2017~2018学年人教版七年级上期末质量检测数学试题及答案

合集下载

山西省太原市2017-2018学年七年级(上)期末数学试卷(含答案)

山西省太原市2017-2018学年七年级(上)期末数学试卷(含答案)

太原市2017—2018 学年第一学期七年级期末考试数学试卷一、选择题(本大题含10 小题,每题3 分,共30 分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下列相应的位置.1.计算-的结果是()A. -4B. -2C. 2D. 42. 下列计算正确的是()A. 3a2b 5abB. 4m2n 2mn22mnC.5y2y2D. -12x x x3. 小颖调查该校九年级一班全体学生某周完成部分学科作业的时间,并把平均时间统计如下:为了更清楚地描述上述数据,还可以选择()A. 条形统计图B. 扇形统计图C.折线统计图或扇形统计图D. 条形统计图或扇形统计图4.下列几何图形与相应语言描述相符的个数有()A. 1 个B. 2 个C. 3 个D. 4 个5.穿过漫漫黄沙,越过滚滚碧涛,一个个蓝图节点正化为繁华的商贸重镇,纵横交织在古老的欧亚大陆.在“一带一路”建设中,贸易合作硕果累累.2016 年,我国与沿线国家贸易总额达到9536 亿美元.这个数据用科学记数法表示为()A.10美元B. 9美元C. 10美元D. 11美元6. 过某个多边形一个顶点的所有对角线,将这个多边形分为6 个三角形,这个多边形是()A.九边形B.八边形C.七边形D.六边形7. 如图是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从左侧看到的该几何体的平面图形是()8.设分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放的个数为()A.6 个B.5 个C.4 个D.3 个9. 已知∠AOB=70°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,则∠MON的度数等于()A.50°B.20°C.20°或50°D.40°或50°10. 请从A、B两题中任选一题作答.A.由太原开往运城的D5303 次列车,途中有6 个停车站,这次列车的不同票价最多有()A.28 种B.15 种C.56 种D.30 种B.如图是一张跑步示意图,其中的4 面小旗表示4 个饮水点,跑步者在经过某个饮水点时需要改变的方向的角度最大,这个饮水点是()A.1B.2C.3D.4二、填空题(本大题含5 个小题,每小题3 分,共15 分)把结果直接填在横线上.11. 若x=3 是关于x的方程2x+a=4 的解,则a的值为.12. 当x=12,y=10 时,代数式(3xy+5x)-3(xy+x)的值为.13. 如图,在利用量角器画一个40°的∠AOB的过程中,对于“先找点B,再画射线O B.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是.14. 如果一个零件的实际长度为a,测量结果是b,则称|b-a|为绝对误差,|b-a|a为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.15.已知线段AB=16,AM=13BM,点P、Q分别是AM、AB的中点.请从A、B两题中任选一题作答.A.如图,当点M在线段AB上时,则PQ的长为.B.当点M在直线AB上时,则PQ的长为.三、解答题(本大题含8 个小题,共55 分)解答时应写出必要的文字说明、演算步骤或推理过程。

人教版七年级数学上册期末测试题

人教版七年级数学上册期末测试题

2017-2018学年山东省济宁市兖州市七年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)如图,数轴上点A表示数a,则|a|是()A.2 B.1 C.﹣1 D.﹣22.(3分)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃3.(3分)单项式的系数与次数分别是()A.和3 B.﹣5和3 C.和2 D.﹣5和24.(3分)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.15.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106 B.0.55×108C.5.5×106D.5.5×1076.(3分)下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.变形得4x﹣6=3x+187.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°8.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化9.(3分)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.(3分)在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2018个数是()A.1 B.3 C.7 D.9二、填空题(共5小题,每小题3分,共15分)11.(3分)3的倒数是.12.(3分)如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是.13.(3分)比较大小:30.15°30°15′(用>、=、<填空)14.(3分)将一张长方形纸片折叠成如图所示的形状,则∠ABC的度数.15.(3分)某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为.三、解答题(本大题共7小题,满分55分)16.(12分)计算:(1)(﹣)+3+|﹣0.75|+(﹣5)+|﹣2|;(2)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017;(3)先化简,再求值:(a2b﹣ab2)﹣(1﹣ab2﹣a2b),其中a=﹣3,b=2.17.(7分)解下列方程:(1)3(x﹣2)=x﹣(7﹣8x);(2)=2﹣18.(6分)如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使PA+PC的值最小.19.(6分)已知:A、O、B三点在同一直线上,OE、OD分别平分∠AOC、∠BOC.(1)求∠EOD的度数;(2)若∠AOE=50°,求∠BOC的度数.20.(7分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?21.(8分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.22.(9分)平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600按售价打九折元超过600元其中600元部分八点二折优惠,超过600元的部分打三折优惠按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?2017-2018学年山东省济宁市兖州市七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)如图,数轴上点A表示数a,则|a|是()A.2 B.1 C.﹣1 D.﹣2【解答】解:∵A点在﹣2处,∴数轴上A点表示的数a=﹣2,|a|=|﹣2|=2.故选:A.2.(3分)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃【解答】解:5﹣(﹣10),=5+10,=15(℃).故选:D.3.(3分)单项式的系数与次数分别是()A.和3 B.﹣5和3 C.和2 D.﹣5和2【解答】解:单项式的系数与次数分别是,3,故选:A.4.(3分)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.1【解答】解:将x=1代入2x﹣a=0中,∴2﹣a=0,∴a=2故选:B.5.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106 B.0.55×108C.5.5×106D.5.5×107【解答】解:55000000=5.5×107,故选:D.6.(3分)下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.变形得4x﹣6=3x+18【解答】解:A、4x﹣5=3x+2变形得4x﹣3x=2+5,错误;B、3x=2变形得x=,错误;C、3(x﹣1)=2(x+3)变形得3x﹣3=2x+6,错误;D、x﹣1=x+3变形得4x﹣6=3x+18,正确.故选:D.7.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°【解答】解:∵甲的航向是北偏东35°,为避免行进中甲、乙相撞,∴乙的航向不能是北偏西35°,故选:D.8.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.故选:C.9.(3分)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选:D.10.(3分)在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2018个数是()A.1 B.3 C.7 D.9【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2018÷6=336…2,所以a2018=a2=7.故选:C.二、填空题(共5小题,每小题3分,共15分)11.(3分)3的倒数是.【解答】解:3的倒数是.故答案为:.12.(3分)如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短.【解答】解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.13.(3分)比较大小:30.15°<30°15′(用>、=、<填空)【解答】解:∵30.15°=30°9′,∴30°9′<30°15′.故答案为:<.14.(3分)将一张长方形纸片折叠成如图所示的形状,则∠ABC的度数73°.【解答】解:∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.故答案为:73°.15.(3分)某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为+=1.【解答】解:设该小组共有x名同学,由题意得, +=1.故答案为: +=1.三、解答题(本大题共7小题,满分55分)16.(12分)计算:(1)(﹣)+3+|﹣0.75|+(﹣5)+|﹣2|;(2)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017;(3)先化简,再求值:(a2b﹣ab2)﹣(1﹣ab2﹣a2b),其中a=﹣3,b=2.【解答】解:(1)(﹣)+3+|﹣0.75|+(﹣5)+|﹣2|=﹣++3+2﹣5=;(2)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14;(3)(a2b﹣ab2)﹣(1﹣ab2﹣a2b)=a2b﹣ab2﹣1++a2b=()a2b+(﹣1+)ab2=﹣﹣1,当a=﹣3,b=2时,原式=27+9﹣1=35.17.(7分)解下列方程:(1)3(x﹣2)=x﹣(7﹣8x);(2)=2﹣【解答】解:(1)去括号得:3x﹣6=x﹣7+8x,移项合并得:6x=1,解得:x=;(2)去分母得:3(3y﹣2)=24﹣4(5y﹣7),去括号得:9y﹣6=24﹣20y+28,移项合并得:29y=58,解得:y=2.18.(6分)如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=A B+BC;(4)在线段BD上取点P,使PA+PC的值最小.【解答】解:如图所画:(1)(2)(3)(4).19.(6分)已知:A、O、B三点在同一直线上,OE、OD分别平分∠AOC、∠BOC.(1)求∠EOD的度数;(2)若∠AOE=50°,求∠BOC的度数.【解答】解:(1)∵OE、OD分别平分∠AOC、∠BOC,∴∠EOC=∠AOC,∠COD=∠BOC,∴∠EOD=∠EOC+∠COD=∠AOC+∠BOC=∠AOB,又∵A、O、B三点在同一直线上,∴∠AOB=180°,∴∠EOD=∠AOB=90°;(2)∵OE平分∠AOC,∠AOE=50°,∴∠AOC=2∠AOE=100°,∴∠BOC=180°﹣∠AOC=80°.20.(7分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?【解答】解:(方法一)设这批书共有3x本,根据题意得:=,解得:x=500,∴3x=1500.答:这批书共有1500本.(方法二)设第一次领来x本书,第二次领来y本书,根据题意得:,解得:,∴x+y=1000+500=1500.答:这批书共有1500本.21.(8分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.【解答】解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A表示﹣31,∴p=﹣31﹣29﹣28=﹣88.22.(9分)平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为40元,每件乙种商品利润率为60%.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠按售价打九折超过450元,但不超过600元超过600元其中600元部分八点二折优惠,超过600元的部分打三折优惠按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?【解答】解:(1)设甲的进价为x元/件,则(60﹣x)÷x=50%,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(80﹣50)÷50=60%.(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进甲商品40件,乙商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y﹣600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.学会舍弃——时间有限,你不可能在同一时间内做好所有事生活中,我们常常听到身边的人说:“做人,别指望所有人都会喜欢你。

人教版2017~2018学年七年级上期末考试数学试题及答案

人教版2017~2018学年七年级上期末考试数学试题及答案

人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。

3B。

-3C。

0D.无法确定2.下列各组数中,相等的是()A。

(-3)与-3B。

|-3|与-3C。

(-3)与-3D。

|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。

A。

0个B。

1个C。

2个D。

3个4.下列图形不是正方体的展开图的是()A。

B。

C。

D。

5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。

据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。

5×1010千克B。

50×109千克C。

5×109千克D。

0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。

B。

C。

D。

9.下列结论正确的是()A。

直线比射线长B。

一条直线就是一个平角C。

过三点中的任两点一定能作三条直线D。

经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。

不赚不赔B。

亏12元C。

盈利8元D。

亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。

广东省梅州市五华县2017-2018学年七年级(上)期末数学试卷(含解析)

广东省梅州市五华县2017-2018学年七年级(上)期末数学试卷(含解析)

广东省梅州市五华县2017-2018学年上学期期末考试七年级数学试卷一、选择题(本大题包括10小题,每小题3分,共30分.在每小题列出的四个选项中只有一个是正确的,请将答案填入下表)1.(3分)下列方程为一元一次方程的是()A.y=3 B.x+2y=3 C.x2=2x D.+y=2【专题】常规题型;一次方程(组)及应用.【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【解答】解:A、y=3符合一元一次方程的定义;B、x+2y=3含有2个未知数,不是一元一次方程;C、x2=2x中未知数的最高次数是2,不是一元一次方程;故选:A.【点评】本题主要考查了一元一次方程的定义,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)计算﹣32的结果是()A.9 B.﹣9 C.6 D.﹣6【分析】根据有理数的乘方的定义解答.【解答】解:-32=-9.故选:B.【点评】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.3.(3分)关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=()A.4 B.C.3 D.【专题】整式.【分析】直接利用合并同类项法则得出关于k的等式进而得出答案.【解答】解:∵关于x,y的代数式(-3kxy+3y)+(9xy-8x+1)中不含二次项,∴-3k+9=0,解得:k=3.故选:C.【点评】此题主要考查了合并同类项,正确得出-3k+9=0是解题关键.4.(3分)某课外兴趣小组为了解所在地区老年人的健康情况,分别作了四种不同的抽样调查,你认为抽样比较合理的是()A.调查了10名老年邻居的健康状况B.在医院调查了1000名老年人的健康状况C.在公园调查了1000名老年人的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况【专题】统计的应用.【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、调查不具广泛性,故A不符合题意;B、调查不具代表性,故B不符合题意;C、调查不具代表性,故C不符合题意;D、样本具有广泛性与代表性,故D符合题意;故选:D.【点评】本题考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.5.(3分)方程﹣3(•﹣9)=5x﹣1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A.2 B.3 C.4 D.6【专题】一次方程(组)及应用.【分析】设•处的数字是a,把x=2代入已知方程,可以列出关于a的方程,通过解该方程可以求得•处的数字.【解答】解:设•处的数字是a,则-3(a-9)=5x-1,将x=2代入,得:-3(a-9)=9,解得a=6,故选:D.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.6.(3分)如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A.5cm B.1cm C.5或1cm D.无法确定【分析】分点B在线段AC上和点C在线段AB上两种情况,根据线段中点的性质进行计算即可.【点评】本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想、分情况讨论思想是解题的关键.7.(3分)如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.【分析】由平面图形的折叠及长方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、可以拼成一个长方体;B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图.故选:A.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及长方体展开图的各种情形.8.(3分)如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C 重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A.0°<α<90°B.α=90°C.90°<α<180°D.α随折痕GF位置的变化而变化【专题】线段、角、相交线与平行线.【分析】根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH平分∠BFE即可求解.【解答】解:∵∠CFG=∠EFG且FH平分∠BFE.∠GFH=∠EFG+∠EFH故选:B.【点评】本题主要考查了角平分线的定义,折叠的性质,注意在折叠的过程中存在的相等关系.9.(3分)甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队,如果设应从乙队调x人到甲队,列出的方程正确的是()A.96+x=(72﹣x)B.(96﹣x)=72﹣xC.(96+x)=72﹣x D.×96+x=72﹣x【点评】本题主要考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.10.(3分)四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为a,正方形CEFG 的边长为b,连接BD,BF和DF后得到三角形BDF,请用含字母a和b的代数式表示三角形BDF的面积可表示为()A.ab B.ab C.b2D.a2【分析】可利用S△BD F=S△BC D+S梯形EFDC-S△BFE,把a、b代入,化简即可求出△BDF 的面积.【点评】本题主要考查了正方形的性质及列代数式的知识,关键是根据题意将所求图形的面积分割,从而利用面积和进行解答.二、填空题(每小题4分,共24分,请将答案填入下列横线上)11.(4分)已知x﹣3y=3,则6﹣x+3y的值是.【专题】计算题;实数.【分析】原式后两项变形后,将已知等式代入计算即可求出值.【解答】解:∵x-3y=3,∴原式=6-(x-3y)=6-3=3,故答案为:3【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.(4分)上午8点30分,时钟的时针和分针所构成的锐角度数为.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【点评】本题考查了钟面角,确定时针与分针相距的份数是解题关键.13.(4分)若|x﹣|+(y+2)2=0,则(xy)2017的值为.【专题】常规题型.【分析】直接利用偶次方的性质以及绝对值的性质化简得出答案.【点评】此题主要考查了偶次方的性质以及绝对值的性质,正确把握定义是解题关键.14.(4分)从一个多边形的某个顶点出发,连接这个顶点与其余的顶点,将这个多边形分成了10个三角形,则这个多边形的边数为.【专题】几何图形.【分析】n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n-2)个三角形,依此作答.【解答】解:设这个多边形的边数为n,由题意得,n-2=10,解得:n=12.故答案为:12【点评】本题主要考查多边形的性质,注意掌握从n边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为n-2.15.(4分)方程1﹣=去分母后为.【专题】计算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果即可.【解答】解:方程去分母得:6-2(3-5x)=3(2x-5),故答案为:6-2(3-5x)=3(2x-5)【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.(4分)观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n 个单项式为.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵2x=(-1)1+1•21•x1;-4x2=(-1)2+1•22•x2;8x3=(-1)3+1•23•x3;-16x4=(-1)4+1•24•x4;第n个单项式为(-1)n+1•2n•x n,故答案为:(-1)n+1•2n•x n.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题(一)(每小题6分,共18分)17.(6分)计算:2×[5+(﹣2)2]﹣(﹣6)÷3【专题】计算题;实数.【分析】根据有理数混合运算顺序和运算法则计算可得.【解答】解:原式=2×(5+4)+2=2×9+2=18+2=20.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.(6分)解方程: =+1【专题】方程与不等式.【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 【解答】解:去分母,得:3(x -1)=2×4x +6 去括号,得:3x -3=8x +6 移项,得:-5x =9系数化为1,得:x =﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解.19.(6分)已知:四点A 、B 、C 、D 的位置如图所示,根据下列语句,画出图形. (1)画直线AD 、直线BC 相交于点O ; (2)画射线A B .【分析】(1)直线没有端点,需透过所给的四个端点; (2)A 为射线端点即可.【解答】解:如图所示:【点评】本题考查射线,线段,直线的画法,抓住各个图形的端点特点是关键. 四、解答题(二)(每小题7分,共21分) 20.(7分)已知:A =x 2﹣2xy +y 2,B =x 2+2xy +y 2 (1)求A +B ;(2)如果2A ﹣3B +C =0,那么C 的表达式是什么? 【专题】计算题;整式.【分析】(1)根据题意列出算式,再去括号、合并同类项可得;(2)由2A-3B+C=0可得C=3B-2A=3(x2+2xy+y2)-2(x2-2xy+y2),再去括号、合并同类项可得.【解答】解:(1)A+B=(x2-2xy+y2)+(x2+2xy+y2)=x2-2xy+y2+x2+2xy+y2=2x2+2y2;(2)因为2A-3B+C=0,所以C=3B-2A=3(x2+2xy+y2)-2(x2-2xy+y2)=3x2+6xy+3y2-2x2+4xy-2y2=x2+10xy+y2【点评】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.21.(7分)如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.(1)若∠COM=∠AOC,求∠AOD的度数;(2)若∠COM=∠BOC,求∠AOC和∠MO D.【专题】计算题;线段、角、相交线与平行线.【分析】(1)根据∠COM=∠AOC可得∠AOC=∠AOM,再求出∠AOM的度数,然后可得答案;(2)设∠COM=x°,则∠BOC=4x°,进而可得∠BOM=3x°,从而可得3x=90,然后可得x的值,进而可得∠AOC和∠MOD的度数.【解答】解:(1)∵∠COM=∠AOC,∴∠AOC=∠AOM,∵∠BOM=90°,∴∠AOM=90°,∴∠AOC=45°,∴∠AOD=180°﹣45°=135°;(2)设∠COM=x°,则∠BOC=4x°,∴∠BOM=3x°,∵∠BOM=90°,∴3x=90,即x=30,∴∠AOC=60°,∠MOD=90°+60°=150°.【点评】此题主要考查了邻补角,关键是掌握邻补角互补.掌握方程思想的应用.22.(7分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?【分析】(1)根据A等人数为10人,占扇形图的20%,求出总人数,可以得出D的人数,即可画出条形统计图;(2)根据D的人数即可得出所占百分比,进而得出所在的扇形的圆心角度数;(3)利用总体人数与A组所占比例即可得出A级学生人数.【解答】解:(1)总人数是:10÷20%=50,则D级的人数是:50-10-23-12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1-46%-20%-24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).【点评】此题主要考查了条形图的应用以及用样本估计总体和扇形图统计图的应用,利用图形获取正确信息以及扇形图与条形图相结合是解决问题的关键.五、解答题(三)(每小题9分,共27分)23.(9分)实数a,b,c在数轴上的位置如图(1)求++的值(2)化简|b+c|﹣|b+a|+|a+c|【专题】实数.【分析】(1)根据数轴判断出a、b、c的正负情况,再根据绝对值的性质去掉绝对值号,然后化简计算即可得解;(2)根据数轴判断出a、b、c的绝对值的大小,再根据绝对值的性质去掉绝对值号,然后化简计算即可得解.【解答】解:(1)由图可知a>0,b<0,c<0,所以ab<0,所以++=++,=1+(﹣1)+(﹣1),=﹣1;(2)由图可知a>0,b<0,c<0且|c|<a<|b|,所以|b+c|﹣|b+a|+|a+c|,=﹣(b+c)﹣(﹣b﹣a)+(a+c),=﹣b﹣c+b+a+a+c,=2a.【点评】此题主要考查了数与数轴之间的对应关系,绝对值的性质,准确识图判断出a、b、c的正负情况以及绝对值的大小是解题的关键24.(9分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.(9分)已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC 的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【分析】利用三角板角的特征和角平分线的定义解答,(1)根据余角的定义即可得到结论;【解答】解:(1)∠BOD=90°﹣60°=30°;(2)∠BOC=∠COD=×60°=30°,∴∠AOC=∠AOB﹣∠BOC=90°﹣30°=60°;(3)∠BOD+∠AOC=90°﹣∠COD=90°﹣60°=30°,(∠BOD+∠AOC)=×30°=15°,∠MON=(∠BOD+∠AOC)+∠COD=15°+60°=75°即∠MON的度数不会发生变化,总是75°.【点评】本题考查了角的计算:会进行角的倍、分、差计算.也考查了角平分线的定义,会识别图形是解题的关键.。

山西省晋中市灵石县2017-2018学年七年级数学上学期期末试卷(含解析)

山西省晋中市灵石县2017-2018学年七年级数学上学期期末试卷(含解析)

山西省晋中市灵石县2017-2018学年七年级数学上学期期末试卷一、选择题(每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体搭成,其从上面看到的几何体的形状图是()A.B.C.D.3.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.(3分)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元C.(4m+7n)元D.11mn元5.(3分)下列说法中正确的是()A.两点之间,直线最短B.圆是立体图形C.﹣125与93是同类项D.方程9x=3的解是x=36.(3分)已知点C是线段AB上的一点,不能确定点C是AB中点的条件是()A.AC=CB B.AC=AB C.AB=2BC D.AC+CB=AB7.(3分)方程,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是()A.2 B.3 C.4 D.68.(3分)已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6 B.6 C.﹣9 D.99.(3分)本学期实验中学组织开展课外兴趣活动,各活动小班根据实际情况确定了计划组班人数,并发动学生自愿报名,报名人数与计划人数的前5位情况如下.若用同一小班的报名人数与计划人数的比值大小来衡量进入该班的难易程度,则由表中数据,可预测()小班名称奥数写作舞蹈篮球航模报名人数215 201 154 76 65小班名称奥数舞蹈写作合唱书法计划人数120 100 90 80 70A.奥数比书法容易B.合唱比篮球容易C.写作比舞蹈容易D.航模比书法容易10.(3分)如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和可能为下列数中的()A.81 B.100 C.108 D.216二、填空题(本大题共小题,每小题分,共分)11.(3分)A为数轴上表示﹣1的点,将点A沿数轴向右平移3个单位到点B,则点B所表示的数为.12.(3分)现在的时间是9时20分,此时钟面上时针与分针夹角的度数是度.13.(3分)为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于.14.(3分)某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为元.15.(3分)下列图形由正六边形、正方形和等边三角形组成,自左向右,第1个图中有6个等边三角形;第2个图中有10个等边三角形;第3个图中有14个等边三角形组成;…按照此规律,第n个图中等边三角形的个数为个.三、解答题(共75分)16.(14分)(1)计算:①(﹣﹣)×(﹣24);②﹣22+[12﹣(﹣3)×2]÷(﹣3)(2)先化简,再求值:(2x2﹣5xy+2y2)﹣2(x2﹣3xy+2y2),其中x=﹣1,y=2.17.(9分)老师在黑板上出了一道解方程的题: =1﹣,小明马上举起了手,要求到黑板上去做,他是这样做的:4(2x﹣1)=1﹣3(x+2),①8x﹣4=1﹣3x﹣6,②8x+3x=1﹣6+4,③11x=﹣1,④x=﹣.⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了.请你指出他错在第步(填编号),然后再细心地解下面的方程,相信你一定能做对.(1)5(x+8)=6(2x﹣7)+5(2)﹣1=18.(5分)知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?19.(5分)如图,已知线段AB,请用尺规按照下列要求作图:①延长线段AB到C,使得BC=2AB;②连接PC;③作射线AP.如果AB=2cm,那么AC= cm.20.(8分)某校七年级共有800名学生,准备调查他们对“低碳”知识的了解程度.(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)在扇形统计图中,“比较了解”所在扇形的圆心角的度数是.(4)请你估计该校七年级约有名学生比较了解“低碳”知识.21.(6分)列方程或方程组解应用题:为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米?22.(8分)(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D 为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.23.(10分)某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同.随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某假期,该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购满100元返购物券30元(销售不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说出他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?说明理由.24.(10分)如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE= °;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD 和∠COE有怎样的数量关系?并说明理由.2017-2018学年山西省晋中市灵石县七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.2.(3分)如图所示的几何体是由4个大小相同的小立方体搭成,其从上面看到的几何体的形状图是()A.B.C.D.【解答】解:从上面看到的几何体的形状图是,故选:C.3.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014【解答】解:将1000亿用科学记数法表示为:1×1011.故选:C.4.(3分)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元C.(4m+7n)元D.11mn元【解答】解:∵4个足球需要4m元,7个篮球需要7n元,∴买4个足球、7个篮球共需要(4m+7n)元,故选C.5.(3分)下列说法中正确的是()A.两点之间,直线最短B.圆是立体图形C.﹣125与93是同类项D.方程9x=3的解是x=3【解答】解:A、应为:两点之间,线段最短,故本选项错误;B、圆是平面图形,故本选项错误;C、﹣125与93都是常数项,是同类项,故本选项正确;D、方程9x=3的解是x=,故本选项错误.故选C.6.(3分)已知点C是线段AB上的一点,不能确定点C是AB中点的条件是()A.AC=CB B.AC=AB C.AB=2BC D.AC+CB=AB【解答】解:A、若AC=CB,则C是线段AB中点;B、若AC=AB,则C是线段AB中点;C、若AB=2BC,则C是线段AB中点;D、AC+BC=AB,C可是线段AB是任意一点,则不能确定C是AB中点的条件是D.故选D.7.(3分)方程,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是()A.2 B.3 C.4 D.6【解答】解:由题意,得=2,解得▲=4.故选C.8.(3分)已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6 B.6 C.﹣9 D.9【解答】解:∵|a﹣2|+(b+3)2=0,∴a=2,b=﹣3.∴原式=(﹣3)2=9.故选:D.9.(3分)本学期实验中学组织开展课外兴趣活动,各活动小班根据实际情况确定了计划组班人数,并发动学生自愿报名,报名人数与计划人数的前5位情况如下.若用同一小班的报名人数与计划人数的比值大小来衡量进入该班的难易程度,则由表中数据,可预测()小班名称奥数写作舞蹈篮球航模报名人数215 201 154 76 65小班名称奥数舞蹈写作合唱书法计划人数120 100 90 80 70A.奥数比书法容易B.合唱比篮球容易C.写作比舞蹈容易D.航模比书法容易【解答】解:由题意得:同一小班的报名人数与计划人数的比值越小进入该班的难度大,∵表中数据为报名人数与计划人数的前5位的统计情况,∴篮球、航模计划人数不多于70;合唱、书法报名人数不多于65,同一小班的报名人数与计划人数的比值为:奥数=1.79;写作=2.23;舞蹈=1.54;篮球>=1.09;航模<1;合唱<1;书法<1;∵1.79>1,∴书法比奥数困难故A错误;∵1<1.09,∴篮球比合唱容易故B正确;∵2.23>1.54,∴舞蹈比写作困难故C错误;∵航模与书法比值相近,无法判断,∴D错误.故选B.10.(3分)如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和可能为下列数中的()A.81 B.100 C.108 D.216【解答】解:设中间的数为x,则左右两边数为x﹣1,x+1,上行邻数为(x﹣7),下行邻数为(x+7),左右上角邻数为(x﹣8),(x﹣6),左右下角邻数为(x+6),(x+8),根据题意得x+x﹣1+x+1+x﹣7+x+7+x﹣8+x﹣6+x+6+x+8=9x,则圈出的9个数的和为9的倍数.观察选项,只有选项A符合题意.故选:A.二、填空题(本大题共小题,每小题分,共分)11.(3分)A为数轴上表示﹣1的点,将点A沿数轴向右平移3个单位到点B,则点B所表示的数为 2 .【解答】解:∵A为数轴上表示﹣1的点,将点A沿数轴向右平移3个单位到点B,∴﹣1+3=2,即点B所表示的数是2,故答案为:2.12.(3分)现在的时间是9时20分,此时钟面上时针与分针夹角的度数是160 度.【解答】解:∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×=10°,∴时针与分针的夹角应为150°+10°=160°.13.(3分)为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于60% .【解答】解:课外阅读时间不少于4小时的人数占全校人数的百分数约等于:×100%=60%.故答案是:60%.14.(3分)某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为120 元.【解答】解:设售货员应标在标签上的价格为x元,依据题意70%x=80×(1+5%)可求得:x=120,故价格应为120元.15.(3分)下列图形由正六边形、正方形和等边三角形组成,自左向右,第1个图中有6个等边三角形;第2个图中有10个等边三角形;第3个图中有14个等边三角形组成;…按照此规律,第n个图中等边三角形的个数为4n+2 个.【解答】解:∵第1个图由6=4+2个等边三角形组成,∵第二个图由10=4×2+2等边三角形组成,∵第三个图由14=3×4+2个等边三角形组成,∴第n个等边三角形的个数之和4n+2,.故答案为:4n+2.三、解答题(共75分)16.(14分)(1)计算:①(﹣﹣)×(﹣24);②﹣22+[12﹣(﹣3)×2]÷(﹣3)(2)先化简,再求值:(2x2﹣5xy+2y2)﹣2(x2﹣3xy+2y2),其中x=﹣1,y=2.【解答】解:(1)①原式=﹣18+4+9=﹣5;②原式=﹣4+(12+6)÷(﹣3)=﹣4﹣6=﹣10;(2)原式=2x2﹣5xy+2y2﹣2x2+6xy﹣4y2=xy﹣2y2,当x=﹣1、y=2时,原式=﹣1×2﹣2×22=﹣2﹣8=﹣10.17.(9分)老师在黑板上出了一道解方程的题: =1﹣,小明马上举起了手,要求到黑板上去做,他是这样做的:4(2x﹣1)=1﹣3(x+2),①8x﹣4=1﹣3x﹣6,②8x+3x=1﹣6+4,③11x=﹣1,④x=﹣.⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了.请你指出他错在第①步(填编号),然后再细心地解下面的方程,相信你一定能做对.(1)5(x+8)=6(2x﹣7)+5(2)﹣1=【解答】解:他错在第①步.(1)5(x+8)=6(2x﹣7)+5,去括号得:5x+40=12x﹣42+5,移项得:5x﹣12x=﹣42+5﹣40,合并同类项得:﹣7x=﹣77,把x的系数化为1得:x=11;(2)﹣1=,去分母得:3(3a﹣1)﹣12=2(5a﹣7),去括号得:9a﹣3﹣12=10a﹣14,移项得:9a﹣10a=﹣14+3+12,合并同类项得:﹣a=1,把a的系数化为1得:a=﹣1.故答案为:①.18.(5分)知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?【解答】解:情景一:因为教学楼和图书馆处于同一条直线上,两点之间的所有连线中,线段最短;情景二:(需画出图形,并标明P点位置)理由:两点之间的所有连线中,线段最短.赞同情景二中运用知识的做法.应用数学知识为人类服务时应注意应用数学不能以破坏环境为代价.19.(5分)如图,已知线段AB,请用尺规按照下列要求作图:①延长线段AB到C,使得BC=2AB;②连接PC;③作射线AP.如果AB=2cm,那么AC= 6 cm.【解答】解:如图所示:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm,故答案为:6.20.(8分)某校七年级共有800名学生,准备调查他们对“低碳”知识的了解程度.(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是三;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)在扇形统计图中,“比较了解”所在扇形的圆心角的度数是108°.(4)请你估计该校七年级约有240 名学生比较了解“低碳”知识.【解答】解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,则应选方案三;故答案为:三;(2)根据题意得:5÷10%=50(人),了解一点的人数是:50﹣5﹣15=30(人),了解一点的人数所占的百分比是:×100%=60%;比较了解的所占的百分是:1﹣60%﹣10%=30%,补图如下:(3)“比较了解”所在扇形的圆心角的度数是360°×30%=108°,故答案为:108°;(4)根据题意得:800×30%=240(名),答:该校七年级约有240名学生比较了解“低碳”知识.21.(6分)列方程或方程组解应用题:为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米?【解答】解:设小强乘公交车的平均速度是每小时x千米,则小强乘自家车的平均速度是每小时(x+36)千米.依题意得:.解得:x=12.∴.答:从小强家到学校的路程是4千米.22.(8分)(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D 为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=m(m﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行×45×(45﹣1)=990次握手.23.(10分)某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同.随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某假期,该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购满100元返购物券30元(销售不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说出他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?说明理由.【解答】解:(1)设书包单价为x元,则随身听的单价为(4x﹣8)元.根据题意,得4x﹣8+x=452,解得:x=92,4x﹣8=4×92﹣8=360.答:书包单价为92元,随身听的单价为360元.(2)在超市A购买随身听与书包各一件需花费现金:452×80%=361.6(元).因为361.6<400,所以可以选择超市A购买.在超市B可花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计花费现金:360+2=362(元).因为362<400,所以也可以选择在B超市购买.因为362>361.6,所以在超市A购买更省钱.24.(10分)如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE= 20 °;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD 和∠COE有怎样的数量关系?并说明理由.【解答】解:(1)如图①,∠COE=∠DOE﹣∠BOC=90°﹣70°=20°,故答案为:20;(2)如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE﹣∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC﹣∠BOD=20°;(3)∠COE﹣∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)﹣(∠BOD+∠COD)=∠COE+∠COD﹣∠BOD﹣∠COD=∠COE﹣∠BOD=90°﹣70°=20°,即∠COE﹣∠BOD=20°.。

人教部编版七年级数学上册期末测试题 (17)

人教部编版七年级数学上册期末测试题 (17)

2017-2018学年江苏省苏州市太仓市七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣24.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C. D.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是.13.(3分)已知x,y满足,则3x+4y= .14.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为.16.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 度.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E 点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|20.(8分)解方程:(1)7x﹣9=9x﹣7(2)21.(6分)解不等式,并把它的解集在数轴上表示出来.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.24.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加小正方体.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是,∠BOE的补角是.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg) 3.6 5.4 8 4.8零售价(元/kg) 5.4 8.4 14 7.6请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?2017-2018学年江苏省苏州市太仓市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab【解答】解: A、3a﹣2a=a,此选项错误;B、3a+2a=5a,此选项错误;C、3a与2b不是同类项,不能合并,此选项错误;D、3ab﹣2ba=ab,此选项正确;故选:D.3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选A.4.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【解答】解:小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°【解答】解:∵这枚指针按逆时针方向旋转周,∴按逆时针方向旋转了×360°=120°,∴120°﹣50°=70°,如图旋转后从OA到OB,即把这枚指针按逆时针方向旋转周,则结果指针的指向是南偏东70°,故选:C.7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C. D.【解答】解:由题意得,去年的价格×(1﹣20%)=a,则去年的价格=.故选C.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【解答】解:设A港和B港相距x千米,可得方程:.故选A.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16【解答】解:∵,若x不是整数,则[x]<x,∴2|n,3|n,6|n,即n是6的倍数,∴小于100的这样的正整数有个.故选D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为 1.062×107.【解答】解:数据10 620 000用科学记数法可表示为1.062×107,故答案为:1.062×107.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是67°.【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°﹣23°=67°,故答案为:67°.13.(3分)已知x,y满足,则3x+4y= 10 .【解答】解:,①×2﹣②得:y=1,把y=1代入①得:x=2,把x=2,y=1代入3x+4y=10,故答案为:1014.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a<3 .【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为 1 .【解答】解:2A+B=2(ay﹣1)+(3ay﹣5y﹣1)=2ay﹣2+3ay﹣5y﹣1=5ay﹣5y﹣3=5y(a﹣1)﹣3∴a﹣1=0,∴a=1故答案为:116.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有 3 种换法.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:317.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 36 度.【解答】解:由折叠的性质可得:∠MFE=∠EFC,∵∠BFM=∠EFM,可设∠BFM=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠BFM=36°.故答案为:36.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E 点,…,依此类推,经过4035或4036 次移动后该点到原点的距离为2018个单位长度.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|【解答】解:(1)原式=18﹣30﹣8=﹣20;(2)原式=1××+0.2=+=.20.(8分)解方程:(1)7x﹣9=9x﹣7(2)【解答】解:(1)7x﹣9=9x﹣7 7x﹣9x=﹣7+9﹣2x=2x=﹣1;(2)5(x﹣1)=20﹣2(x+2)5x﹣5=20﹣2x﹣45x+2x=20﹣4+57x=21x=3.21.(6分)解不等式,并把它的解集在数轴上表示出来.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.【解答】解:∵|x﹣2|+(y+2)2=0,∴x=2,y=﹣2,=x﹣x+y2﹣x+y2=﹣x+y2,当x=2,y=﹣2时,原式=﹣2+4=2.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.【解答】解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=324.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.【解答】解:(1)如图所示:(2).25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为24 cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加 2 小正方体.【解答】解:(1)如图所示:(2)几何体表面积:2×(5+4+3)=24(平方厘米),故答案为:24;(3)最多可以再添加2个小正方体.故答案为:2.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是∠BOF和∠DOF ,∠BOE的补角是∠AOE和∠DOE .【解答】解:(1)设∠BOF=α,∵OF是∠BOD的平分线,∴∠DOF=∠BOF=α,∵∠BOE比∠DOF大38°,∴∠BOE=38°+∠DOF=38°+α,∵OE⊥OF,∴∠EOF=90°,∴38°+α+α+α=90°,解得:α=26°,∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;(2)∠COE=∠BOE,理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠DOF,∵OF是∠BOD的平分线,∴∠DOF=∠BOF,∴∠COE=90°﹣∠BOF,∵OE⊥OF,∴∠EOF=90°,∴∠BOE=90°﹣∠BOF,∴∠COE=∠BOE;(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,故答案为:∠BOF和∠DOF,∠AOE和∠DOE.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg) 3.6 5.4 8 4.8零售价(元/kg) 5.4 8.4 14 7.6请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(5.4﹣3.6)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 2 (单位长度/秒);点B运动的速度是4 (单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?【解答】解:(1)①画出数轴,如图所示:可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);故答案为:2,4;②设点P在数轴上对应的数为x,∵PA﹣PB=OP≥0,∴x≥2,当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,则=2或=4;(2)设再经过m秒,可得MN=4(单位长度),若M、N运动的方向相同,要使得MN=4,必为N追击M,∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,解得:m=4或m=8;若M、N运动方向相反,要使得MN=4,必为M、N相向而行,∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,解得:m=或m=,综上,m=4或m=8或m=或m=.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:事件A 必然事件 随机事件(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

人教部编版七年级数学上册期末测试题 (13)

河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷一.单选题(共10题;共30分)1.化简的结果是()A. 3B. ﹣3 C. ﹣4 D. 242.“情系玉树,大爱无疆——抗震救灾大型募捐活动”4月20日晚在中央电视台1号演播大厅举行。

据统计,这台募捐晚会共募得善款21.75亿元人民币,约合每秒钟筹集善款16万元。

21.75亿元用科学记数法可以表示为A. 21.75×108B. 2.175×108C. 21.75×109D. 2.175×1093.如图所示的立方体,如果把它展开,可以是下列图形中的()A. B.C. D.4.定义一种运算☆,其规则为a☆b=,根据这个规则,计算2☆3的值是()A. B.C.5 D. 65.规定一种新的运算x⊗y=x﹣y2,则﹣2⊗3等于()A. -11B. -7C. -8D. 256.下列计算正确的是()A. a2•a3=a6B. (x3)2=x6C. 3m+2n=5mnD. y3•y3=y7.计算(-2)×3的结果是()A. -6B.-1 C. 1D. 68.某市一天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A. ﹣10℃B. ﹣6℃ C. 10℃ D. 6℃9.减去﹣3x得x2﹣3x+6的式子为()A. x2+6B. x2+3x+6C. x2﹣6xD. x2﹣6x+610.一组按规律排列的多项式:,,,,…,其中第10个式子是( )A. B. C.D.二.填空题(共8题;共24分)11.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,________.12.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆________ g.13.观察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…通过观察,用你发现的规律,写出72004的末位数字是________.14.多项式x4﹣x2﹣x﹣1的次数、项数、常数项分别为________.15.猜谜语(打书本中两个几何名称).剩下十分钱________ ;两牛相斗________ .16.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是________17.﹣1 的相反数是________,倒数是________.18.计算:①1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017=________ ;②1﹣22+32﹣42+52﹣…﹣962+972﹣982+992=________三.解答题(共6题;共36分)19.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数(2)若∠BOC=a°,求∠DOE的度数(3)图中是否有互余的角?若有请写出所有互余的角20.若“”是一种新的运算符号,并且规定.例如:,求的值.21.如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.22.已知a,b是实数,且有 |a-|+(b+)2,求a,b的值.23.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.24.计算(1)25°34′48″﹣15°26′37″(2)105°18′48″+35.285°.四.综合题(共10分)25.如图,点O是直线AB上一点,射线OA1, OA2均从OA的位置开始绕点O顺时针旋转,OA1旋转的速度为每秒30°,OA2旋转的速度为每秒10°.当OA2旋转6秒后,OA1也开始旋转,当其中一条射线与OB重合时,另一条也停止.设OA1旋转的时间为t秒.(1)用含有t的式子表示∠A1OA=________°,∠A2OA=________°;(2)当t =________,OA1是∠A2OA的角平分线;(3)若∠A1OA2=30°时,求t的值.河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷参考答案与试题解析一.单选题1.【答案】A【考点】有理数的除法【解析】【解答】解:=(﹣36)÷(﹣12), =36÷12,=3.故选A.【分析】根据有理数的除法运算法则进行计算即可得解.2.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】将21.75亿=2175000000用科学记数法表示为2.175×109.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【考点】几何体的展开图【解析】【解答】解:选项A、C、D中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后与原立方体符合,所以正确的是B.故选:B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.同时注意图示中的阴影的位置关系.4.【答案】A【考点】定义新运算【解析】【分析】由a☆b=,可得2☆3=,则可求得答案.【解答】∵a☆b=∴2☆3=故选A.【点评】此题考查了新定义题型.解题的关键是理解题意,根据题意解题.5.【答案】A【考点】有理数的混合运算【解析】【解答】解:∵x⊗y=x﹣y2,∴﹣2⊗ 3=﹣2﹣32=﹣2﹣9=﹣11.故选A.【分析】根据运算“⊗”的规定列出算式即可求出结果.6.【答案】B【考点】同类项、合并同类项,同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】A、a2•a3=a5,故本选项错误;B、(x3)2=x6,故本选项正确;C、3m+2n≠5mn,故本选项错误;D、y3•y3=y6,故本选项错误.故选B.【分析】利用同底数幂的乘法,幂的乘方与合并同类项的知识求解,即可求得答案.注意排除法在解选择题中的应用.7.【答案】A【考点】有理数的乘法【解析】【分析】根据有理数的乘法法则,异号得负可得。

安徽省滁州市七年级数学2017-2018学年上学期期末试卷

2017-2018学年安徽省滁州市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,满分40分)1.(4.00分)在﹣2,1,0,﹣5中,最小的数是()A.﹣2 B.1 C.0 D.﹣5【考点】18:有理数大小比较.【解答】解:﹣5<﹣2<0<1,最小的数是﹣5.故选:D.2.(4.00分)某省今年上半年实现农产品出口额98300万美元,其中98300万用科学记数法表示为()A.0.983×109B.0.983×1010C.9.83×108D.9.83×109【考点】1I:科学记数法—表示较大的数.【解答】解:98300万用科学记数法表示为9.83×108,故选:C.3.(4.00分)下列调查中,适合用普查方式的是()A.了解一批灯泡的使用寿命B.奥运会上男子100米短跑参赛运动员兴奋剂的使用情况C.了解全国中学生心理健康状况D.调查某电视节目的收视率【考点】V2:全面调查与抽样调查.【解答】解:A、了解一批灯泡的使用寿命调查具有破坏性适合抽样调查,故A 不符合题意;B、奥运会上男子100米短跑参赛运动员兴奋剂的使用情况是事关重大的调查适合普查,故B符合题意;C、了解全国中学生心理健康状况调查范围广适合抽样调查,故C不符合题意;D、调查某电视节目的收视率调查范围广适合抽样调查,故D不符合题意;故选:B.4.(4.00分)下列计算正确的是()A.3a﹣2a=1 B.x2y﹣2xy2=﹣xy2C.3ax﹣2xa=ax D.3a2+5a2=8a4【考点】35:合并同类项.【解答】解:A、3a﹣2a=a,故此选项错误;B、x2y和﹣2xy2不能合并,故此选项错误;C、3ax﹣2xa=ax,故此选项正确;D、3a2+5a2=8a2,故此选项错误;故选:C.5.(4.00分)已知x=1,|y|=2且x>y,则x﹣y的值是()A.﹣1 B.﹣3 C.1 D.3【考点】15:绝对值;1A:有理数的减法.【解答】解:∵x=1,|y|=2且x>y,∴x=1,y=﹣2,则x﹣y=3.故选:D.6.(4.00分)已知是方程组的解,则a,b间的关系是()A.a+b=3 B.a﹣b=﹣1 C.a+b=0 D.a﹣b=﹣3【考点】97:二元一次方程组的解.【解答】解:将代入方程组得,,①+②得,a+b=3.故选:A.7.(4.00分)如图,点O在直线AB上,∠COD=105°,∠2=2∠1,则∠1的度数是()A.60°B.50°C.35°D.25°【考点】IK:角的计算.【解答】解:∵∠COD=105°,∴∠1+∠2=180°﹣∠COD=75°,∵∠2=2∠1,∴∠1=25°,故选:D.8.(4.00分)已知点A,B,C在同一直线上,AB=5cm,BC=3cm,则线段AC的长是()A.8cm B.2cm C.8cm或2cm D.不能确定【考点】ID:两点间的距离.【解答】解:若C在线段AB上,,则AC=AB﹣BC=5﹣3=2(cm);若C在线段AB的延长线上,,则AC=AB+BC=5+3=8(cm),故选:C.9.(4.00分)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母22个或螺栓16个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套.则下面所列方程中正确的是()A.2×16x=22(27﹣x)B.16x=22(27﹣x)C.22x=16(27﹣x)D.2×22x=16(27﹣x)【考点】89:由实际问题抽象出一元一次方程.【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母22个或螺栓16个,∴可得2×16x=22(27﹣x).故选:A.10.(4.00分)小明在超市买回若干个相同的纸杯,他把纸杯整齐地叠放在一起.如图①,3个纸杯的高度为11cm,如图②,5个纸杯的高度为13cm,若把n个这样的杯子叠放在一起,高度为()A.n+10 B.n+8 C.2n+5 D.2n+3【考点】32:列代数式.【解答】解:由题意可得,每增加一个水杯,增加的高度是(13﹣11)÷(5﹣3)=2÷2=1cm,∴把n个这样的杯子叠放在一起,高度为:11+(n﹣3)×1=11+n﹣3=(n+8)cm,故选:B.二、填空题(每小题5分,满分20分)11.(5.00分)A,B,C三地的海拔高度分别是﹣50米,﹣70米,20米,则最高点比最低点高90米.【考点】1A:有理数的减法.【解答】解:根据题意得:20﹣(﹣70)=20+70=90,则最高点比最低点高90米,故答案为:9012.(5.00分)若a﹣b=2,则5﹣a+b的值是3.【考点】33:代数式求值.【解答】解:当a﹣b=2时,5﹣a+b=5﹣(a﹣b)=5﹣2=3,故答案为:3.13.(5.00分)规定运算:=ad﹣bc,例如=2×5﹣3×4=﹣2,若=6x ﹣5,则x的值是2.【考点】1G:有理数的混合运算;86:解一元一次方程.【解答】解:根据题中的新定义化简得:3x﹣3+2x=6x﹣5,移项合并得:﹣x=﹣2,解得:x=2,故答案为:214.(5.00分)如图,平面内∠AOB=∠COD=90°,∠AOE=∠DOE,点E,O,F在一条直线上,下列结论:①∠AOC=∠BOD;②∠AOD与∠BOC互补;③OF平分∠BOC;④∠AOD﹣∠BOF=90°.其中正确结论的有①②③(把所有正确结论的序号都选上)【考点】IL:余角和补角.【解答】解:①∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,故①正确;②∵∠AOD+∠BOC=90°+∠AOC+∠BOC=180°,∴∠AOD与∠BOC互补,故②正确;③∵∠AOE=∠DOE,∠AOC=∠BOD,∴∠BOF=∠COF,∴OF平分∠BOC,故③正确;④∵∠AOD﹣∠BOF=∠AOC+90°﹣∠BOF,没有∠AOC≠∠BOF,故④不正确.故答案为:①②③.三、(每小题8分,满分16分)15.(8.00分)计算:(﹣1)2017+[4﹣(﹣5)]×|﹣|﹣23【考点】1G:有理数的混合运算.【解答】解:原式=﹣1+6﹣8=﹣3.16.(8.00分)解方程:﹣2=【考点】86:解一元一次方程.【解答】解:2(2y+1)﹣12=3(y﹣2)4y+2﹣12=3y﹣64y﹣10=3y﹣6y=4四、(每小题8分,满分16分)17.(8.00分)如图,点C在线段AB上,且AC:CB=1:2,点D是AB的中点,已知线段AD=6cm,求线段CD的长.【考点】ID:两点间的距离.【解答】解:∵D是AB的中点,∴AB=2AD=12cm,∵AC:CB=1:2,∴AC=AB=4cm,∴CD=AD﹣AC=6﹣4=2(cm).18.(8.00分)先化简,再求值.﹣xy+[3x2﹣(2xy﹣x2)]﹣3(x2﹣xy+y2),其中x,y满足(x+1)2+|y﹣2|=0【考点】16:非负数的性质:绝对值;1F:非负数的性质:偶次方;45:整式的加减—化简求值.【解答】解:原式=﹣xy+3x2﹣(2xy﹣x2)﹣3(x2﹣xy+y2)=﹣xy+3x2﹣2xy+x2﹣3x2+3xy﹣3y2=x2﹣3y2,∵(x+1)2+|y﹣2|=0,∴x+1=0、y﹣2=0,解得:x=﹣1、y=2,则原式=(﹣1)2﹣3×22=1﹣12=﹣11.五、(每小题10分,满分20分)19.(10.00分)甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.【考点】97:二元一次方程组的解.【解答】解:(1)根据题意得:,解得:a=2,b=﹣3,(2)方程组为,解得.20.(10.00分)用大小一样的黑白两种颜色的小正方形纸片,按如下规律摆放:(1)第⑤个图案有16张白色小正方形纸片;(2)第n个图案有3n+1张白色小正方形纸片;(3)第几个图案中白色纸片和黑色纸片共有81张?【考点】38:规律型:图形的变化类.【解答】解:(1)∵第1个图形中白色纸片的数量4=1+3×1,第2个图形中白色纸片的数量7=1+3×2,第3个图形中白色纸片的数量10=1+3×3,……∴第5个图片中白色纸片的数量为1+3×5=16,故答案为:16;(2)由(1)知,第n个图案中白色纸片的数量为1+3n,故答案为:3n+1;(3)设第n个图案中共有81张纸片,由3n+1+n=81得n=20,即第20个图案中共有81张纸片.六、(本题满分12分)21.(12.00分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是144°;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【解答】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为:144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.七、(本题满分12分)22.(12.00分)如图,OD是∠AOC的平分线,OE是∠BOC的平分线.(1)如图①,当∠AOB=90°,∠BOC=40°时,求∠DOE的度数;(2)如图②,当∠AOB=80°,∠BOC=50°时,∠DOE的度数是40°;(3)如图③,当∠AOB=α,∠BOC=β时,猜想:∠DOE与α、β有什么数量关系?并说明理由.【考点】IJ:角平分线的定义;IK:角的计算.【解答】解:(1)如图①,∵∠AOB=90°,∠BOC=40°,∴∠AOC=90°+40°=130°,∵OD是∠AOC的平分线,OE是∠BOC的平分线,∴∠DOC=∠AOC=65°,∠EOC=∠BOC=20°,∴∠DOE=∠DOC﹣∠EOC=45°.(2)如图②,∵∠AOB=80°,∠BOC=50°,∴∠AOC=90°+40°=130°,∵OD是∠AOC的平分线,OE是∠BOC的平分线,∴∠DOC=∠AOC=65°,∠EOC=∠BOC=25°,∴∠DOE=∠DOC﹣∠EOC=40°.(3)如图③,∵∠AOB=α,∠BOC=β,∴∠AOC=α+β,∵OD是∠AOC的平分线,OE是∠BOC的平分线,∴∠DOC=∠AOC=(α+β),∠EOC=∠BOC=β,∴∠DOE=∠DOC﹣∠EOC=α.故答案为:40°.八、(本题满分14分)23.(14.00分)某超市第一次用4600元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍少40件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多280元,则第二次乙商品是按原价打几折销售的?【考点】9A:二元一次方程组的应用.【解答】解:(1)设第一次购进甲种商品x件,购进乙种商品y件,根据题意得:,解得.答:该超市第一次购进甲种商品100件,购进乙种商品80件.(2)(28﹣22)×100+(40﹣30)×80=1400(元).答:该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得1400元.(3)设第二次乙种商品是按原价打m折销售的,根据题意得:(28﹣22)×100×2+(40×﹣30)×80=1400+280,解得:m=9.答:第二次乙商品是按原价打九折销售.第11页(共11页)。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析


B.最大的负整数是﹣ 1
C.有理数包括正有理数和负有理数
D.一个有理数的平方总是正数
3.(2017?扬州)若数轴上表示﹣ 1 和 3 的两点分别是点 A 和点 B,则点 A 和点 B
之间的距离是(

A .﹣ 4
B.﹣ 2
C.2
D. 4
4.( 2017?长春) 3 的相反数是(

A .﹣ 3
B.﹣
C.
A .90°B. 120° C. 160° D. 180° 【分析】 因为本题中∠ AOC 始终在变化,因此可以采用 “设而不求 ”的解题技巧进 行求解. 【解答】 解:设∠ AOD=a ,∠ AOC=9°0 +a,∠ BOD=9°0 ﹣a, 所以∠ AOC +∠ BOD=9°0 +a+90°﹣a=180°. 故选 D. 二.填空题(每小题 3 分,共 24 分) 13.(2017?冷水滩区一模)若∠ α补角是∠ α余角的 3 倍,则∠ α= 45° . 【分析】 分别表示出∠ α补角和∠ α余角,然后根据题目所给的等量关系, 列方程 求出∠ α的度数. 【解答】 解:∠ α的补角 =180°﹣ α, ∠α的余角 =90°﹣α, 则有: 180°﹣ α=3(90°﹣α), 解得: α=45°. 故答案为: 45°. 14.(2017?枣庄阴平质检)已知∠ AOB=70°,∠ BOC=20°,OE 为∠ AOB 的平分
25.(12 分)(2017?岳阳) 我市某校组织爱心捐书活动,准备将一批捐赠的书打包
寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的
,结果打了
16 个包还多 40 本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书 一起,刚好又打了 9 个包,那么这批书共有多少本?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017~2018学年度第一学期期末教学质量检测
七年级数学
一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个
1、最大的负整数的2014次方与绝对值最小的数的2015次方的和是( )
(A) -1 (B) 1 (C) 0 (D) 2 2、下列各数据中,准确数是 ( )
(A) 王楠体重为45.8kg (B) 大同市矿区某中学七年级有322名女生 (C)珠穆朗玛峰高出海平面8848.13m (D)中国约有13亿人口 3、一个多项式与122+-x x 的和是23-x ,则这个多项式为( ) (A)352+-x x (B)12-+-x x (C) 352-+-x x (D) 1352--x x 4、已知:当b = 1,c = -2时,代数式ab + bc + ca = 10, 则a 的值为
( )
A.12
B.6
C.-6
D.-12
5、下列解方程去分母正确的是( )
A.由1132x x
--=
,得2x - 1 = 3 - 3x;
B.由232
124
x x ---=-,得2(x - 2) - 3x - 2 = - 4
C.由131
236y y y y +-=--,得3y + 3 = 2y - 3y + 1 - 6y;
D.由44
153
x y +-=,得12x - 1 = 5y + 20
6、某商贩在一次买卖中,同时卖出两件上衣,售价都是120元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( ). (A )赔16元 (B )不赚不赔 (C ) 赚8元 (D )赚16元
7、某试卷由26道题组成,答对一题得8分,答错一题倒扣5分。

今有一考生虽然做了全部的26道题,但所得总分为零,他做对的题有( ). (A )10道 (B )15道 (C )20道 (D )8道 8、下列图形中,不能..
经过折叠围成正方体的是 ( )
B
C D
A
E 9题图
A. B. C. D. 9、如图,∠AOB 是平角,OC 是射线,OD 平分∠AOC,OE 平分∠BOC,∠BOE=18°,则∠AOD 的度数为( ) A.78°
B.62°
C.88°
D.72°
10
、下图中,不是左图所示物体视图的是( )
二、填空题(本题共6个小题,每小题3分,共18分)
11、=⨯--⨯-2236.03
21)32()5.1(________;
12、将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有 个小圆. (用含 n 的代数式表示)
13、若a 与b 互为相反数,c 与d 互为负倒数,m 的绝对值是2,则|a +b |-(m 2-cd )+
2(m 2+cd )-m 5a -m 5b 的是_________.
14、若x 的3倍与9的和等于x 的3
1
与23的差.则x =__________ .
15、若一个角的补角是150°,则这个角的余角是____________.
16、把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花朵数
的情况列表如下:
现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上
第1个图形
第 2 个图形 第3个图形
第 4 个图形
第12题图
放置的长方体,如下图所示,那么长方体的下底面共有______朵花.
三、解答题(本题共6个小题,共52分,解答应写出文字说明或演算步骤) 17.(本题共2个小题,每题5分,共10分) (1)计算:33
332328
32)1312)(23(--+÷--
(2)解方程:112
2(1)(1)
223x x x x ⎡⎤---=-⎢⎥⎣⎦
18.(本题6分)化简求值:
已知180-=+b a ,187=ab ,求()()2332ab a b ab +---⎡⎤⎣⎦的值.
19.(本题6分)若a ,b 为定值,关于x 的一元一次方程
26
32=--+bx
x x ka 无论k 为何值时,它的解总是1,求a ,b 的值.
20.(本题10分)张新和李明相约到图书城去买书,请你根据他们的对话内容,求出李明上次所买书籍的原价.
21.(本题10分)一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
22.(本题10分)右图的数阵是由一些奇数排成的. 1 3 5 7 9 (1)右图框中的四个数有什么关系? 11 13 15 17 19 设框中第一行第一个数为x,用x表示其它三个数)
………………
(2)若这样框出的四个数的和是200,求这四个数.91 93 95 97 99
(3)是否存在这样的四个数,它们的和为420,为什么?
2017~2018学年度第一学期期末教学质量检测
七年级数学参考答案
二、填空题(本题共6个小题,每小题3分,共18分)
11、10
21-
; 12、42
++n n ; 13、1; 14、12-; 15、60°; 16、11.
三、解答题(本题共6个小题,共52分,解答应写出文字说明或演算步骤) 17.(本题共2个小题,每题5分,共10分) (1)19819
-; (2)x=5
13
-. 18.(本题6分)()()2332ab a b ab +---⎡⎤⎣⎦2663ab a b ab =--+=()56ab a b -+ 当180-=+b a ,187=ab 时,原式)180(61875-⨯-⨯=20151080935=+= 19.(本题6分)0=a ,11=b .
20.(本题10分)160元. 21.(本题10分)437. 22.(本题10分)⑴x +2,x +8,x +10. ⑵45,47,53,55 ⑶I 不存在。

设第一个数为x ,(x 为奇数)
那么其余三数依次为x +2,x +8,x +10.
根据题意,得 x +(x +2)+(x +8)+(x +10)=420, 解这个方程,得 x =100. x =100不合题意.
所以不存在这样的四个数,使它们的和为420.。

相关文档
最新文档