2017七年级,下册数学期末试卷

合集下载

2017年新人教版七年级下学期期末数学试题一及答案

2017年新人教版七年级下学期期末数学试题一及答案

2017 年七年级下期期末数学试题一一、选择题: ( 本大题共 10 个小题,每小题 3 分,共 30 分) 1.若 m >- 1,则下列各式中错误的 是( )...A . 6m >- 6B .- 5m <- 5C .m+1>0 D . 1-m < 2 2. 下列各式中 , 正确的是 ( )A.16 =±4 B. ± 16=4C.327 =-3 D. ( 4) 2 =-43.已知 a > b > 0,那么下列不等式组中无解 的是( )..A .x ax ax a Dxaxb B .bC .b .bxxx4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角 度可能为 ( )(A) 先右转 50°,后右转 40° (B)先右转 50°,后左转 40° (C) 先右转 50°,后左转 130° (D) 先右转 50°,后左转 50°5.解为x 1)y 的方程组是(2x y 1B.x y1C.x y 3x 2y 3A.y 53x y5 3x y D.y53x13x6.如图,在△ ABC 中,∠ ABC=50,∠ ACB=80, BP 平分∠ ABC ,CP 平分∠ ACB ,则∠ BPC的大小是( ) A . 1000B . 1100 C. 1150D. 1200AA1A小刚PDBB B 1CC 1小军C小华(1)(2) (3)7.四条线段的长分别为 3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是 ()A . 4B . 3C . 2D . 18.在各个内角都相等的多边形中, 一个外角等于一个内角的1,则这个多边形的边数是()A . 5B . 6C . 7D . 8 29.如图,△ A 1B 1 C 1 是由△ ABC 沿 BC 方向平移了 B C 长度的一半得到的,若△ ABC 的面积为 20 cm 2,则四边形 A DCC 的面积为( )1 1A . 10 cm 2B . 12 c m 2C. 15 cm 2D.17 cm 2110. 课间操时 , 小华、小军、小刚的位置如图 1, 小华对小刚说 , 如果我的位置用 (?0,0) 表示 , 小军的位置用 (2,1) 表示 , 那么你的位置可以表示成 ( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题 :本大题共8 个小题, 每小题 3 分,共 24 分,把答案直接填在答题卷的横线上. 11.49 的平方根是 ________, 算术平方根是 ______,-8的立方根是 _____. 12. 不等式 5x-9 ≤ 3(x+1) 的解集是 ________.13. 如果点 P(a,2) 在第二象限 , 那么点 Q(-3,a)在 _______.李庄 14. 如图 3 所示 , 在铁路旁边有一李庄 , 现要建一火车站 ,? 为 了使李庄人乘火车最方便 ( 即距离最近 ), 请你在铁路旁选 一点来建火车站 ( 位置已选好 ), 说明理由 :____________.火车站15. 从 A 沿北偏东60°的方向行驶到 B, 再从 B 沿南偏西 20°的方向行驶到 C,? 则∠ ABC=_______度.16. 如图 ,AD ∥ BC,∠ D=100° ,CA 平分∠ BCD,则∠ DAC=_______.AD17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④正八边形.用上述正多边形中的一种能够辅满地面的是 _____________. ( 将所有答案的序号都填上 )18. 若│ x 2-25 │ +y 3 =0, 则 x=_______,y=_______.B C三、解答题 :本大题共 7 个小题, 共 46 分,解答题应写出文字说明、 证明过程或演算步骤.x 3( x 2) 4,19.解不等式组:2x 1 x , 并把解集在数轴上表示出来.1 . 5 22 3 1 20.解方程组: x y 2 344(x y) 3(2x y) 17 221. 如图 , AD ∥ BC , AD 平分∠ EAC,你能确定∠ B 与∠ C 的数量关系吗 ?请说明理由。

2017七级数学下期末试卷(带答案)

2017七级数学下期末试卷(带答案)

2017年七年级数学下期末试卷(带答案)【解答】解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.故答案为:70.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.16.如图,四边形ABCD中,∠A=100°,∠C=70°,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠B的度数为95 °.【考点】JA:平行线的性质.【分析】首先利用平行线的性质得出∠BMF=80°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.【解答】解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=80°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°﹣50°﹣35°=95°,故答案为:95.【点评】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.三、解答题(共11小题,满分68分)17.计算:(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1(2)(2a2+ab﹣2b2)(﹣ab)【考点】4A:单项式乘多项式;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)根据0次幂和负整数指数幂,即可解答.(2)根据单项式乘以多项式,即可解答.【解答】解:(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1=1+4﹣2×=1+4﹣1=4.(2)(2a2+ab﹣2b2)(﹣ab)=.【点评】本题考查了单项式乘以多项式,解决本题的关键是熟记单项式乘以多项式的法则.18.先化简,再求值:2b2+(b﹣a)(﹣b﹣a)﹣(a﹣b)2,其中a=﹣3,b=.【考点】4J:整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=2b2+a2﹣b2﹣a2+2ab﹣b2=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.【点评】本题考查了整式的混合运算和求值的应用,题目比较好,难度适中.19.分解因式:x4﹣2x2y2+y4.【考点】54:因式分解﹣运用公式法.【分析】首先利用完全平方公式分解因式进而利用平方差公式分解因式得出答案.【解答】解:x4﹣2x2y2+y4=(x2﹣y2)2=(x﹣y)2(x+y)2.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.20.解方程组:.【考点】98:解二元一次方程组.【专题】11:计算题;521:一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×5+②得:14y=14,即y=1,把y=1代入①得:x=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(1)解不等式:2x﹣1≥3x+1,并把解集在数轴上表示出来.(2)解不等式组:,并写出所有的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)先再移项、合并同类项,最后系数化为1即可;(2)先求出两个不等式的解集,再求其公共解,然后写出范围内的整数解即可.【解答】解:(1)2x﹣1≥3x+1,2x﹣3x≥1+1,﹣x≥2,x≤﹣2,把解集在数轴上表示出来为:(2),由①得,4x+4≤7x+10,﹣3x≤6,x≥﹣2,由②得,3x﹣3x 所以,不等式组的解集是﹣2≤x 所以,原不等式的所有的整数解为﹣2,﹣1.【点评】考查了解一元一次不等式,注意系数化为1时,不等号的方向是否改变.同时考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.把下面的证明过程补充完整.已知:如图:△ABC'中,AD⊥BC于点D,EF⊥BC于点F,EF 交AB于点G,交CA的延长线于点E,AD平分∠BAC.求证:∠1=∠2证明:∵AD⊥BC于点D,FF⊥BC于点F(己知)∴∠ADC=90°,∠EFC=90°(垂直定义)∴∠ADC=∠EFC(等量代换)∴AD∥EF( 同位角相等,两直线平行)∴∠1=∠BAD(两直线平行,同位角相等)∠2=∠CAD(两直线平行,同位角相等)∵AD平分∠BAC(己知)∴∠BAD=∠CAD(角平分线定义)∴∠1=∠2(等量代换)【考点】JB:平行线的判定与性质.【分析】求出∠ADC=∠EFC,根据平行线的判定得出AD∥EF,根据平行线的性质得出∠1=∠BAD,∠2=∠CAD,根据角平分线定义得出∠BAD=∠CAD,即可得出答案.【解答】证明::∵AD⊥BC于点D,FF⊥BC于点F(己知),∴∠ADC=90°,∠EFC=90°(垂直定义),∴∠ADC=∠EFC(等量代换),∴AD∥EF(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,同位角相等),∠2=∠CAD(两直线平行,同位角相等),∵AD平分∠BAC(己知),∴∠BAD=∠CAD(角平分线定义),∴∠1=∠2(等量代换),故答案为:同位角相等,两直线平行,两直线平行,同位角相等,∠CAD,角平分线定义,等量代换.【点评】本题考查了平行线的性质和判定,角平分线定义,垂直定义的应用,能灵活运用定理进行推理是解此题的关键.23.证明:三角形三个内角的和等于180°.已知:△ABC.求证:∠BAC+∠B+∠C=180°.【考点】K7:三角形内角和定理.【专题】14:证明题.【分析】画出画图,已知△ABC、求证:∠BAC+∠B+∠C=180°.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】解:已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.故答案为:△ABC;∠BAC+∠B+∠C=180°.【点评】本题考查证明三角形内角和定理,解题的关键是做平行线,利用平行线的性质进行证明.24.如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=32°,∠AEB=70°.(I)求∠CAD的度数;(2)若点F为线段BC上任意一点,当△EFC为直角三角形时,则∠BEF的度数为58°或20°.【考点】K7:三角形内角和定理.【分析】(1)根据角平分线的定义、三角形内角和定理计算即可;(2)分∠EFC=90°和∠FEC=90°两种情况解答即可.【解答】解:(1)∵BE为△ABC的角平分线,∴∠CBE=∠EBA=32°,∵∠AEB=∠CBE+∠C,∴∠C=70°﹣32°=38°,∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=52°;(2)当∠EFC=90°时,∠BEF=90°﹣∠CBE=58°,当∠FEC=90°时,∠BEF=180°70°﹣90°=20°,故答案为:58°或20°.【点评】本题考查的是三角形的内角和定理,掌握三角形内角和等于180°是解题的关键.25.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.蔬菜品种西红柿西兰花批发价(元/kg)3.68零售价(元/kg)5.414(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?【考点】9A:二元一次方程组的应用.【分析】(1)设批发西红柿xkg,西兰花ykg,根据批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,列方程组求解;(2)设批发西红柿akg,根据当天全部售完后所赚钱数不少于1050元,列不等式求解.【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(5.4﹣3.6)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.【点评】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.26.现有一种计算13×12的方法,具体算法如下:第一步:用被乘数13加上乘数12的个位数字2,即13+2=15.第二步:把第一步得到的结果乘以10,即15×10=150.第三步:用被乘数13的个位数字3乘以乘数12的个位数字2,即3×2=6.第四步:把第二步和第三步所得的结果相加,即150+6=156.于是得到13×12=156.(1)请模仿上述算法计算14×17并填空.第一步:用被乘数14加上乘数17的个位数字7,即14+7=21 .第二步:把第一步得到的结果乘以10,即21×10=210.第三步:用被乘数14的个位数字4乘以乘数17的个位数字7,即4×7=28.第四步:把第二步和第三步所得的结果相加,即210+28=238 .于是得到14×17=238.(2)一般地,对于两个十位上的数字都为1,个位上的数字分别为a,b(0≤a≤9,0≤b≤9,a、b为整数)的两位数相乘都可以按上述算法进行计算.请你通过计算说明上述算法的合理性.【考点】1C:有理数的乘法;19:有理数的加法.【分析】(1)仿照以上四步计算方法逐步计算即可;(2)对于(10+a)×(10+b),先按照上述方法逐步列式表示,再根据整式的乘法法则计算即可验证其正确性.【解答】解:(1)计算14×17,精心整理,仅供学习参考。

2017人教版七年级数学下册期末试卷(含详细答案)

2017人教版七年级数学下册期末试卷(含详细答案)

2017人教版七年级数学下册期末试卷(含详细答案)无为县2016-2017学年度第二学期期末中小学研究质量评价·七年级数学试卷一、选择题(本大题共10小题,每小题4分,共计40分,请将下列各题中A、B、C、D选项中唯一正确的答案代号填到本题前的表格内)1.下列各数中是无理数的是A。

3.14 B。

16 C。

2√3 D。

62.9的算术平方根是A。

±9 B。

3 C。

-3 D。

±33.下列调查中,适合采用全面调查(普查)方式的是A。

对巢湖水质情况的调查B。

对端午节期间市场上粽子质量情况的调查C。

节能灯厂家对一批节能灯管使用寿命的调查D。

对某班50名学生视力情况的调查4.平面直角坐标系中点(-2,3)所在的象限是A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限5.通过估算,估计19的值应在无图)A。

2~3之间 B。

3~4之间 C。

4~5之间 D。

5~6之间6.数学课上,XXX同学在练本的相互平行的横隔线上先画了直线a,度量出∠1=112°,接着他准备在点A处画直线b。

若要b∥a,则∠2的度数为A。

112° B。

88° C。

78° D。

68°7.不等式组无图)解集在数轴上表示为A。

(无法呈现)B。

(无法呈现)C。

(无法呈现)D。

(无法呈现)8.已知无法呈现)是二元一次方程组无法呈现)的解,则m-n的值是A。

1 B。

2 C。

3 D。

49.如图,XXX把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上。

如果∠1=20°,那么∠2的度数是有图)A。

25° B。

30° C。

40° D。

45°10.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根据这个规律,点P2017的坐标为无法呈现)A。

2017初一下学期数学期末试卷及标准答案

2017初一下学期数学期末试卷及标准答案

初一下学期数学期末试卷一.填空丄1•“;的3倍与:的二的和”用代数式表示是_________ 。

1 4 2—X—一尹=—2. 将二元一次方程」:「,用含工的代数式表示,为________ 。

」是—次单项式,它的系数是—。

3. 用四舍五入的方法把1095000保留三个有效数字所取得的近似数是---精确到位。

方程为二元一次方程;当时,该方程为一元一次方程。

6. 如果关于的方程-'--■"的解是一个负数,那么代的取值范围是⑸如■=+中户屮二一,.(一①帚(一屮尸+&加〜严二7.24x +□/-!■—7. 若-是一个完全平方式,则二二______ 。

若--1■',则二二—。

x>a十2:8. 若关于尤的不等式组I" J九一-无解,则°的取值范围是_____________ 。

9. 若’",则一I 的值是_。

二.选择1. 若一个有理数与它的相反数的差为一个负数,则()A.这个有理数一定是负数B.这个有理数一定是正数C.这个有理数可为正数,也可为负数D.这个有理数一定是零2. 如果工、‘为小于10的自然数,且''';,,则''的值有()A. 1个B. 2个C. 3个D.多于3个3. 下列结论中正确的有(),近似数4.已知关于》的方程(和3 亠(聊+2)兀+ 0 + 1)丿=腴十,当胡=时,该5. 已知找,::,则「1h—2c - 7b - la③若■■< -:,则&、’异号④若:,则* -:A. 1个B. 2个C. 3个D. 4个5.在下列多项式的乘法中,可以用平方差公式计算的是(B (P +恥一右)D . 0+1)(1 +町6.要使式子:「:'有意义,工的取值范围是()A. ■■ -B. - -C.八 -D. -■百--7.已知盘、:’两数的和,两数的积以及 :’的相反数都小于零,比较大小正确的是(a —b <a < -h < —a <h — aC. -::八1 D.八―或八1的关系是()C ah = 2D ah' = —210.甲从一个鱼摊上买了三条鱼,a+b条"元,后来他又以每条1元的价格把鱼全部卖给了乙, 结果发现赔了钱,原因是()①若-r-:,且:—』,则.1—②若> 0,匸羊 04. 已知〔」:二”:1 ,用“ ”号把T ,和…三者的大小关系表示出来的不等式是(丄 ^<^<1A.' B. ■'C. -B. —a <h<a -b <a <-b<b —aC.a-t> <-b <~a <a <b <b- a D.x <2 x >-l8.已知关于一的不等式组耳〉口丹无解,则曲的取值范围是() A. 9.已知〉I —「一(-存m 严为正整数)则曲与.之间平均每条 二元,又从另一个鱼摊上买了两条鱼,平均每A. ' -B. - " :'C. - -D.与龙和1的大小无关2. 用适当的方法解方程组:“ 2~325%x + 15%y = 1.25 (1) I /3. 解不等式,并把它的解集表示在数轴上,2x+l>0 « 54 2x > 02x- 3 > 4K4. 解不等式组'’「 '的整数解5. 利用乘法公式计算:6. 先化简,再求值[刃'一(=+刃07)][2(-—护心一工)+ 加+纣]其中X = ~2,jv = ! 5x-y = -3 x 2 + y 2 - 29 +卫古7. 已知^ ,-,求,的值8. 列方程或方程组解应用题(1)某商场出售茶壶和茶杯,茶壶每只 15元,茶杯每只3元,商场规定买一只茶壶赠一只茶杯,某人共付款 180元,共得茶壶茶杯 36只(含赠品在内)求茶壶和茶杯各买了 多少只?(2)x+y+ 2z = 17三.解答题2(1)由( 1)得7 :( 3)把(3)代入(2)得,(2)某人步行速度是10千米/时,骑自行车速度是30千米/时,他从甲地到乙地,「的33 2路程步行「的路程骑车,然后沿原路返回甲地,返回时的时间步行二的时间骑车,结果比去时快了二小时,求甲、乙两地的距离。

2017七年级数学下册期末试卷及答案

2017七年级数学下册期末试卷及答案

2017七年级数学下册期末试卷及答案2017年七年级数学下册的期末考试就到了,要订一个详细的复习计划。

小编整理了关于2017年七年级数学下册的期末试卷及答案,希望对大家有帮助!2017七年级数学下册期末试卷一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)1.下列运算正确的是( )A. 3﹣2=6B. m3•m5=m15C. (x﹣2)2=x2﹣4D. y3+y3=2y32.在﹣、、π、3.212212221…这四个数中,无理数的个数为( )A. 1B. 2C. 3D. 43.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选( )A. 10cmB. 30cmC. 50cmD. 70cm4.下列语句中正确的是( )A. ﹣9的平方根是﹣3B. 9的平方根是3C. 9的算术平方根是±3D. 9的算术平方根是35.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售( )A. 6折B. 7折C. 8折D. 9折6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有( )A. 4个B. 3个C. 2个D. 1个二、填空题(每小题3分,共30分)7.﹣8的立方根是.8.x2•(x2)2=.9.若am=4,an=5,那么am﹣2n= .10.请将数字0.000 012用科学记数法表示为.11.如果a+b=5,a﹣b=3,那么a2﹣b2= .12.若关于x、y的方程2x﹣y+3k=0的解是,则k= .13.n边形的内角和比它的外角和至少大120°,n的最小值是.14.若a,b为相邻整数,且a<15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=°.16.若不等式组有解,则a的取值范围是.三、解答题(本大题共10小条,102分)17.计算:(1)x3÷(x2)3÷x5(x+1)(x﹣3)+x(3)(﹣ )0+( )﹣2+(0.2)2015×52015﹣|﹣1|18.因式分解:(1)x2﹣9b3﹣4b2+4b.19.解方程组:① ;② .20.解不等式组:,并在数轴上表示出不等式组的解集.21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;△ABC的面积为;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC 于D,∠ACB=40°,求∠ADE.24.若不等式组的解集是﹣1(1)求代数式(a+1)(b﹣1)的值;若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):.结论(求证):.证明:.26.某商场用18万元购进A、B两种商品,其进价和售价如下表:A B进价(元/件) 1200 1000售价(元/件) 1380 1200(1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.①问共有几种进货方案?②要保证利润最高,你选择哪种进货方案?2017七年级数学下册期末试卷参考答案一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)1.下列运算正确的是( )A. 3﹣2=6B. m3•m5=m15C. (x﹣2)2=x2﹣4D. y3+y3=2y3考点:完全平方公式;合并同类项;同底数幂的乘法;负整数指数幂.分析:根据负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,即可解答.解答:解:A、,故错误;B、m3•m5=m8,故错误;C、(x﹣2)2=x2﹣4x+4,故错误;D、正确;故选:D.点评:本题考查了负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,解决本题的关键是熟记相关法则.2.在﹣、、π、3.212212221…这四个数中,无理数的个数为( )A. 1B. 2C. 3D. 4考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:﹣是分数,是有理数;和π,3.212212221…是无理数;故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选( )A. 10cmB. 30cmC. 50cmD. 70cm考点:三角形三边关系.分析:首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步找到符合条件的答案.解答:解:根据三角形的三边关系,得第三根木棒的长度应大于10cm,而小于50cm.故选B点评:本题考查了三角形中三边的关系求解;关键是求得第三边的取值范围.4.下列语句中正确的是( )A. ﹣9的平方根是﹣3B. 9的平方根是3C. 9的算术平方根是±3D. 9的算术平方根是3考点:算术平方根;平方根.分析:A、B、C、D分别根据平方根和算术平方根的定义即可判定.解答:解:A、﹣9没有平方根,故A选项错误;B、9的平方根是±3,故B选项错误;C、9的算术平方根是3,故C选项错误.D、9的算术平方根是3,故D选项正确.故选:D.点评:本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.5.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售( )A. 6折B. 7折C. 8折D. 9折考点:一元一次不等式的应用.分析:利用每件利润不少于2元,相应的关系式为:利润﹣进价≥2,把相关数值代入即可求解.解答:解:设打x折销售,每件利润不少于2元,根据题意可得:15× ﹣10≥2,解得:x≥8,答:最多打8折销售.故选:C.点评:此题主要考查了一元一次不等式的应用,本题的关键是得到利润的关系式,注意“不少于”用数学符号表示为“≥”.6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有( )A. 4个B. 3个C. 2个D. 1个考点:平行线的性质;余角和补角.分析:先根据∠CED=90°,EF⊥CD可得出∠EDF+∠DEF=90°,∠EDF+∠DCE=90°,再由平行线的性质可知∠DCE=∠AEC,故∠AEC+∠EDF=90°,由此可得出结论.解答:解:∵∠CED=90°,EF⊥CD,∴∠EDF+∠DEF=90°,∠EDF+∠DCE=90°.∵AB∥CD,∴∠DCE=∠AEC,∴∠AEC+∠EDF=90°.故选B.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(每小题3分,共30分)7.﹣8的立方根是﹣2 .考点:立方根.分析:利用立方根的定义即可求解.解答:解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.点评:本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.8.x2•(x2)2=x6 .考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法的性质,幂的乘方的性质,即可解答.解答:解:x2•(x2)2=x2•x4=x6.故答案为:x6.点评:本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.9.若am=4,an=5,那么am﹣2n= .考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;幂的乘方,底数不变指数相乘,即可解答.解答:解:am﹣2n= ,故答案为: .点评:本题考查同底数幂的除法,幂的乘方很容易混淆,一定要记准法则才能做题.10.请将数字0.000 012用科学记数法表示为 1.2×10﹣5 .考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 012=1.2×10﹣5.故答案为:1.2×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.如果a+b=5,a﹣b=3,那么a2﹣b2= 15 .考点:因式分解-运用公式法.分析:首先利用平方差公式进行分解即可,进而将已知代入求出即可.解答:解:∵a2﹣b2=(a+b)(a﹣b),∴当a+b=5,a﹣b=3时,原式=5×3=15.故答案为:15.点评:此题主要考查了运用公式法分解因式以及代数式求值,正确分解因式是解题关键.12.若关于x、y的方程2x﹣y+3k=0的解是,则k= ﹣1 .考点:二元一次方程的解.专题:计算题.分析:把已知x与y的值代入方程计算即可求出k的值.解答:解:把代入方程得:4﹣1+3k=0,解得:k=﹣1,故答案为:﹣1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.n边形的内角和比它的外角和至少大120°,n的最小值是5 .考点:多边形内角与外角.分析: n边形的内角和是(n﹣2)•180°,n边形的外角和是360度,内角和比它的外角和至少大120°,就可以得到一个不等式:(n﹣2)•180﹣360>120,就可以求出n的范围,从而求出n的最小值.解答:解:(n﹣2)•180﹣360>120,解得:n>4 .因而n的最小值是5.点评:本题已知一个不等关系,就可以利用不等式来解决.14.若a,b为相邻整数,且a<考点:估算无理数的大小.分析:估算的范围,即可确定a,b的值,即可解答.解答:解:∵ ,且<∴a=2,b=3,∴b﹣a= ,故答案为: .点评:本题考查了估算无理数的方法:找到与这个数相邻的两个完全平方数,这样就能确定这个无理数的大小范围.15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=55 °.考点:平行线的性质.分析:过点E作EF∥AB,由AB∥CD可得AB∥CD∥EF,故可得出∠4的度数,进而得出∠3的度数,由此可得出结论.解答:解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF.∵∠1=35°,∴∠4=∠1=35°,∴∠3=90°﹣35°=55°.∵AB∥EF,∴∠2=∠3=55°.故答案为:55.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.16.若不等式组有解,则a的取值范围是a>1 .考点:不等式的解集.分析:根据题意,利用不等式组取解集的方法即可得到a的范围.解答:解:∵不等式组有解,∴a>1,故答案为:a>1.点评:此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.三、解答题(本大题共10小条,102分)17.计算:(1)x3÷(x2)3÷x5(x+1)(x﹣3)+x(3)(﹣ )0+( )﹣2+(0.2)2015×52015﹣|﹣1|考点:整式的混合运算.分析: (1)先算幂的乘方,再算同底数幂的除法;先利用整式的乘法计算,再进一步合并即可;(3)先算0指数幂,负指数幂,积的乘方和绝对值,再算加减.解答:解:(1)原式=x3÷x6÷x5=x﹣4;原式=x2﹣2x﹣3+2x﹣x2=﹣3;(3)原式=1+4+1﹣1=5.点评:此题考查整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.18.因式分解:(1)x2﹣9b3﹣4b2+4b.考点:提公因式法与公式法的综合运用.专题:计算题.分析: (1)原式利用平方差公式分解即可;原式提取b,再利用完全平方公式分解即可.解答:解:(1)原式=(x+3)(x﹣3);原式=b(b2﹣4b+4)=b(b﹣2)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.解方程组:① ;② .考点:解二元一次方程组.分析:本题可以运用消元法,先消去一个未知量,变成一元一次方程,求出解,再将解代入原方程,解出另一个,即可得到方程组的解.解答:解:(1)①×2,得:6x﹣4y=12 ③,②×3,得:6x+9y=51 ④,则④﹣③得:13y=39,解得:y=3,将y=3代入①,得:3x﹣2×3=6,解得:x=4.故原方程组的解为: .方程②两边同时乘以12得:3(x﹣3)﹣4(y﹣3)=1,化简,得:3x﹣4y=﹣2 ③,①+③,得:4x=12,解得:x=3.将x=3代入①,得:3+4y=14,解得:y= .故原方程组的解为: .点评:本题考查了二元一次方程组的解法,利用消元进行求解.题目比较简单,但需要认真细心.20.解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式得到x<4和x≥3,则可根据大小小大中间找确定不等式组的解集,然后利用数轴表示解集.解答:解:,解①得x<4,解②得x≥3,所以不等式组的解集为3≤x<4,用数轴表示为:点评:本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.考点:解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.分析:(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.解答:解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3.由(1)得,最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a= .点评:本题考查了解一元一次不等式、一元一次方程的解以及一元一次不等式的整数解.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;△ABC的面积为 3 ;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)考点:作图-平移变换.分析: (1)根据图形平移的性质画出平移后的△A′B′C′即可;根据三角形的面积公式即可得出结论;(3)设AB边上的高为h,根据三角形的面积公式即可得出结论.解答:解:(1)如图所示;S△ABC= ×3×2=3.故答案为:3;(3)设AB边上的高为h,则AB•h=3,即×5.4h=3,解得h≈1.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC 于D,∠ACB=40°,求∠ADE.考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAE,再根据角平分线的定义可得∠DAE= ∠CAE,进而得出∠ADE.解答:解:∵AE是△ABC边上的高,∠ACB=40°,∴∠CAE=90°﹣∠ACB=90°﹣40°=50°,∴∠DAE= ∠CAE= ×50°=25°,∴∠ADE=65°.点评:本题考查了三角形的内角和定理,角平分线的定义,是基础题,熟记定理与概念并准确识图是解题的关键.24.若不等式组的解集是﹣1(1)求代数式(a+1)(b﹣1)的值;若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.考点:解一元一次不等式组;三角形三边关系.分析:先把a,b当作已知条件求出不等式组的解集,再与已知解集相比较求出a,b的值.(1)直接把ab的值代入即可得出代数式的值;根据三角形的三边关系判断出c﹣a﹣b的符号,再去绝对值符号.合并同类项即可.解答:解:,由①得,x< ,由②得,x>2b﹣3,∵不等式组的解集是﹣1∴ =3,2b﹣3=﹣1,∴a=5,b=2.(1)(a+1)(b﹣1)=(5+1)=6;∵a,b,c为某三角形的三边长,∴5﹣2∴c﹣a﹣b<0,c﹣3>0,∴原式=a+b﹣c+c﹣3=a+b﹣3=5+2﹣3=4.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):①②.结论(求证):③.证明:省略.考点:命题与定理;平行线的判定与性质.专题:计算题.分析:可以有①②得到③:由于AB⊥BC、CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC﹣∠EBC=∠DCB﹣∠FCB,即有∠1=∠2.解答:已知:如图,AB⊥BC、CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC、CD⊥BC,∴AB∥CD,∴∠ABC=∠DCB,又∵BE∥CF,∴∠EBC=∠FCB,∴∠ABC﹣∠EBC=∠DCB﹣∠FCB,∴∠1=∠2.故答案为①②;③;省略.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题称为定理.也考查了平行线的性质.26.某商场用18万元购进A、B两种商品,其进价和售价如下表:A B进价(元/件) 1200 1000售价(元/件) 1380 1200(1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.①问共有几种进货方案?②要保证利润最高,你选择哪种进货方案?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)由题意可知本题的等量关系,即“两种商品总成本为18万元”和“共获利3万元”,根据这两个等量关系,可列出方程组,再求解;根据题意列出不等式组,解答即可.解答:解:(1)设购进A种商品x件,B种商品y件.根据题意得化简得,解得,答:该商场购进A种商品100件,B种商品60件;设购进A种商品x件,B种商品y件.根据题意得:解得:,,,,,故共有5种进货方案A B方案一 25件 150件方案二 20件 156件方案三 15件 162件方案四 10件 168件方案五 5件 174件②因为B的利润大,所以若要保证利润最高,选择进A种商品5件,B种商品174件.点评:此题考查二元一次方程组和一元一次不等式的应用,解答本题的关键是将现实生活中的事件与数学思想联系起来,读懂题意,找出等量关系,列方程求解.。

2017年七年级下数学期末试卷

2017年七年级下数学期末试卷

2017年七年级下数学期末试卷数学试卷一.你一定能选对!(本题共有12小题,每小题3分,共36分)1、点A(-2,1)在第二象限。

2、不等式组 {x+3>8.2x-4≤8} 的解集在数轴上表示为[5.+∞)。

3、已知x=2,y=-3是二元一次方程5x+my+2的解,则m 的值为 -4.4、如图,下列条件中不能判定AB∥CD的是∠3=∠5.5、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是13cm。

6、要反映武汉市一周内每天的最高气温的变化情况,宜采用折线统计图。

7、如果a>b,那么下列结论一定正确的是a-3<b-3.8、如图,直角△ADB中,∠D=90°,C为AD上一点,且∠ACB的度数为(5x-10)°,则x的值可能是20.9、一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为x+y=130,x-y=50.10、近年来市政府每年出资新建一批廉租房,使城镇住房困难的居民住房状况得到改善。

下面是某小区2006~2008年每年人口总数和人均住房面积的统计的折线图(人均住房面积=该小区住房总面积/该小区人口总数,单位:㎡/人)。

根据以上信息,则下列说法正确的有①和③,即该小区2006~2008年这三年中,2008年住房总面积最大;该小区2008年人均住房面积的增长率为4%。

11、如图,XXX,∠BAC与∠DCA的平分线相交于点G,XXX⊥AC于点E,F为AC上的一点,且XXX,XXX⊥CD于H。

下列说法:①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△CFG;④若∠EGH︰∠ECH=2︰7,则∠EGF=50°。

其中正确的有(A)①②③④。

二、你能填得又快又准吗?13、将方程2x-3y=5变形为用x的代数式表示y的形式是。

解:首先将方程变形为3y=2x-5,然后将其化简为y=(2/3)x-5/3,即用x的代数式表示y的形式为y=(2/3)x-5/3.14、用不等式表示“a与5的差不是正数”。

人教版2017初一(下册)数学期末考试真题试题(附答案)

人教版2017初一(下册)数学期末考试真题试题(附答案)

人教版2017初一(下册)数学期末考试真题试题一、选择题(共12小题,每小题3分,满分40分)1.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.下列调查中,适宜采用抽样调查方式的是()A.对某班学生体重情况的调查B.对某办公室职员年龄的调查C.对某班学生每天课余工作时间的调查D.对某批次汽车的抗撞击能力的调查3.在下列实数,π﹣3.14,3.14,,0.22 ,中无理数有()A.1个B.2个C.3个D.4个4.在直角坐标系内,将点P(1,﹣2)向左平移2个单位长度,再向上平移3个单位长度,可以得到对应点P1的坐标为()A.(﹣1,1)B.(﹣1,﹣5)C.(3,1)D.(3,﹣5)5.如图,是七(1)班40名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值),由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时6.如图,若a∥b,∠1=60°,则∠2的度数为()A.40°B.60°C.120°D.150°7.若+(y+2)2=0,则x﹣y的值为()A.﹣5 B.﹣1C.1 D.58.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.9.(4分)在平面直角坐标系中,点P(2x+4,x﹣3)在第四象限,则x的取值范围表示在数轴上,正确的是()A.B.C.D.10.(4分)已知甲、乙两数的和是6,甲数是乙数的3倍,设甲数为x,乙数为y,根据题意,列方程组正确的是()A.B.C.D.11.(4分)若关于x的不等式的整数解共有2个,则m的取值范围是()A.4<m<5 B.4≤m<5C.4<m≤5 D.4≤m≤512.(4分)如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了()米.A.70 B.80C.90 D.100二、填空题(共4小题,每小题4分,满分16分)13.(4分)已知|x|<,x是整数,请写出所有x的值.14.(4分)如图是一副三角尺拼成图案,则∠AEB=度.15.(4分)如图,在△ABO中,A,B两点的坐标分别为(1,2),(4,1),则△ABO的面积为.16.(4分)如图,OP平分∠AOB,∠BCP=40°,CP∥OA,PD⊥OA于点D,则∠OPD=°.三、解答题(共7小题,满分64分)17.(4分)计算:6×﹣+()2.18.(4分)解不等式组:,并把它的解集在数轴上表示出来.19.(10分)为了保护视力,学校计划开展“爱眼护眼”视力保健活动,为使活动更具有实效性,先对学生视力情况进行调查,随机抽取40名学生,检查他们的视力,并绘制不完整的直方图(数据包括左端点不包括右端点,精确到0.1),请结合直方图的信息解答下列问题:(1)统计图中,4.8≤x<5.0的学生数是人;(2)将频数分布直方图补充完整;(3)若绘制“学生视力扇形统计图”,视力达到4.8及以上为达标,则视为达标学生所对应扇形的圆心角度数为°;(4)若全校共有800名学生,则视力达标的学生估计有名.20.(10分)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=66°,则∠2的度数为?21.(10分)七月份某学校计划在七年级开展数学竞赛,去某商店购买奖品,买50支钢笔和20个笔记本需用1200元,买40支同款钢笔和30个同款笔记本需用1100元,老板说下周店庆将对商品打折促销,如果买60支同款钢笔和10个同款笔记本只需花1000元,比不打折少花多少钱?22.(12分)如图,在△ABC中,∠ABC和∠ACB的平分线BE、CF相交于点P.(1)若∠ABC=70°,∠ACB=50°,则∠BPC=°;(2)求证:∠BPC=180°﹣(∠ABC+∠ACB);(3)若∠A=α,求∠BPC的度数.23.(14分)莒县两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在万德福商场累计购物超过100元后,超出100元的部分按八折收费;在新世纪商场累计购物超过50元后,超出50元的部分按九折收费.(1)若小薇妈妈准备购120元的商品,你建议小薇妈妈去商场购物(在横线上直接填写“万德福”或者“新世纪”);(2)请根据两家商场的优惠活动方案,讨论顾客到哪家商场购物花费少?并说明理由.人教版2017初一(下册)数学期末考试真题试题参考答案 一、1-6 BDBABC7-12 DBAACC二、 13. -1、0、114. 75º15.27 16. 70º三、17.(1)1(2)x ≤-2<418.(1)10(2)(3)135°(4)30019.解:过点D 作DE ∥a ,∵四边形ABCD 是矩形,∴∠BAD =∠ADC =90°,∴∠3=90°﹣∠1=90°﹣66°=24°,∵a ∥b ,∴DE ∥a ∥b ,∴∠4=∠3=24°,∠2=∠5,∴∠2=∠5=90°﹣∠4=90°﹣24°=66°.20. 解:设该款钢笔x 元一支,笔记本y 元一本,根据题意得:⎩⎨⎧=+=+1100304012002050y x y x 解得:⎩⎨⎧==1020y x ∴不打折时,买60支同款钢笔和10个同款笔记本花费为:130010106020=⨯+⨯,1300-1000=300,所以,如果买60支同款钢笔和10个同款笔记本比不打折少花300元钱.21.(1) 120 °(2)证明:∵∠ABC 和∠ACB 的平分线BE 、CF 相交于点P ,∴∠PBC =21∠ABC , ∠PCB =21∠ACB , ∵∠BPC +∠PBC+∠PCB =180°,∴∠BPC =180°-(∠PBC+∠PCB )= 180°-(21∠ABC +21∠ACB ) =180°-21(∠ABC+∠ACB ), ∴∠BPC =180°-21(∠ABC+∠ACB ) 21题图(3)解:在△ABC 中,∠A+∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°-∠A ,∵由(2)可知:∠BPC =180°-21(∠ABC+∠ACB ), ∴∠BPC =180°-21(180°-∠A ), ∵∠A=α,∴∠BPC =180°-21(180°-α)=90°+21α 22. 解:(1)建议小薇妈妈去 新世纪 商场购物(2)Ⅰ.当累计购物不超过50元时,两家商场购物都不享受优惠,且两家商场以同样价格出售同样商品,因此到两家商场购物花费一样Ⅱ.当累计购物超过50元而不到100元时,享受新世纪的购物优惠,不享受万德福商场的购物优惠,因此到新世纪购物花费少Ⅲ.当累计超过100元时,设累计购物x (x >100)元.① 若到万德福商场购物花费少,则100+0.8(x -100)<50+0.9(x -50) .解得 x >150.这就是说,累计购物超过150元时,到万德福商场购物花费少.②若到新世纪商场购物花费少,则100+0.8(x -100)>50+0.9(x -50) .解得 x <150.这就是说,累计购物超过100元而不到150元时,到新世纪商场购物花费少.③若100+0.8(x -100)=50+0.9(x -50) .解得 x =150.这就是说,累计购物为150元时,到万德福和新世纪两家商场购物花一样。

2017年人教版七年级下期末测试数学试卷含答案

2017年人教版七年级下期末测试数学试卷含答案

期末测试(时间:90分钟 总分:120分)一、选择题(每小题3分,共30分)1.已知实数a ,b ,若a >b ,则下列结论错误的是(D )A .a -5>b -5B .3+a >b +3C .a 5>b 5D .-3a >-3b2.如果点P(x ,y)在坐标轴上,那么(C )A .x =0B .y =0C .xy =0D .x +y =03.下列四个图形中,不能推出∠2与∠1相等的是(B )4.要了解某校1 000名初中学生的课外作业负担情况,若采用抽样调查的方法进行调查,则下面哪种调查方式具有代表性?(C )A .调查全体女生B .调查全体男生C .调查七、八、九年级各100名学生D .调查九年级全体学生 5.在2 017991,3.141 592 65,13,-6,-37,0,36,π3中无理数的个数是(C )A .1B .2C .3D .46.若把不等式组⎩⎪⎨⎪⎧2-x ≥-3,x -1≥-2的解集在数轴上表示出来,则其对应的图形为(B )A .长方形B .线段C .射线D .直线7.如图中的条件,能判断互相平行的直线为(C )A .a ∥bB .m ∥nC .a ∥b 且m ∥nD .以上均不正确8.有下列四个命题:①对顶角相等;②等角的补角相等;③如果b ∥a ,c ∥a ,那么b ∥c ;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.其中是真命题的有(A )A .4个B .3个C .2个D .1个9.如果方程组⎩⎪⎨⎪⎧x +y =★,2x +y =16的解为⎩⎪⎨⎪⎧x =6,y =■,那么被“★”“■”遮住的两个数分别为(A )A .10,4B .4,10C .3,10D .10,310.(黄石中考)当1≤x ≤2时,ax +2>0,则a 的取值范围是(A )A .a >-1B .a >-2C .a >0D .a >-1且a ≠0二、填空题(每小题3分,共24分)11.64的立方根是2.12.直线m 外有一定点A ,A 到直线m 的距离是7 cm ,B 是直线m 上的任意一点,则线段AB 的长度:AB ≥7 cm .(填写“<”“>”“=”“≤”或“≥”)13.如图,有6对同位角,4对内错角,4对同旁内角.14.(港南区期中)如图,象棋盘上,若“将”位于点(1,-1),“车”位于点(-3,-1),则“马”位于点(4,2).15.七年级一班的小明根据本学期“从数据谈节水”的课题学习,知道了统计调查活动要经历的5个重要步骤:①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.但他对这5个步骤的排序不对,请你帮他正确排序为②①④⑤③.(填序号)16.已知:直线l 1∥l 2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于35°.17.某超市账目记录显示,第一天卖出39支牙刷和21盒牙膏,收入396元;第二天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是528元.18.已知点A(-2,0),B(3,0),点C 在y 轴上,且S 三角形ABC =10,则点C 坐标为(0,4)或(0,-4).三、解答题(共66分) 19.(8分)计算:(1)4-38+3-127; 解:原式=2-2+(-13)=-13.(2)2(2-3)+|2-3|.解:原式=22-23+3-2=2- 3.20.(8分)(1)解方程组:⎩⎪⎨⎪⎧2x +5y =25,①4x +3y =15;② (2)解不等式:2x -13-1≤5x +12.解:①×2,得4x +10y =50.③ 解:去分母,得2(2x -1)-6≤3(5x +1).③-②,得7y =35,解得y =5. 去括号,得4x -2-6≤15x +3.将y =5代入①,得x =0. 移项,得4x -15x ≤3+2+6.∴原方程组的解是⎩⎪⎨⎪⎧x =0,y =5. 合并,得-11x ≤11.系数化为1,得x ≥-1.21.(6分)已知:如图所示的网格中,三角形ABC 的顶点A(0,5),B(-2,2).(1)根据A ,B 坐标在网格中建立平面直角坐标系,并写出点C 坐标(2,3);(2)平移三角形ABC ,使点C 移动到点F(7,-4),画出平移后的三角形DEF ,其中点D 与点A 对应,点E 与点B 对应.解:如图.22.(6分)苹果熟了,一个苹果从树上被抛下.如图所示,从A 处落到了B 处.(网格单位长度为1)(1)写出A ,B 两点的坐标;(2)苹果由A 处落到B 处,可看作由哪两次平移得到的? 解:(1)A(2,4),B(-1,-2).(2)先向左平移3个单位长度,再向下平移6个单位长度.(或先向下平移6个单位长度,再向左平移3个单位长度)23.(8分)如图,已知四边形ABCD 中,∠D =100°,AC 平分∠BCD ,且∠ACB =40°,∠BAC =70°.(1)AD 与BC 平行吗?试写出推理过程; (2)求∠DAC 和∠EAD 的度数. 解:(1)AD 与BC 平行.∵AC 平分∠BCD ,∠ACB =40°,∴∠BCD =2∠ACB =80°.又∵∠D =100°,∴∠BCD +∠D =80°+100°=180°.∴AD ∥BC.(2)由(1)知AD ∥BC ,∴∠DAC =∠ACB =40°. ∵∠BAC =70°,∴∠B =70°. ∴∠EAD =∠B =70°.24.(8分)在一次“献爱心手拉手”捐款活动中,某数学兴趣小组对学校所在社区部分捐款户数进行调查和分组统计,将数据整理成以下统计表和统计图(信息不完整),已知A ,B 两组捐款户数的比为1∶5.捐款户数分组统计表,)请结合以上信息解答下列问题:(1)a =2.本次调查的样本容量是50; (2)补全捐款户数统计表和统计图;(3)若该社区有600户居民,根据以上信息估计全社区捐款不少于300元的户数是多少? 解:(2)补全捐款户数统计图如图:(3)600×(28%+8%)=600×36%=216(户). 答:不少于300元的有216户.25.(10分)(株洲中考)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A 等吗?为什么? (3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分? 解:(1)设孔明同学测试成绩为x 分,平时成绩为y 分,由题意,得⎩⎪⎨⎪⎧x +y =185,80%x +20%y =91.解得⎩⎪⎨⎪⎧x =90,y =95. 答:孔明同学测试成绩为90分,平时成绩为95分.(2)不可能.由题意可得:80-70×80%=24,24÷20%=120>100,故不可能. (3)设平时成绩为满分,即100分,综合成绩为100×20%=20. 设测试成绩为a 分,根据题意,可得 20+80%a ≥80,解得a ≥75.答:他的测试成绩应该至少为75分.26.(12分)如图1,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位长度,再向右平移1个单位长度,得到A ,B 的对应点C ,D ,连接AC ,BD ,CD.(1)写出点C ,D 的坐标并求出四边形ABDC 的面积;(2)在x 轴上是否存在一点F ,使得三角形DFC 的面积是三角形DFB 面积的2倍,若存在,请求出点F 的坐标;若不存在,请说明理由;(3)如图2,点P 是直线BD 上一个动点,连接PC ,PO ,当点P 在直线BD 上运动时,请直接写出∠OPC 与∠PCD ,∠POB 的数量关系.解:(1)C(0,2),D(4,2). S 四边形ABDC =AB ·OC =4×2=8.(2)存在,当BF =12CD 时,三角形DFC 的面积是三角形DFB 面积的2倍.∵C(0,2),D(4,2), ∴CD =4,BF =21CD =2. ∵B(3,0),∴F(1,0)或(5,0).(3)当点P 在线段BD 上运动时:∠OPC =∠PCD +∠POB ; 当点P 在BD 延长线上运动时:∠OPC =∠POB -∠PCD ; 当点P 在DB 延长线上运动时:∠OPC =∠PCD -∠POB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EDCBA2017七年级下册数学期末模拟试卷一、 选择题(本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一个是正确的.) 1、下面四个图形中,∠1与∠2为对顶角的图形是 ()A 、B 、C 、D 、2、调查下面问题,应该进行抽样调查的是 ( ) A 、调查我省中小学生的视力近视情况 B 、调查某校七(2)班同学的体重情况C 、调查某校七(5)班同学期中考试数学成绩情况D 、调查某中学全体教师家庭的收入情况 3、点3(-P ,)2位于( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、如图是某机器零件的设计图纸, 在数轴上表示该零件长度(L)合格尺寸, 正确的是( )A 、B 、C 、D 、5、下列命题中,是假命题的是() A 、同旁内角互补 B 、对顶角相等 C 、直角的补角仍然是直角 D 、两点之间,线段最短 6、下列各式是二元一次方程的是( ) A .03=+-z y x B. 03=+-x y xy C.03221=-y x D. 012=-+y x7、某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x ,y 的是( ). A 、⎩⎨⎧x –y = 49y =2(x +1) B 、⎩⎨⎧x +y = 49y =2(x +1) C 、⎩⎨⎧x –y = 49y =2(x –1) D 、⎩⎨⎧x +y = 49y =2(x –1)8、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20-x. 根据题意得:( ) A 、10x-5(20-x)≥120 B 、10x-5(20-x)≤120 C 、10x-5(20-x)> 120 D 、10x-5(20-x)<120二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在答案卷上.9、电影票上“6排3号”,记作(6,3),则8排6号记作__________ .10、⎩⎨⎧=-=+=962_________y x y ax a 时,方程组 ⎩⎨⎧-==18y x 的解为.11、如图,直线a 、b 被直线c 所截,若要a ∥b ,需增加条件 (填一个即可)12、为了了解某所初级中学学生对2008年6月1名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约 有 名学生“不知道”.13、甲地离学校4km ,乙地离学校1km ,记甲乙两地之间的距离为km d ,则d 的取值范围为 .三、解答题(本大题共5小题,每小题7分,共35分)14、解方程组1528y xx y =-⎧⎨+=⎩.15、解不等式1322x x -≥+,并把它的解集在数轴上表示出来.16、将一副直角三角尺如图放置,已知∠EAD =∠E =450,∠C =300, AE BC ∥,求AFD ∠的度数.17、已知等腰三角形的周长是14cm .若其中一边长为4cm ,求另外两边长.18、如图,已知∠B =∠C .若AD ∥BC ,则AD 平分∠EAC 吗?请说明理由.四、解答题(本大题共3小题,每小题9分,共27分)19、△ABC 在如图所示的平面直角中, 将其平移后 得△A B C ''', 若B 的对应点B '的坐标是(-2, 2). (1) 在图中画出△A B C ''';(2) 此次平移可看作将△ABC 向_____平移了____个 单位长度, 再向___平移了___个单位长度得△A B C ''';(3) △ABC 的面积为____________.(△ABC20、如图,在四边形ABCD 中,∠A=104°-∠2,∠ABC=76°+∠2,BD ⊥CD 于D ,EF ⊥CD 于F . 求证:∠1=∠2.请你完成下面证明过程.证明:因为∠A =104°-∠2,∠ABC =76°+∠2,( ) 所以 ∠A +∠ABC =104°-∠2+76°+∠2, ( 等式性质 )9.9 10.19.9 10.1L =10±0.1图2图121FEDCBAD图24-2图24-1M即∠A+∠ABC=180°所以 AD∥BC,()所以∠1=∠DBC,()因为 BD⊥DC,EF⊥DC,()所以∠BDC=90°,∠EFC=90°,( )所以∠BDC=∠EFC,所以 BD∥,()所以∠2=∠DBC,()所以∠1=∠2 ().21、某中学决定改变办学条件计划拆除一部分旧校舍、建造新校舍.计划在年内拆除旧校舍与建造新校舍共5000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的70%,而拆除校舍则超过计划的20%,结果拆、建的总面积恰好为5000平方米.(1)求原计划拆、建的面积各多少平方米?(2)若拆除旧校舍每平米需100元,建造新校舍每平米需500元.求实际拆、建的费用共多少元?五、解答题(本大题共3小题,每小题12分,共36分)22、育才中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中“电脑”部分所对应的圆心角为度;(2)样本容量为;(3)在图2中,将“体育”部分的图形补充完整;(4爱好“书画”.23、为了支援灾区学校灾后重建,我校决定再次向灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆,将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床架10个和课桌凳10套.(1)学校安排甲、乙两种货车可一次性把这些物资运到灾区有哪几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?24、操作与探究探索:在如图24-1至图24-3中,△ABC的面积为a.(1)如图24-1, 延长△ABC的边BC到点D,使CD=BC,连结DA.若△ACD的面积为S1,则S1=________(用含a的代数式表示);(2)如图24-2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连结DE.若△DEC的面积为S2,则S2= (用含a的代数式表示);(3)在图24-2的基础上延长AB到点F,使BF=AB,连结FD,FE,得到△DEF(如图24-3).若阴影部分的面积为S3,则S3=__________(用含a的代数式表示)发现:像上面那样,将△ABC各边均顺次延长一倍,连结所得端点,得到△DEF(如图24-3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的_____倍.七年级期末质量检查数学参考答案一、选择题1、C2、A3、B4、C5、A6、C7、D8、C二、填空题9、 (8,6) 10、 1 11、13∠=∠,(或14∠=∠,或12180o∠+∠=)12、 30 13、3≤d≤5三、解答题14、解:把①代入②,得52(1)8x x+-= 2分解得2x= 4分把2x=代入①,1y=- 6分所以方程组的解为21xy=⎧⎨=-⎩7分15、解:1322xx-≥+164x x-≥+ 2分55x-≥ 4分1-≤x 5分不等式得解集在数轴上表示如下:7分16、解:因为∠C=300 ,因为AE∥BC,所以∠EAC=∠C=300 ,(3分)因为∠E=450.所以∠AFD=∠E+∠EAC=450+300=750 .(6分)所以∠AFD为750. (7分)17、解:若4cm长的边为底边,设腰长为xcm,则4+2x =14,解得 x=5. (3分)若4cm长的边为腰,设底边为xcm,则2×4+x =14,21FEDCBAEDCBA解得 x =6. (6分) 所以等腰三角形另外两边长分别为5cm 、5cm 或4 cm 、6 cm. (7分) 18、解:AD 平分∠EAC ,理由如下: 1分 ∵AD ∥BC ,(已知)∴∠B =∠EAD ,(两直线平行,同位角相等) 3分 ∠C =∠DAC ,(两直线平行,内错角相等) 5分 ∵∠B =∠C , (已知)∴∠EAD =∠DAC . (等量代换) 6分 ∴AD 平分∠EAC .(角平分线定义) 7分(说明:没注明理由不扣分) 四、解答题19、解:(1)图略. 3分 (2) 右 , 1 , 上 , 1 .( 或 上 , 1 , 右 , 1 . ) 7分 (3)△ABC 的面积为5.5. 9分 20、证明:因为∠A =104°-∠2,∠ABC =76°+∠2,( 已知 )所以 ∠A +∠ABC =104°-∠2+76°+∠2, ( 等式性质 )即 ∠A +∠ABC =180°所以 AD ∥BC ,(同旁内角互补,两直线平行) 所以 ∠1=∠DBC ,(两直线平行,内错角相等) 因为 BD ⊥DC ,EF ⊥DC ,(已知)所以 ∠BDC=90°,∠EFC=90°,( 垂直定义 ) 所以 ∠BDC=∠EFC,所以 BD ∥EF ,(同位角相等,两直线平行) 所以 ∠2=∠DBC ,(两直线平行,同位角相等) 所以 ∠1=∠2 (等量代换).21、解:(1)设原计划拆除旧校舍x 平方米,新建校舍y 平方米,由题意得: 1分5000(120%)70%5000x y x y +=⎧⎨++=⎩ 4分 解得30002000x y =⎧⎨=⎩6分(2)实际拆除与新建校舍费用共为3000×(1+20%)×100+2000×70%×500 7分 =1060000 8分 答:原计划拆除旧校舍3000平方米,新建校舍2000平方米,实际拆、建的费用共1060000元. 9分五、解答题 22、解:(1)126;(2)80; (3)如图所示; (4)287.(每小题3分,共12分)23.解:(1)设学校租甲种货车x 辆,则租乙种货车(8-x )辆, 1分依题意,得 510(8)602010(8)100x x x x +-≥⎧⎨+-≥⎩ , 3分解不等式组,得24x ≤≤, 5分 ∵ x 为正整数,∴ x 的值为2,3,4. 6分 ∴学校安排甲、乙两种货车可一次性把这些物资运到灾区有3种方案: 方案1:租甲种货车2辆,租乙种货车6辆; 方案2:租甲种货车3辆,租乙种货车5辆;方案3:租甲种货车4辆,租乙种货车4辆. 9分 (2)因为甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元, 且甲、乙两种货车共租8辆,所以租甲种货车越少,运输费越少. 所以方案1:租甲种货车2辆,租乙种货车6辆运输费最少,此时运输费为1200×2+1000×6=8400(元). 12分 24、解:探索:(1)S 1=___a _____; (2)S 2= 2a ; (3)S 3=___6a ____.发现:扩展一次后得到的△DEF 的面积是原来 △ABC 面积的__7___倍.应用:两次扩展的区域花卉面积共为 480 m 2.(前面4空每空2分,最后1空4分,共12分)应用:2009年对中国人民来说是一个具有历史意义的年份.60年前, 中华人民共和国的成立揭开了中华民族的新纪元.为庆祝国庆60周年, 市园林部门决定利用时代广场原有的10m 2的△ABC 花卉,把△ABC 花卉 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展 成△MGH (如图24-4)的大型花卉.则这两次扩展的区域(即阴影部分) 花卉面积共为 m 2.。

相关文档
最新文档