110kV变电站二次回路讲义
110kV变电站备自投原理及其二次回路探讨

110kV变电站备自投原理及其二次回路探讨摘要:我国电力行业的快速发展推动我国整体经济建设发展迅速,为我国人们的生产生活奠定了非常坚实的基础。
随着经济的快速发展和用电负荷的不断增长,人们对电网的供电能力、供电可靠性有了更高的要求。
因此,备自投装置应在电网构架已确定的基础上,不断提高自身的供电可靠性。
当前中国的110kV变电站常配备备自投装置,备自投装置是否正确动作直接影响着电网的正常运行。
关键词:110kV变电站;备自投原理;其二次回路引言科学技术的快速发展使我国快速进入现代化发展阶段的同时,我国电力行业迎来新的发展机遇。
电力系统很多重要场合对供电可靠性要求很高,采用备用电源自动投入装置是提高供电可靠性的重要措施。
在电力系统中,备用电源自动投入装置简称备自投装置(AAT)。
1变电站备自投的原则变电站在日常运行当中,需要承受很多方面的压力,例如设备上的压力、运行上的压力、电力供需上的压力等等,当无法承受压力的时候,就会发生一系列的事故,此时,备自投就会自动运行,维护正常工作,给维护人员提供更多的抢修时间,尽量不耽误广大居民的正常用电。
经过大量的总结分析,文章认为,变电站备自投原则可以分为以下几个方面:第一,备自投装置属于应急装置,在投入工作时,必须是变电站失去工作电源、备用电源正常状态下投入。
倘若备用电源不满足相关电压条件,备自投装置不应该有任何动作,需要立即放电。
从以往的工作来看,这一条原则并没有被打破。
第二,工作电源的母线失压时,工作人员应该及时对电源进行相应的检查,主要是进行无电流的检查工作。
在符合标准的情况下,启用备自投。
此项原则主要是为了防止电压互感器,在二次电压断线的时候,造成不必要的失压情况,防止引起备自投误动。
第三,备自投装置在理论上,只允许动作一次。
倘若变电站的工作电源发生失压的情况,备自投装置在及时的动作以后,如果继电保护装置再一次发生动作,同时将备用电源断开,证明可能存在永久故障。
二次讲义

第一章变电站的二次回路第一节断路器的控制回路断路器控制回路的基本任务是:运行人员通过回路的控制开关发出操作命令,要求断路器分闸或合闸,然后经过中间环节将命令传送给断路器的操动机构,使断路器分闸或合闸,断路器完成操作后,由信号装置显示已完成操作。
为了实现对断路器的控制,必须有发出命令的控制开关、执行命令的操动机构、传送命令的中间机构(如继电器、接触器等)。
由这几部分连接构成的电路即为断路器的控制回路。
一、控制开关目前,变电所用的较多的是有两个固定位置的控制开关-LW2系列封闭式万能转换开关,其中主要有LW2-YZ型及LW2-2型两种,这两种的区别仅在于LW2-YZ型的手柄上带有指示灯。
控制开关有六个位置,按操作顺序先后分为:“跳闸后”、“预备合闸”、“合闸”、“合闸后”、“预备跳闸”和“跳闸”。
其中“跳闸后”和“合闸后”为两个固定位置。
“预备合闸”和“预备分闸”为两个预备位置,虽然手柄也处在垂直或水平位置上,但在操作过程中有一个是过渡位置,手柄并不长久停在该位置上。
“合闸”和“跳闸”为两个自动复归位置。
二、具有弹簧式操动机构的断路器控制回路图12-2是具有弹簧式操动机构的断路器控制回路。
35~220kV少油断路器采用的是具有弹簧操动机构的控制回路。
该控制回路是利用储能电动机M使弹簧压缩储能,合闸时弹簧释放,使断路器合闸。
弹簧未储能时,操动机构辅助动断(常闭)触点S14和S15是接通的,储能电动机M使弹簧压缩储能,储能后S14和S15断开,辅助动合触点Sll闭合,为断路器合闸做好准备。
手动合闸时,控制开关SA的触点5-8闭合,合闸线圈Yl带电,断路器合闸。
断路器合闸时,仅是合闸线圈吸引衔铁,解除已储能弹簧的锁扣,需用的功率不大,所以可用控制开关直接控制合闸线圈,不需经过接触器。
弹簧未储能时,Sll是断开的,断路器不能合闸f手动分闸时,SA的触点6-7闭合,使分闸回路带电,断路器分闸。
图12-2具有弹簧式操动机构的断路器控制回路三、具有液压式操动机构的断路器控制回路具有液压式操动机构的断路器控制回路是利用液压储能使断路器分、合闸,并靠液压使断路器保持在合闸位置的。
《110kV变电站典型二次回路图解》1-9(正式版)概要

110kV变电站典型二次回路图解作者:蒋剑2008-12-01前言一目前,在针对电力系统职工和电力专业学生的培训教材中,关于二次接线的内容仍然主要以电磁式继电器回路为讲解示例。
在微机保护已经普遍应用的今天,这种模式在很大程度上已经脱离了电力生产的实际情况,造成了理论与实践的脱节,尤其不利于基层技术人员的培养。
形成这种局面的原因是多方面的。
首先,在教学中,继电器回路它具有接线简明、原理清晰、易于理解的优点,便于学生理解,而微机保护装置由于采用了微型计算机作为核心,许多功能都由芯片运算完成,在保护原理的算法和实现上进行了很大的改进,对高等数学及计算机等专业知识水平要求较高,不利于讲解和普及。
其次,电磁式继电器保护装置的定型化程度很高,各项技术条件在电力系统内得到了高度的认同。
微机保护则是由不同厂商根据继电保护的基本原理独立开发的,各套产品之间在配置原则、保护算法等方面存在较大差异,尽管经过一定时间的运行实践,我们总结出了一定的经验,但是仍然很难确定地将某一种产品作为范例进行推广,这也导致了在教学中对微机保护二次接线提及较少。
在微机型继电保护和自动装置的二次接线方面,由于实际工作情况的不同,各供电公司的相关部门目前采用最多的仍然是“师傅—徒弟”言传身教和班组学习的模式。
这种各自为战的模式不利于技术的交流与推广,也不利于电力系统人才的培养。
鉴于此,针对110kV变电站主要继电保护和自动装置的二次回路接线,笔者结合本单位的生产实践编制了本文。
本文以国内各大微机保护厂商设备为例,结合图纸讲解二次回路的工作方式,较少涉及继电保护原理,主要面对电力系统中刚参加工作的大中专学生编写,力求浅显易懂又不失专业性,使他们能尽快完成理论与实践的结合,投入工作中去。
前言二我一直有一个想法,那就是二次接线必须与继电保护作为两个专业分开。
虽然两者有着千丝万缕的联系,但是我认为——至少在教学上——应该予以更大程度的独立化,就如同我制作此文的目的:进行二次接线的学习,或者说尽快的学会看二次图纸,不涉及较深的继电保护原理。
变电站相关二次回路讲解

一、基本回路知识
1、电流互感器
电流互感器(CT)是电力系统中很重要的电力元 件,作用是将一次高压侧的大电流通过交变磁通 转变为二次电流供给保护、测量、录波、计度等 使用,本局所用电流互感器二次额定电流均为5A, 也就是铭牌上标注为100/5,200/5等,表示一 次侧如果有100A或者200A电流,转换到二次侧 电流就是5A。 电流互感器在二次侧必须有一点接地,目的是防 止两侧绕组的绝缘击穿后一次高电压引入二次回 路造成设备与人身伤害。同时,电流互感器也只 能有一点接地,如果有两点接地,电网之间可能 存在的潜电流会引起保护等设备的不正确动作。 如图1.1,由于潜电流IX的存在,所以流入保护 装置的电流IY≠I,当取消多点接地后IX=0,则 IY=I。
(4)传统回路中,为了防止在三相断线时断线闭 锁装置因为无电源拒绝动作,必须在其中一相上 并联一个电容器C,在三相断线时候电容器放电, 供给断线装置一个不对称的电源。 (5)因母线PT是接在同一母线上所有元件公用 的,为了减少电缆联系,设计了电压小母线 1YMa,1YMb,1YMc,YMN(前面数值“1”代表I 母PT。)PT的中性点接地JD选在主控制室小母 线引入处。 (6)在220KV变电站,PT二次电压回路并不是 直接由刀闸辅助接点G来切换,而是由G去启动一 个中间继电器,通过这个中间继电器的常开接点 来同时切换三相电压,该中间继电器起重动作用, 装设在主控制室的辅助继电器屏上。
(1)当开关运行时,DL1断开,DL2闭合。HD,HWJ, TBJI线圈,TQ构成回路,HD亮,HWJ动作,但是由于 各个线圈有较大阻值,使得TQ上分的电压不至于让其动 作,保护调闸出口时,TJ,TYJ,TBJI线圈,TQ直接勾 通,TQ上分到较大电压而动作,同时TBJI接点动作自保 持TBJI线圈一直将断路器断开才返回(即DL2断开)。 (2)合闸回路原理与跳闸回路回路相同。 (3)在合闸线圈上并联了TBJV线圈回路,这个回路是为 了防止在跳闸过程中又有合闸命令而损坏机构。例如合闸 后合闸接点HJ或者KK的5,8粘连,开关在跳闸过程中 TBJI闭合,HJ,TBJV线圈,TBJI勾通,TBJV动作时 TBJV线圈自保持,相当于将合圈短接了(同时TBJV闭接 点断开,合闸线圈被隔离)。这个回路叫防跳跃回路,防 止开关跳跃的意思,简称防跳。
110kV智能变电站二次回路设计要点分析

57智能电网誓NO.152020智能城市INTELLIGENT CITY 110kV智能变电站二次回路设计要点分析邱慧(国网扬州供电公司,江苏扬州225000)摘要:智能变电站的二次回路系统主要涵盖智能组件、防护装置、监控系统等,构建物理连接、逻辑衔接与保护回路,可以实时化监测并掌控一次系统的运行情况,保障电力供应的安全稳定性。
在实施二次回路设计与安装施工的阶段之中,要细致化分析系统设计标准,严格依照有关标准规范,将设备选型与线路连接工作做好,并调试系统,保障二次回路的计量、控制与保护等功能得以发挥出来。
鉴于此,文章主要分析110kV智能变电站二次回路设计要点。
关键词:110kV智能变电站;二次回路;设计要进一步规范智能变电站二次回路设计方式,首先就要分析智能变电站二次回路特征,将二次回路设计之中值得注意的问题予以明确,保障设计的科学合理性。
并在此基础之上,以规范二次回路设计方式,来严控物理回路与虚回路运行,从根本上将变电站二次回路功能优势发挥出来,保障监测与防护的有效性,最终确保电力运行的安全稳定性。
1智能变电站二次回路特点智能变电站如二次回路涵盖电缆与光纤回路,在这之中电缆回路和常规化变电站二次回路大致相同,光纤回路则主要是用来支撑智能变电站之中各类智能二次设备之间的数据交流与通信,当然这也是二次设备的关键信息交互路径。
在智能变电站二次回路设计与施工过程中,通信网络运用的是IEC61850系列标准,建立在GOOSE通信传输机制与SMV采样传输机制的基础上,来进行二次设备之间的联动。
在智能变电站二次回路建设阶段中,一次设备的测试与保护电缆已经慢慢地被光纤所替代,可以缓解电缆敷设与安装工作。
和常规电路相比,运用光缆可以很好地解决长时间影响二次回路保护装置的CT开路与PT短路方面的问题,另外也不必考虑多点接地与电磁干扰因素的影响,从根本上来提升系统运行的安全稳定性。
然而在具体设计与施工的时候,因为运用智能通信网络取代传统二次回路,设备之间也不会出现显著的物理断开点,所以在设备检修的时候,也难以进行物理隔离。
110kV变电站典型二次回路图解

图5-2
图5-3
1
2
3
4
图5-4-1
图5-4-2
对任何一个微机操作箱,我们都可以用“4个点”、“6个点”、“8个点”、“9个点”这四种方法来分析,以完成接线,并搞清楚回路走向。
4个点:1(正电源,空开下端)、2(负电源,空开下端)、7(操作箱合闸回路出口端)、7(操作箱跳闸回路出口端); 6个点:在4个点的基础上,增加3(手动合闸输入端)、33(手动跳闸输入端); 8个点:在6个点的基础上,增加6(红灯)、36(绿灯); 9个点:在8个点的基础上,增加R133(外部保护跳闸输入端)。
这一点留待后文再详细讲解。
我们可以随便找一套110kV 线路保护或者变压器保护的二次图纸,看一下操作回路相关的原理图和端子排图,找一找从微机保护屏外引的是不是这8个点,这8个点中是否1、3、33、6、36与微机测控屏相联系,1、2、7、37与断路器机构箱相联系。
补记:这其实也是看二次图纸的一个好方法,首先确定这个回路涉及到哪几个设备,原理图中这些设备之间的联系必然通过控制电缆完成,那么端子排的接线也就明了了。
7.2.4.2隔离开关电动机构控制回路
图7-7中下半部分就是CSI-200E 中针对隔离开关电动机构的控
制接点。
就控制回路整体而言,隔离开关与断路器的最大区别就是:隔离开关的控制回路没有操作箱。
5
7-
图
I1I3I2I4I5I4I3
图8-2
I2I1
图8-10
①图
8-12
②
图9-1
①②③④
图9-2-2。
怎样看110kV变电站典型二次回路图11-12完成版概要

第 11章外桥与内桥二次接线的比较桥形接线是在变电站只有两条线路和两台主变时经常采用的主接线形式,分为内桥和外桥两种,都是由三台断路器(进线断路器 DL1和 DL2、桥断路器 DL3组成的。
外桥和内桥两种接线形式具体如图 11-1所示。
内桥接线时,桥断路器 DL3在DL1、 DL2和两台主变之间;外桥接线时,桥断路器 DL3在 DL1、 DL2和两条110kV 线路之间。
我们在城区最常见到 110kV 桥形接线变电站多为内桥, 这种变电站一般作为110kV 电压等级的终端变电站使用,以 10kV 电压等级向城区用户输出电能。
两条110kV 线路互为备用,无 110kV 穿越功率, 不配置 110kV 线路保护, 按照进线备自投方式配置高压侧备自投。
外桥变电站多作为 110kV 电压等级环网中的联络变电站使用, 在外桥断路器处配置双向线路保护,站内不配置高压侧备自投。
11.1 两种桥型接线的特点关于内桥和外桥的优缺点以及适用原则 , 事实上各种说法并没有统一,我们仅根据图 11-2做一些表面现象的分析。
图 11-2-①:内桥,无 110kV 穿越功率。
控制 DL3即可控制 #2主变的投退 , 对 #1主变没有影响 ; #2主变保护跳闸不会影响 #1主变运行。
停运 #1主变会造成 #2主变失压; #1主变保护跳闸会造成 #2主变失压。
图 11-2-②:内桥,有 110kV 穿越功率。
内桥接线时并不是绝对不能考虑功率送出,在这种运行状态下 , 控制 DL2即可控制是否通过 #2线路对外输出电能,不影响 #2主变的运行 , 适用于 110kV 线路需要经常操作的情况 ; #2线路故障导致的 DL2跳闸不会影响 #2主变的运行。
停运 #1或 #2主变时都会造成无法通过 #2线路输出电能, 即联络线中断; #1或 #2主变保护跳闸都会造成联络线中断。
图 11-2-③:外桥,无 110kV 穿越功率。
两台主变运行而外桥断路器不投入的情况 , 其实就是两套线路变压器组接线,两台主变相互之间没有任何影响。
110kV变电站典型二次回路图解

图5-2
图5-3
1
2
3
4
图5-4-1
图5-4-2
对任何一个微机操作箱,我们都可以用“4个点”、“6个点”、“8个点”、“9个点”这四种方法来分析,以完成接线,并搞清楚回路走向。
4个点:1(正电源,空开下端)、2(负电源,空开下端)、7(操作箱合闸回路出口端)、7(操作箱跳闸回路出口端); 6个点:在4个点的基础上,增加3(手动合闸输入端)、33(手动跳闸输入端); 8个点:在6个点的基础上,增加6(红灯)、36(绿灯); 9个点:在8个点的基础上,增加R133(外部保护跳闸输入端)。
这一点留待后文再详细讲解。
我们可以随便找一套110kV 线路保护或者变压器保护的二次图纸,看一下操作回路相关的原理图和端子排图,找一找从微机保护屏外引的是不是这8个点,这8个点中是否1、3、33、6、36与微机测控屏相联系,1、2、7、37与断路器机构箱相联系。
补记:这其实也是看二次图纸的一个好方法,首先确定这个回路涉及到哪几个设备,原理图中这些设备之间的联系必然通过控制电缆完成,那么端子排的接线也就明了了。
7.2.4.2隔离开关电动机构控制回路
图7-7中下半部分就是CSI-200E 中针对隔离开关电动机构的控
制接点。
就控制回路整体而言,隔离开关与断路器的最大区别就是:隔离开关的控制回路没有操作箱。
5
7-
图
I1I3I2I4I5I4I3
图8-2
I2I1
图8-10
①图
8-12
②
图9-1
①②③④
图9-2-2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
110kV变电站二次回路讲义年月日目录前言 (1)第一章微机保护的工作方式 (1)1.继电保护技术的发展 (1)2.微机保护的工作方式 (1)2.1开入 (1)2.2开出 (1)3.微机保护、测控与操作箱 (2)第二章电流互感器和电压互感器 (3)1.电流互感器1.1 5A还是1A? (3)1.2 10P10、0.5还是0.2S? (3)1.3 星形还是三角形? (3)1.4 A、C还是A、B、C? (3)1.5 接地还是不接地? (4)2.电压互感器 (4)2.1 V-V、星形还是开口三角? (4)2.2 开关场还是主控室? (5)2.3 重动还是并列? (6)第三章断路器的控制--综述 (8)2.110kV六氟化硫(SF6)断路器 (8)2.1操作机构 (8)2.2合闸回路 (10)2.3跳闸回路 (12)2.4辅助回路 (12)3.LFP-941A的操作箱 (12)3.1合闸回路 (14)3.2跳闸回路 (15)3.3“防跳”回路 (15)3.4断路器操作闭锁回路 (16)4.35kV真空/六氟化硫断路器 (17)4.1ZW30-40.5真空断路器 (17)第四章110kV线路保护二次接线--综述 (22)1.综述 (22)1.1RCS-941A (22)1.2CSI-200E (22)2.RCS-941A (22)2.2电源回路 (22)2.3电流回路 (23)2.4电压回路 (23)2.6出口回路 (24)2.7操作回路 (26)3.CSI-200E (26)3.2主要技术指标 (26)3.3电流电压回路 (26)3.4控制回路 (27)第五章110kV主变保护二次接线--综述 (29)2.RCS-9671 (29)2.2电流回路 (30)2.3出口回路 (31)3.RCS-9681&RCS-9682 (32)3.2电流回路 (32)3.3出口回路 (33)3.3出口回路 (34)4.RCS-9661 (35)4.2非电量保护起动回路 (35)第六章备自投装置二次接线 (37)1.综述 (37)2.CSB-21A (37)2.2输入与输出 (37)2.3动作分析 (39)第七章110kV外桥的保护配置 (41)1.综述 (41)2.系统接线 (42)3.保护配置 (43)4.110kV外桥线路保护 (43)第八章10kV开关柜专题--10kV出线柜 (49)1、综述 (49)2、10kV电缆出线中置柜的二次接线 (49)2.1继电器室 (50)2.2断路器室 (50)2.3 RCS-9611A (53)2.4 KZN1-12-04开关柜 (55)3、XGN开关柜的二次接线 (60)第九章电气联锁回路 (61)1、联锁的概念 (61)2、10kV分段断路器与主变10kV进线断路器的联锁 (61)3、GIS电动机构的联锁 (62)4、闭锁的概念 (64)第十章220kV线路保护二次回路--综述 (66)1.分相操作: (66)2.两个跳闸回路: (66)3.操作回路分析 (67)第十一章插补3--备自投装置二次接线 (70)1、概述 (70)2、PT重动 (70)3、电压并列 (71)4、内桥接线的备自投 (72)4.1进线备自投 (72)4.2桥备自投 (72)5、电压接线出现的问题 (73)第十二章插补4---TWJ接线对“控制信号回路断线”的影响 (76)前言目前,在针对电力系统电力专业的培训教材中,关于二次接线的内容仍然主要以电磁式继电器回路为讲解示例。
在微机保护已经普遍应用的今天,这种模式在很大程度上已经脱离了电力生产的实际情况,造成了理论与实践的脱节,尤其不利于基层技术人员的培养。
形成这种局面的原因是多方面的。
首先,在教学中,继电器回路它具有接线简明、原理清晰、易于理解的优点,便于学生理解,而微机保护装置由于采用了微型计算机作为核心,许多功能都由芯片运算完成,在保护原理的算法和实现上进行了很大的改进,对高等数学及计算机等专业知识水平要求较高,不利于讲解和普及。
其次,电磁式继电器保护装置的定型化程度很高,各项技术条件在电力系统内得到了高度的认同。
微机保护则是由不同厂商根据继电保护的基本原理独立开发的,各套产品之间在配置原则、保护算法等方面存在较大差异,尽管经过一定时间的运行实践,我们总结出了一定的经验,但是仍然很难确定地将某一种产品作为范例进行推广,这也导致了在教学中对微机保护二次接线提及较少。
在微机型继电保护和自动装置的二次接线方面,各供电公司的相关部门目前采用最多的仍然是“师傅—徒弟”言传身教和班组学习的模式。
这种各自为战的模式不利于技术的交流与推广,也不利于电力系统人才的培养。
鉴于此,我们针对110kV变电站主要继电保护和自动装置的二次回路接线,以国内各大微机保护厂商设备为例,结合图纸讲解二次回路的工作方式,较少涉及继电保护原理,主要面对电力系统中刚参加工作的大中专学生编写,力求浅显易懂又不失专业性,使他们能尽快完成理论与实践的结合,投入工作中去。
第一章微机保护的工作方式1.继电保护技术的发展继电保护技术是电力系统安全、稳定运行的重要保障,它伴随着电力技术的发展也在不断改进。
纵观继电保护技术的发展,主要经历了四个阶段:电磁继电器保护、晶体管保护、集成电路保护和微机保护。
我国从70年代末开始微机型继电保护装置(以下简称微机保护)的研发,高等院校和科研院所起着先导的作用。
1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。
此后,不同原理、不同种类的微机保护相继研制生产,取得了引人注目的成果,到90年代,我国继电保护技术已完全进入微机保护时代。
2.微机保护的工作方式不同的电力设备配置的微机保护是不同的,但各种微机保护的工作方式是类似的。
微机保护将电流量、电压量及相关状态量采集进来,按照不同的算法实现对电力设备的继电保护。
在微机保护时代,供电公司的一般技术人员已经很少参与保护装置的研发工作,所以,对于微机保护在继电保护原理方面的工作方式,我们不需要进行太深入的学习。
2.1开入微机保护对电力设备信息的采集一般称为“开入”,开入量分为两种:模拟量和数字量。
开入是微机保护进行工作的基础。
微机保护内部元件的工作电压很低(一般为几伏、十几伏),属于弱电系统,而需要开入的信号使用的电源则属于强电系统(220V或110V),为避免强电系统对弱电系统造成电磁干扰,影响微机保护的正常工作,在开入系统中采取了一些隔离措施。
2.1.1模拟量的开入微机保护需要采集电流和电压两种模拟量进行运算,以判断其保护对象是否发生故障。
变电站配电装置中的大电流和高电压必须分别经电流互感器和电压互感器变换成小电流、低电压,才能供微机型保护装置使用。
2.1.2数字量的开入微机保护对数字量的采集主要包括隔离开关位置、断路器机构信号等,我们通常称为开关量。
开关量由各种辅助接点通过“开/闭”转换提供,只有两种状态,也称为硬接点开入,以区别于通过网络通信接口传输的信号。
开关量的信号源一般在距离主控室较远的地方,为了减少电信号在传输过程中的损失,通常采用强电系统进行传输。
同时,为了避免强电系统对弱点系统形成干扰,在进入微机运算单元前,需要使用光耦单元对强电信号进行隔离、转变。
2.2开出开出指的是微机保护根据自身采集的信息,加以运算后对被保护设备目前状况作出的判断,主要包括操作指令、信号输出等反馈行为。
2.2.1操作指令主要包括:对断路器、电动刀闸以及其它自动设备的“开/合”、“开/停”操作。
如“线路故障”时跳开线路断路器、主变温度高启动风机等。
2.2.2信号输出主要包括:设备状态信号、保护动作信号等,这些信号将通过网络传输给变电站值班人员或进入远动系统向上一级控制中心传送。
信号是对微机保护系统工作状态的一种直观描述,是我们对变电站设备状态作出判断的重要依据。
3.微机保护、测控与操作箱对一个设备间隔的保护测控需要三个独立部分来完成:微机保护、微机测控、操作箱。
微机保护采集设备电流与电压,进行继电保护功能的运算,根据运算结果作出判断是否采取某种措施(跳闸、合闸、闭锁某些功能等),同时报出相应信号;微机测控的主要功能是对模拟量与开关量进行采集、监测,参与对断路器的控制,完成对电动隔离开关的控制;操作箱用于执行微机保护发出的针对断路器的操作指令。
对110kV电压等级的设备,这三个部分以前一般是三个独立的装置,现在许多厂家开始将微机保护与操作箱合为一体。
以110kV线路保护为例,各公司设备配置如下表所示。
110kV线路间隔(主保护为距离保护)公司微机测控微机保护操作箱原许继四方CSI200E CSL163B ZSZ-11S许继FCK-801 WXH-811南瑞继保RCS-9607 RCS-941A对110kV以下电压等级的设备,这三个部分一般会整合成一个装置。
例如,对10kV线路间隔,许继公司的配置是WXH-821,南瑞公司的配置是RCS-9611,它们都是包括保护、测控和操作一体化的装置。
第二章电流互感器和电压互感器1.电流互感器1.1 5A还是1A?电流互感器的作用是将一次设备的大电流转换成二次设备使用的小电流,其工作原理相当于一个阻抗很小的变压器。
其一次绕组与一次主电路串联,二次绕组接负荷。
电流互感器的变比一般为X:5A(X不小于该设备可能出现的最大长期负荷电流),如此即可保证电流互感器二次侧电流不大于5A。
在超高压电厂和变电站中,如果高压配电装置远离控制室,为了增加电流互感器的二次允许负荷,减小连接电缆的导线界面及提高精确等级,多选用二次额定电流为1A的电流互感器。
相应的,微机保护装置也应选用交流电流输入为1A的产品。
根据目前新建110kV变电站的规模及布局,绝大多数都是选用二次侧电流为5A的电流互感器。
1.2 10P10、0.5还是0.2S?在变电站中,电流互感器用于三种回路:微机保护、测量和计量,而这三种回路对电流互感器的准确级要求是不同的。
根据准确级的不同可将电流互感器的绕组划分为10P10(保护)、0.5(测量)和0.2S(计量)。
用于测量和计量的绕组着重于精度,用于保护的绕组着重于容量,以避免铁芯饱和影响实际变比。
1.3 星形还是三角形?电流互感器二次绕组的接线常用的有三种,完全星形接线、不完全星形接线和三角形接线,如图2-1所示。
图2-1完全星形接线:可以反映单相接地故障、相间短路及三相短路故障。
目前,110kV线路、变压器、10kV电容器等设备配置的电流互感器均采用此接线方式。
不完全星形接线:反映相间短路及A、C相接地故障。
目前,35kV及10kV架空线路在不考虑“小电流接地选线”功能(以后简称“选线”)的情况下多采用此接线方式,以节省一组电流互感器;否则,必须配置三组电流互感器,以获得零序电流实现“选线”功能。