截止频率上述已经提到,电荷放大器中传感器产生的电荷全部储存在反馈电容 Cf 中。
因此低频特性与输入电路中的时间常数(电缆电容 Cc 、传感器电容 Cd 等)没有关系, 而是由反馈电路的时间常数 Cf ・Rf 决定。
即低频截止频率 fc 为:由于一般情况下Rf 会选定10MΩ 以上的高阻抗值,比 Cf 的电感器大很多,因此实际上 fc 的值主要由 Cf 的值来决定。
Cf 值越大 fc 就越小,适合低频的振动测量。
传感器 简答题

1.简述压电式加速度传感器和压电式力传感器在基本结构上的不同点。
答:压电式加速度传感器有一惯性质量块,并通过弹簧压在压电元件上,感受了被测振动的质量块产生的惯性力,使得压电元件受力变形。
压电式力传感器,被测力通过传力元件实现测量,不需要惯性质量块。
2.涡流式位移传感器的涡流大小与哪些参数有关?答:(1)线圈激励电源的频率与幅值。
(2)线圈的几何参数,如匝数、半径等。
(3)金属导体的电阻率、磁导率、厚度等。
(4)线圈与金属导体的距离。
3.图示为电感式压力传感器原理图,图中p为被测压力试说明其工作原理。
答:(1)压力p作用时,膜片变形产生位移,且位移与压力成正比。
(2)膜片与铁芯的距离变化,导致线圈的电感发生变化,电感变化量与输入压力成正比。
4.简述金属热电阻的测温机理。
答:金属导体通过自由电子导电,而导电的实质是电子的定向运动过程。
当温度升高时,金属导体中的自由电子获得了更多的能量,因此使自由电子进行定向运动所需要的电能将增大,导电率减弱,电阻率增大。
反之当温度降低时,导电率增强,电阻率减小。
5.人工视觉系统图像输出装置大致分为哪两类?(1)一类是软拷贝。
(2)另一类是硬拷贝。
6.试回答与干扰有关的下列问题(1)什么是噪声?(2)形成干扰的条件是什么?答:(1)噪声定义为:在一有用频带内任何不希望的干扰或任何不希望的信号。
(2)形成干扰的三个条件为:干扰源、干扰的耦合通道、干扰的接收通道。
7.用框图表示传感器的组成原理,并简要说明各部分的作用。
答:框图如下所示:敏感元件感受被测物理量,且以确定关系输出另一个物理量;转换元件是将敏感元件输出的非电量转换为电路参数及电流或电压信号;基本转换电路将电信号转换为便于传输、处理的电量。
8.在光栅式位移传感器中,光路系统选择的依据是什么?有哪几种光路系统?答:光路系统应根据传感器中所采用的光栅的形式来选择。
光路系统有透射式光路和反射式光路。
9.说明人工视觉系统中图像处理部分的作用。
EN060压电式加速度传感器使用说明书

力变形时,其极化面会产生与应力相应的电荷。 则有: Q= d F
其中 Q 为电荷量,d 为压电晶体的压电常数,F 为作用力 我们一般在晶体上加一惯性质量,则根据牛顿第二定律
F=ma 其中 m 为质量,a 为加速度 将此公式带入上式,在晶体的两端即可得到与加速度成正比的电荷 量,这就实现了加速度的测量。 为提高环境性能,国际上大都使用先进的剪切敏感原理,该产品也 使用了剪切原理。 压电敏感件在承受外力时就产生电荷,当压电元件电极表面聚集电荷 时,它又相当于一个以压电材料为电介质的电容器 C1——敏感件电容 C2——放大器反馈电容 R——放大器反馈电阻 A——运放的开环增益 为防止传感器在实际现场测量时地回路干扰,我们在其内部对敏感 件及电路进行了隔离悬浮处理,这样,传感器的外壳仅是一个屏蔽外壳 直接接地回路,从结构设计上保证减少地回路影响。 由于二线制负恒电流电压源供电,其输出是一带负直流偏置的交流 动态信号,其直流偏置电压为-10 ~ -12VDC,这样在不感受振动加速度 时传感器亦应有-10 ~ -12VDC 的直流电压(零点输出),以此为参考点,其 交流输出幅度为±5Vp,频响低端实测可至 0.3Hz,对应灵敏度 500mv/g。
2、 电缆 (一头 5/8-24 两芯屏蔽线 L=3 米,密封整体线、线质、
长度另外特定,可定制铠装接线)。
3、 安装钢螺栓 1/4-28×10 1 只
4、 产品出厂检验合格证
1份
5、 使用说明书
1份
9
10
检查 安装 紧固 接线 模拟、敲击、观察 使用 9、该加速度传感器为计测产品,年灵敏度变化<1%,在需精确测量时, 应一年检定一次,可选择计量部门或生产厂用比较法进行检定。 10、用户不得自行随意拆卸、更换产品的电气元件。 11,接线示意图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电式加速度传感器
(1)压电式加速度计的结构和安装
压电式加速度传感器又称压电加速度计。
它也属于惯性式传感器。
它是利用某些 物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也 随之变化。
当被测振动频率远低于加速度计的固有频率时, 则力的变化与被测加 速度成正比。
由于压电式传感器的输出电信号是微弱的电荷, 而且传感器本身有很大内阻,故 输出能量甚微,这给后接电路带来一定困难。
为此,通常把传感器信号先输到
高输入阻抗的前置放大器。
经过阻抗变换以后,方可用于一般的放大、检测电路 将信号输给指示 仪表或记录器。
目前,制造厂家已有把压电式加速度传感器与 前置放大器集成在一起的产品,不仅方便了使用,而且也大大降低了成本。
常用的压电式加速度计的结 构形式如图13.18所示。
S 是弹簧,M 是质块,B 是基座,
P 是压电元件,R 是夹持环。
图13.18a 是中央安 装压缩 型,压电元件一质量块一弹 簧系统装在圆形中心支柱振频率。
然而基座 B 与测试对 象连接时,如果基座B 有变形则将 直接影响拾振器输出。
此外,测试对象和环境温度变化将影响压电元件,
并使预
紧力发生变化,易引起温度漂移。
图13.18c 为三角剪切形,压电元件由夹持环 将其夹牢在三角形中心柱上。
加速度计感受轴向振动时,压电元件承受切应力。
这种结构对底座变形和温度变化有极好的隔离作用,
有较高的共振频率和良好的
线性。
图13.18b 为环形剪切型,结构简单,能做成极小型、高共振频率的加速 度计,环形质量块粘到装在中心支柱上的环形压电元件上。
由于粘结剂会随温度 增高而变 软,因此最高工作温度受到限制。
图13.18压电式加速度计
(a)中心安装压缩型(b)环形剪切型(c)三角剪切型
保证幅值误差低于1dB (即卩12% ;若取为共振频率的1/5,则可保证幅值误差 小于
0.5dB (即6%,相移小于3°。
但共振频率与加速度计的固定状况有关,加 速度计出
厂时给出的幅频曲线是在刚性连接的固定情况下得到的。
实际使用的固
定方法往往难于达到刚性连接,因而共振频率和使用上限频率都会有所下降。
加
速度计与试件的各种固定方法见图13.20。
其中图13.20a 采用钢螺栓 固定,是使共振频率能达到 出厂共振频率的最好方法。
螺栓不得全部拧入基座螺 孔,以免引起基座变形, 影响加速度计的输出。
在安 装面上涂一层硅脂可增加 不平整安装表面的连接可 靠性。
需要绝缘时可用绝缘螺栓和云母垫片来
固定加速度计(图13.20b ),但
垫圈应尽量簿。
用一层簿蜡把加速度计粘在试件平整表面上(图
13.20c ),也
可用于低温(40C 以下)的场合。
手持探针测振方法(图 13.20d )在多点测试 时使用特别方便,但测量误差较大,重复性差,使用上限频率一般不高于1000Hz 。
用专用永久磁铁固定加速度计(图13.20e ),使用方便,多在低频测量中使用。
此法也可使加速度计与试件绝缘。
用硬性粘接螺栓(图
13.20f )或粘接剂(图
加速度计,上限频率若取
图13.19压电式加速度计的幅频特性曲线
为共振频率的1/3,便可
加速度计的使用上限频 率取决于幅频曲线中的 般小阻尼(z<=0.1)的 0.0
10 100 1000 1000 10000
共振频率图(图
13.20图13.20加速度计的固定方法
13.20g )的固定方法也长使用。
某种典型的加速度计采用上述各种固定方法的共振频率分别约为:钢螺栓固定法31kHz,云母垫片28kHz,涂簿蜡层29kHz,手持法2kHz,永久磁铁固定法7kHz。
(2)压电式加速度计的灵敏度压电加速度计属发电型传感器,可把它看成电压源或电荷源,故灵敏度有电压灵敏度和电荷灵敏度两种表示方法。
前者是加速度计输出电压(mV与所承受加速度之比;后者是加速度计输出电荷与所承受加速度之比。
加速度单位为m/s2,但在振动测量中往往用标准重力加速度g作单位,1g= 9.80665m/s2。
这是一种已为大家所接受的表示方式,几乎所有测振仪
器都用g 作为加速度单位并在仪器的板面上和说明书中标出。
对给定的压电材料而言,灵敏度随质量块的增大或压电元件的增多而增大。
一般来说,加速度计尺寸越大,其固有频率越低。
因此选用加速度计时应当权衡灵敏度和结构尺寸、附加质量的影响和频率响应特性之间的利弊。
压电晶体加速度计的横向灵敏度表示它对横向(垂直于加速度计轴线)振动的敏感程度,横向灵敏度常以主灵敏度(即加速度计的电压灵敏度或电荷灵敏度)的百分比表示。
一般在壳体上用小红点标出最小横向灵敏度方向,一个优良的加速度计的横向灵敏度应小于主灵敏度的3%。
因此,压电式加速度计在测试时具有明显的方向性。
(3)压电加速度计的前置放大器压电元件受力后产生的电荷量极其微弱,这电
荷使压电元件边界和接在边界上的导体充电到电压U=q/Ca (这里Ca是加速度
计的内电容)。
要测定这样微弱的电荷(或电压)的关键是防止导线、测量电路和加速度计本身的电荷泄漏。
换句话讲,压电加速度计所用的前置放大器应具有极高的输入阻抗,把泄漏减少到测量准确度所要求的限度以内。
压电式传感器的前置放大器有:电压放大器和电荷放大器。
所用电压放大器就是高输入阻抗的比例放大器。
其电路比较简单,但输出受连接电缆对地电容的影响,适用于一般振动测量。
电荷放大器以电容作负反馈,使用中基本不受电缆电容的影响。
在电荷放大器中,通常用高质量的元、器件,输入阻抗高,但价格
也比较贵。
从压电式传感器的力学模型看,它具有“低通”特性,原可测量极低频的振动。
但实际上由于低频尤其小振幅振动时,加速度值小,传感器的灵敏度有限,因此输出的信号将很微弱,信噪比很低;另外电荷的泄漏,积分电路的漂移(用于测振动速度和位移)、器件的噪声都是不可避免的,所以实际低频端也出现“截止频率”,约为0.1〜1Hz左右。
随着电子技术的发展,目前大部分压电式加速度计在壳体内都集成放大器,由它
来完成阻抗变换的功能。
这类内装集成放大器的加速度计可使用长电缆而无衰
减,并可直接与大多数通用的仪表、计算机等连接。
一般采用2线制,即用2
根电缆给传感器供给2〜10mA勺恒流电源,而输出信号也由这2根电缆输出,大大方便了现
场的接线。
表13.1为某厂家生产的压电式加速度计的参数表。
(4)压电式速度传感器
由于上述磁电式速度传感器存在响应频率范围小,机械运动部件容易损坏,传感器质量大造成附加质量大等缺点,近年发展了压电式速度传感器,即在压电式加速度传感器的基础上,增加了积分电路,实现了速度输出。
同样,这种传感器也全部实现了内置,具有替换磁电式速度传感器的趋向。
㈡GPS。