西南大学《理论力学》复习思考题及答案
理论力学思考题习题答案

第一章 质点力学矿山升降机作加速度运动时,其变加速度可用下式表示:⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所走过的路程。
已知升降机的初速度为零。
解 :由题可知,变加速度表示为⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 由加速度的微分形式我们可知dtdv a =代入得 dt T t c dv ⎪⎭⎫ ⎝⎛-=2sin 1π 对等式两边同时积分dt T t c dv t v⎰⎰⎪⎭⎫⎝⎛-=002sin 1π 可得 :D T t c T ct v ++=2cos 2ππ(D 为常数)代入初始条件:0=t 时,0=v , 故c T D π2-=即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=12cos 2T t T t c v ππ 又因为dtds v =所以 =ds dt T t T t c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+12cos 2ππ 对等式两边同时积分,可得:⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=t T t T T t c s 2sin 22212πππ 直线FM 在一给定的椭圆平面内以匀角速ω绕其焦点F 转动。
求此直线与椭圆的焦点M 的速度。
已知以焦点为坐标原点的椭圆的极坐标方程为()θcos 112e e a r +-=式中a 为椭圆的半长轴,e 为偏心率,常数。
解:以焦点F 为坐标原点题1.8.1图则M 点坐标 ⎩⎨⎧==θθsin cos r y r x 对y x ,两式分别求导⎪⎩⎪⎨⎧+=-=θθθθθθcos sin sin cos r r yr r x 故()()22222cos sin sin cos θθθθθθ r r r r y xv ++-=+=222ωr r+= 如图所示的椭圆的极坐标表示法为()θcos 112e e a r +-=对r 求导可得(利用ωθ= ) 又因为()()221cos 111ea e e a r -+-=θ即 ()rer e a --=21cos θ所以()()2222222221211cos 1sin e r e ar r ea --+--=-=θθ故有 ()2222224222sin 1ωθωr e a r e v +-=()2224221e a r e -=ω()()]1211[2222222e r e ar r e a --+--22ωr +()()⎥⎦⎤⎢⎣⎡--+-⋅-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω即 ()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)质点作平面运动,其速率保持为常数。
理论力学思考题习题答案

第一章 质点力学矿山升降机作加速度运动时,其变加速度可用下式表示:⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 式中c 及T 为常数,试求运动开始t 秒后升降机的速度及其所走过的路程。
已知升降机的初速度为零。
解 :由题可知,变加速度表示为⎪⎭⎫ ⎝⎛-=T t c a 2sin1π 由加速度的微分形式我们可知dtdv a =代入得 dt T t c dv ⎪⎭⎫ ⎝⎛-=2sin 1π 对等式两边同时积分dt T t c dv t v⎰⎰⎪⎭⎫⎝⎛-=002sin 1π 可得 :D T t c T ct v ++=2cos 2ππ(D 为常数)代入初始条件:0=t 时,0=v , 故c T D π2-=即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=12cos 2T t T t c v ππ 又因为dtds v =所以 =ds dt T t T t c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+12cos 2ππ 对等式两边同时积分,可得:⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=t T t T T t c s 2sin 22212πππ 直线FM 在一给定的椭圆平面内以匀角速ω绕其焦点F 转动。
求此直线与椭圆的焦点M 的速度。
已知以焦点为坐标原点的椭圆的极坐标方程为()θcos 112e e a r +-=式中a 为椭圆的半长轴,e 为偏心率,常数。
解:以焦点F 为坐标原点题1.8.1图则M 点坐标 ⎩⎨⎧==θθsin cos r y r x 对y x ,两式分别求导⎪⎩⎪⎨⎧+=-=θθθθθθcos sin sin cos r r yr r x 故()()22222cos sin sin cos θθθθθθ r r r r y xv ++-=+=222ωr r+= 如图所示的椭圆的极坐标表示法为()θcos 112e e a r +-=对r 求导可得(利用ωθ= ) 又因为()()221cos 111ea e e a r -+-=θ即 ()rer e a --=21cos θ所以()()2222222221211cos 1sin e r e ar r ea --+--=-=θθ故有 ()2222224222sin 1ωθωr e a r e v +-=()2224221e a r e -=ω()()]1211[2222222e r e ar r e a --+--22ωr +()()⎥⎦⎤⎢⎣⎡--+-⋅-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω即 ()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)质点作平面运动,其速率保持为常数。
理论力学(周衍柏第二版)思考题习题答案

1.12为什么被约束在一光滑静止的曲线上运动时,约束力不作功?我们利用动能定理或能量积分,能否求出约束力?如不能,应当怎样去求?
1.13质点的质量是1千克,它运动时的速度是 ,式中 、 、 是沿 、 、 轴上的单位矢量。求此质点的动量和动能的量值。
式中 为速度矢量与 轴间的夹角,且当 时, 。
1.13假定一飞机从 处向东飞到 处,而后又向西飞回原处。飞机相对于空气的速度为 ,而空气相对于地面的速度为 。 与 之间的距离为 。飞机相对于空气的速度 保持不变。
假定 ,即空气相对于地面是静止的,试证来回飞行的总时间为
假定空气速度为向东(或向西),试证来回飞行的总时间为
1.2答:质点运动时,径向速度 和横向速度 的大小、方向都改变,而 中的 只反映了 本身大小的改变, 中的 只是 本身大小的改变。事实上,横向速度 方向的改变会引起径向速度 大小大改变, 就是反映这种改变的加速度分量;经向速度 的方向改变也引起 的大小改变,另一个 即为反映这种改变的加速度分量,故 , 。这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况
由
得
即速度 的大小就决定了轨道的形状,图中 对应于进入轨道时的达到第一二三宇宙速度所需的能量由于物体总是有限度的,故 有一极小值 ,既相互作用的二质点不可能无限接近,对于人造卫星的发射 其为地球半径。 为地面上发射时所需的初动能,图示 分别为使卫星进入轨道时达到一二三宇宙速度在地面上的发射动能。 .为进入轨道前克服里及空气阻力做功所需的能量。
1.10一质点沿着抛物线 运动其切向加速度的量值为法向加速度量值的 倍。如此质点从正焦弦 的一端以速度 出发,试求其达到正焦弦另一端时的速率。
理论力学思考题答案

第一章思考题解答1.1答:平均速度是运动质点在某一时间间隔内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。
在的极限情况,二者一致,在匀速直线运动中二者也一致的。
1.2答:质点运动时,径向速度和横向速度的大小、方向都改变,而中的只反映了本身大小的改变,中的只是本身大小的改变。
事实上,横向速度方向的改变会引起径向速度大小大改变,就是反映这种改变的加速度分量;经向速度的方向改变也引起的大小改变,另一个即为反映这种改变的加速度分量,故,。
这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况1.3答:内禀方程中,是由于速度方向的改变产生的,在空间曲线中,由于恒位于密切面内,速度总是沿轨迹的切线方向,而垂直于指向曲线凹陷一方,故总是沿助法线方向。
质点沿空间曲线运动时, z何与牛顿运动定律不矛盾。
因质点除受作用力,还受到被动的约反作用力,二者在副法线方向的分量成平衡力,故符合牛顿运动率。
有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。
有人也许还会问:某时刻若大小不等,就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来所在的方位,又有了新的副法线,在新的副法线上仍满足。
这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。
1.4答:质点在直线运动中只有,质点的匀速曲线运动中只有;质点作变速运动时即有。
理论力学复习题(答案)

理论⼒学复习题(答案)课程名称:⼯程⼒学B⼀、理论⼒学部分1、平⾯⽀架由三根直杆AC 、BE 、BC 铰接⽽成,其中AC 杆铅直,BE 杆⽔平,各杆⾃重不计,受⼒如图所⽰, BD =DE =CD =DA =a ,A 处为固定端,B 、C 、D 三处为铰接,试求A 处的约束反⼒和BC 杆的内⼒。
解:(1)整体分析00000cos 4500sin 450cos 45sin 450x Ax y Ay AA F F P F F P M m M P a P a =-==-==++-=∑∑∑解得:,,22Ax Ay A F P F P M Pa ===-∑ (2)分析BDE 杆000sin 45sin 450DBC MP a F a =--=∑,解得:BC F P =(拉⼒)2、图中各杆件之间均为铰链连接,杆⾃重不计,B 为插⼊端P=1000N,AE=EB=CE=ED=1m ,求插⼊端B 的约束反⼒,以及AC 杆的内⼒。
解:(1)整体分析0xF =∑,0Bx F = 0yF=∑,1000By F P N ==0BM=∑,11000.B M P N m =?=(2)分析CD 杆0EM =∑,0sin 4511AC F P ?=?1414AC F N ==3、图⽰结构由AB 、CE 与BC 三杆和滑轮E ⽤铰链连接组成,AD =DB =2m ,CD =DE =1.5m ,物体重Q =1200N ,⽤绳索通过滑轮系于墙上,不计杆与滑轮的⾃重和摩擦,试求固定铰链⽀座A 和活动铰链⽀座B 的约束⼒,以及杆BC 所受的⼒。
解:(1)研究整体1200T F P N ==00xAx T FF F =-=∑ 00yAy NB FF F P =+-=∑0(2)4(1.5)0BAy T MP r F F r =----=∑解得:1200Ax F N =,150Ay F N =,1050NB F N = (2)研究杆ADB2sin 220DBC NB Ay MF F F θ=+-=∑解得:1500BC F N =-4、图⽰构架中,各杆重均略去不计,C 为光滑铰链,已知:32/,.q kN m M kN m ==,2L m =。
理论力学复习题答案.doc

一、选择题1、A (4分)2、D (4分)3、B (4分)4、A (4分)二、填空题1、ωml 21,ω231ml 2、2243ωmR , ω223mR 3、 2/15三、判断题1、( × )2、( √ )3、( √ )四、计算题解:分别取CD 和整体为研究对象,列CD 杆平衡方程:02sin ,0=⨯-+⨯⇒=∑a F M a F M B C β (3分) )(5sin 2↑=-=KN aMF F B β(向上) (1分)列整体平衡方程:23sin 43,00sin ,00cos ,02=--++⇒=∑=+⨯-+⇒=∑=+⇒=∑qa Fa a F M M M F a q F F F F F F B A A NB AY Y AX X βββ (7分)将ο30,4,/1,.20,10=====βm a m KN q m KN M KN F 代入方程,联立求解,可得)(35←-=KN F AX (水平向右) , )(4↑=KN F AY (铅直向上), m KN M A .24= (逆时针) (4分)五、计算题解:动点:套筒A动系:固连在O 2B 上 (1分) 作速度平行四边形 (4分)r e a V V V += (2分)s cm V a /40=s rad A O /41=ω (3分)s cm V r /320= (2分)2/340s cm a C = (3分)六、计算题解: AB 作平面运动,以A 为基点,分析B 点的速度。
由图中几何关系得:(4分)(4分)(2分)B A BA =+r r rv v v cot30103cm/s B A v v ==o 20cm/s sin 30A BA vv ==o 1rad sBAAB v lω==方向如图所示。
七、计算题解:用动能定理求运动以杆为研究对象。
由于杆由水平位置静止开始运动,故开始的动能为零,即:01=T (1分)杆作定轴转动,转动到任一位置时的动能为222222181)32(1212121ωωml l l m ml J T O =⎥⎦⎤⎢⎣⎡-+==(1分) 在此过程中所有的力所作的功为ϕsin 6112mgl mgh W ==∑ (1分) 由2112T T W -=∑得22110sin 186ml mgl ωϕ-=23sin g l ωϕ=ω= (2分)将前式两边对时间求导,得:d 3d 2cos d d g t l tωϕωϕ= 3cos 2gl αϕ= (1分)A现求约束反力:质心加速度有切向和法向分量:tcos 4C g a OC αϕ=⋅=n2sin 2C g a OC ωϕ=⋅= (2分) 将其向直角坐标轴上投影得:t n3sin cos sin cos 4Cx C C ga a a ϕϕϕϕ=--=-t n23cos sin (13sin )4Cy C C g a a a ϕϕϕ=-+=-- (2分)由质心运动定理可得;,Cx x Cy y ma F ma F =∑=∑3sin cos 4Ox mgF ϕϕ-= 23(13sin )4Oy mg F mg ϕ--=- (3分)解得:3sin 28Ox mg F ϕ=-2(19sin )4Oy mgF ϕ=+ (2分)一、选择题(每题 4 分,共 16 分)1、A (4分)2、A (4分)3、C (4分)4、C (4分)二、填空题(每空 4 分,共 20 分)1、杆的动量为ωml 21,杆对O 轴的动量矩为ω231ml , 2、 此瞬时小环M 的牵连加速度a e 为 2ωR ,小环M 科氏加速度a C 为 r V ω2 3、夹角θ应该满足的条件是 f φθ2≤三、判断题(每空 3 分,共 9 分)1、( × )2、( √ )3、( √ )四、计算题(共 15 分)解:)(↑=-⨯+⨯=kN 35)22(1M aqa a F a F B ;(5分) )(kN 40←==qa F Cx ,)(↑=-=-=kN 53540B Cy F F F ;(5分))(kN 80←=Ax F ,)(kN5↑=Ay F ,m kN 240⋅=A M (逆时针)。
理论力学课后习题与答案解析

第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力R B和一个力偶M B,且:如图所示;将R B向下平移一段距离d,使满足:最后简化为一个力R,大小等于R B。
其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力R A和一个力偶M A,且:如图所示;将R A向右平移一段距离d,使满足:最后简化为一个力R,大小等于R A。
其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
理论力学课后习题及答案解析

理论力学课后习题及答案解析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A 点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;将RB向下平移一段距离d,使满足:最后简化为一个力R,大小等于RB。
其几何意义是:R 的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力RA和一个力偶M A,且:如图所示;将RA向右平移一段距离d,使满足:最后简化为一个力R,大小等于RA。
其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南大学《理论力学》复习思考题及答案(0123)《理论力学》复习思考题一、单项选择题1.某质点在运动过程中,其所属的状态参量位移、速度、加速度和外力中,方向一定相同的是:()A.加速度与外力;B.位移与加速度;C.速度与加速度;D.位移与速度。
2.下面关于内禀方程和密切面的表述中,正确的是()A.密切面是轨道的切线和轨道曲线上任意点所组成的平面;B.加速度矢量a全部位于密切面内;C.切向加速度在密切面内,法向加速度为主法线方向,并与密切面垂直;D.加速度和主动力在副法线方向上的分量均等于零。
3.选出正确的表述:()A.牛顿运动定律能成立的参照系叫惯性参照系;B.牛顿运动定律不能成立的参照系叫非惯性参照系;C.对于非惯性参照系,只要加上适当的惯性力,牛顿运动定律就“仍然”可以成立;D.以上三种表述均正确。
4.研究有心力问题,采用哪一种坐标系最简单?()A.直角坐标系;B.自然坐标系;C.平面极坐标系;D.球面坐标系。
5.下列表述中正确的是:()A.对质心的动量矩定理和对固定点的动量矩定理在形式上都是相同的;B.对质心的动量矩定理和对其它任意点的动量矩定理在形式上都是相同的;C.对除了质心和固定点的其它任意点的动量矩定理和对固定点的动量矩定理在形式上都是相同的;D.以上表述均错误。
6.下列表述中正确的是:()A.质点组的动量定理中内力不起作用;B.质点组的动量矩定理中内力不起作用;C.质点组的动能定理中内力不起作用;D.以上表述均错误。
7.下列有关刚体的描述中,错误的是()A.刚体就是一种特殊的质点组;B.刚体内部任意两质点间距离不因力的作用而发生改变;C.刚体是一种理想化模型;D.刚体的形状不变,但大小可以改变。
8.下列关于地球自转所产生的影响中,错误的是:()A.落体偏东;B.右岸冲刷;C.傅科摆的进动;D.在南半球,低压区形成左旋的气旋,高压区形成右旋的气旋。
9.下列说法中,正确的是:()A.摩擦力的虚功总为零。
B.一维自由质点的拉格朗日函数与哈密顿函数形式上完全相同。
C.教师用粉笔在黑板上写字,粉笔不做功。
D.属理想约束的曲面不一定是光滑的。
10.下列哪种约束不是理想约束?()A.光滑面、B.光滑线、C.刚性杆、D.橡皮筋11.关于虚功原理的理解中,错误的是()A.虚功是作用在质点上的力(包括约束反力)F在任意虚位移中做的功,对于理想约束,约束反力做的虚功为零。
B.虚功原理是用动力学的概念和方法去解决力学体系静力学的平衡问题,其重要意义是当建立复杂的动力学系统的平衡条件时,不考虑约束反力,只考虑主动力。
C.虚功原理的缺点是不能求约束反力。
D.用虚功原理求解学体系静力学的平衡问题可以使问题大简化。
12.下列说法中,正确的是()2A.哈密顿函数是广义坐标、广义动量的函数。
B.广义坐标、广义动量称为正则变量。
C.对保守体系,哈密顿函数HTV(动能与势能之和)。
D.A、B、C均正确。
13、点的运动速度用表示。
A矢量B标量C绝对值14、点的加速度在副法线轴上的投影A可能为零B一定为零C一定不为零15、点作圆周运动,如果知道法向加速度越变越大,点运动的速度A 越变越大B越变越小C越变越大还是越变越小不能确定16.两质点以一轻杆连结,在光滑水平面上运动,则描述此二质点运动所需的独立坐标数为()个(A)1(B)2(C)3(D)417.力的累积效应包括()(A)冲量、功(B)力矩、动量矩(C)速度、加速度(D)动量、动能18.力场中的力,必须满足的条件是:力是位置的()函数。
(A)单值、有限、可积(B)单值、有限、可微(C)单值、无限、可微(D)单值、无限、可积19.当用欧勒角描述刚体的运动时,可以取值在0~2范围内的角是()(A)章动角、进动角(B)章动角、自转角(C)三个角均可以(D)自转角、进动角20.下列不属于约束反力的是()(A)传送带上使物体向前移动的力(B)放在桌面上的水杯受到的桌面给它的力(C)两电荷之间的库仑力(D)绷紧的绳内的张力21.地球表面附近形成的贸易风与()无关(A)地球的自转(B)地球的公转(C)太阳对地球的热辐射(D)地球的引力22.当简化中心改变时,()(A)主矢、主矩均会改变(B)主矢、主矩均不改变(C)主矢改变,但主矩不变(D)主矢不变,但主矩改变323.一个在有心力作用下的质点,已知其动能为4.6J,势能为-5.2J,则它的运动轨迹为()(A)椭圆(B)抛物线(C)双曲线(D)无法判断24.两质量分别为m1和m2的质点,从相距R1处运动到相距R2处,需克服引力做多少功?()1111Gmm()Gm1m2()12R1R2R2R1B、A、C、Gm1m2(R2R1)D、m1g(R2R1)25、一个质量为m的物体以初速V0,抛射角θ=30从地面斜向上抛出。
若不计空气阻力,物体落地时,其动量增量的大小和方向为()。
A、增量为零,方向保持不变B、增量的大小等于mV0,方向竖直向上C、增量的大小等于mV0,方向竖直向下D、增量的大小等于3mV0,方向水平。
26.平地上放置一质量为m的物体。
已知物体与地面间的滑动摩擦系数为μ。
今在力F作用下,物体向右运动,如图所示。
欲使物体具有最大的加速度,则力与水平方向的夹角θ应符合下列哪一个等式?()A、coθ=1B、inθ=μC、tgθ=μD、ctgθ=μ27.如图示,在距离转轴R处有一质量为m的工件,随转台作圆周运动。
该工件与转台间的静摩擦系数为μ0,若使工件在转台上无滑动,则转Roω台的角速度ω为()2A.0gRB.30gRC.30g2RD.0gR428.平面力系向点1简化时,主矢FR=0,主矩M1≠0,如将该力系向另一点2简化,则()。
A:FR≠0,M2≠0;B:FR=0,M2≠M1;C:FR=0,M2=M1;D:FR≠0,M2=M1。
29.在如图所示的装置,已知=a+binωt,且φ=ωt(其y中a、b、ω为常数),杆长为l,若取小球A为动点,动系固连于物块B,静系固连于地面,则小球A的牵连速度的大小为()。
A、lωB、bωcoωtC、bωcoωt+lωcoωtD、bωcoωt+lω30.圆轮绕固定轴O转动,某瞬时轮缘上一点的速度为v,加速度为a,如图所示。
试问哪些情况是不可能的?()A、(a)、(b)B、(b)、(c)C、(c)、(d)D、(a)、(d)avOavavOaOvOAφB某(a)(b)(c)(d)31.边长为L的均质正方形平板,位于铅垂平面内并置于光滑水平面上,如图示,若给平板一微小扰动,使其从图示位置开始倾倒,平板在倾倒过程中,其质心C点的运动轨迹是()。
A、半径为L/2的圆弧;B、抛物线;C、椭圆曲线;D、铅垂直线。
32.下列约束中不属于完整约束的是:()A、稳定约束;B、几何约束;5C、不可解约束;D、不能用等式表示的可解约束33.对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加.(2)质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中,正确的()A、(1)、(2)是正确的.B、(2)、(3)是正确的.C、只有(2)是正确的.D、只有(3)是正确的.34.下列不属于牛顿第二定律的特点或适用条件的是()。
(A)瞬时性(B)质点(C)惯性系(D)直线加速参考系35.在质心坐标系与实验室坐标系中观测两体问题时,()(A)在质心坐标系中观测到的散射角较大(B)在实验室坐标系中观测到的散射角较大(C)在两种体系中观测到的散射角一样大(D)在两种体系中观测到的散射角大小不确定36.作定点运动的刚体的自由度为()(A)2(B)3(C)4(D)637.“回转半径”概念的引入与()的引入有相似的意图。
(A)矩心(B)重心(C)质心(D)瞬心38..由于科里奥利力的影响,在北半球()(A)会出现东南贸易风(B)会出现西北贸易风(C)河流对右岸冲刷更甚(D)河流对左岸冲刷更甚39.一竖直管绕与其平行的轴匀速转动,其中有一光滑的小球自由下落,则小球受到的惯性力是()(A)惯性离心力和科里奥利力(B)变角速惯性力(C)惯性离心力(D)科里奥利力40.下列关于虚功的说法错误的是()(A)与坐标系选取无关(B)与约束无关(C)是无限小的(D)与过程无关6二、填空1.一质点沿曲线某2in4t,y2co4t,z4t运动,则其速率值为2.力F为保守力的充要条件可用数学式表达为3.一滑冰运动员质量为62kg,当他以2m滑行时,突然以相对于自身的速率4m向正前方的队友抛出一质量为2kg的物体,则此运动员所做的功为J。
4.质点质量为1kg,其速度v3i2j3km(i,j,k分别为沿某,y,z轴的单位矢量),当它运动至(1,2,3)点时,它对原点和z轴的矩分别为,5.一半径为8cm的球,今用一与球心相距为2cm的平面切出一球形帽,则此球形帽的质心到球心的距离为cm。
6.均质立方体(边长为a)绕其对角线转动时的回转半径为k7.一质点质量m,从高度h处由静止开始下落,忽略空气阻力和地球自转,则任一高度z时的拉格朗日函数为8.一个冰面上滑行的冰刀可作这样的简化:将冰刀抽象为以刚性轻杆相连的两个质点,并设两质点质量相等,杆长为l,当冰刀在冰面上运动时,质心(杆的中点)的速度只能沿杆的方向。
选两质点在冰面上的坐标为(某1,y1)和(某2,y2),则此冰刀的自由度为,对质心的约束条件可表示为或9、一质点在某y平面运动,运动函数为某=2t,y=4t2-8。
当t=1时,质点的位置矢量为(),速度为(),加速度为()(用矢量式表示)10、鼓轮半径R=0.5m,一物体以质量不计的轻绳缠绕在鼓轮上,绳子与鼓轮之间不打滑。
2已知物体的运动方程为某=5t(t以计,某以m计),则鼓轮转动的角加速度α的大小为()。
7R某某11、质量为m1和m2的质点由一轻棒连接,相距为r0,令并通过质心的轴的转动惯量为()m1m2m1m2则两质点对垂直于棒12、如下图所示,两木块质量分别为m1、m2,由一轻质弹簧相连接,并静止于光滑水平桌面上。
现将两木块压紧弹簧,然后由静止释放,若在弹簧伸长到原长时,m1的速率为v1,则弹簧原来在压缩状态所具有的弹性势能为()。
13、质量为M的质点固定不动,在它的万有引力作用下,质量为m的质点绕M作半径为R的匀速圆周运动,取圆轨道上的P点为参考点,如右图所示。
在图中A处,m所受万有引力相对P点的力矩大小为(),m相对P点的角动量大小为(),在图中B处,m相对P点的角动量大小为()。
14、若一个质点被限制在某一个平面内运动。
建立直角坐标系O-某yz,使得O-某y平面与质点运动平面平行,则该质点运动的约束方程可表示为()15、n个质点组成的质点系,如质点间存在有k个完整的几何约束,则该质点系的自由度为(),系统拥有的(独立)(填独立或不独立)广义坐标的数目为()。