无网格方法.
无网格方法在计算流体力学中的应用研究

西北工业大学硕士学位论文无网格方法在计算流体力学中的应用研究姓名:张小华申请学位级别:硕士专业:计算数学指导教师:欧阳洁20060320两北工业大学硕士学位论文第二章无网格方法的基本知识Aa=Uu=ll“2矿2(x。
)氐(x.)leN(x2)l九(x。
)j图2.1由径向基函数构造的形函数及其一阶、二阶导数Figure2.IRBFshapefunctionandit'sthefirst,thesecondderivatives16))@江办龙12XX{红衍珐=.JJDQq;@咿牛中中ll式A(3)在整个域上,有£w(X--X1)搠=1(4)w(x—x,)是单减函数,即它随着x到x,距离的增加而减小。
图2.3二维三次样条函数及其一阶、二阶导数itsderivativesFigure2.32Dcubicsplinefunctionand为了计算的方便,权函数的影响域通常选为圆形域或矩形域(如图2.2)。
常用的权函数有f{一4r2+4r3,s{三次样条函数:M,(r)={{一4,+4r2_4r3{<r≤1l0"11R塑j暨;些查耋堡圭兰堡鎏兰篁三塞玉塑丝童鎏塑董奎垫塑四次样条函数:wc,,={:一6,+8,一3一:;:图2.4二维四次样条函数及其一阶、二目r导数Figure2.42Dquarticsplinefunctionanditsderivatives图23和图2.4分别给出了二维三次样条函数和四次样条函数及其一阶、二阶导数。
从图中可以看出它们都具有C2连续性。
在本文中,如不作特殊声明,权函数一律取为三次样条函数。
权函数的影响半径对无网格方法近似函数的构造影响非常大。
图2.5给出西北I.业大学硕士学位论文第三章瞬态热传导问题的无网格算法I目#自∞e!E!自■■■口《自目自自自|自=t!!==E=!==e!=gj目EEEE!■j目E=EE■日g!j==目■目t=,EE■Ea■■■■■t■■■自E自■t自皇(a)位置P1(b)位置P2(a)ThepositionofPl(b)ThepositionofP2图3.611×11个节点均匀分布时0-EFG方法、FEM方法与精确解的比较Figure3.6ComparisonbetweenFEMandO-EFGsolutionsfor11×11uniformednodes圈3.7(a)0.4秒时0-EFG解的温度分布Figure3.7(a)ThetemperatureprofileofO-EFGsolutionsfor0.4s3.4本章小结图3.7(b)0.4秒时的精确温度分布Figure3.7(b)Thetemperatureprofileofanalyticalsolutionsfor0.4s本章将EFG方法和日加权法相结合,成功地求解了一维、二维瞬态热传导问题,其数值结果表明:fal0-EFG方法直接采用EFG方法对空间进行离散,因此不需网格生成,前处理方便。
无网格方法(刘欣著)PPT模板

5.6.1界面问 题的增强函 数
5.6.3数值 计算
07
ONE
第6章有限点方法
第6章有限点方法
6.1对流-扩散方程的有限点形式 6.2对流-扩散方程的有限点法求解 6.3Burgers方程的高阶时间格式有限点方法求解 6.4油藏数模的有限点法 6.5有限点方法在金融工程中的应用
第6章有限点 方法
10
ONE
第9章流体-结构相互作用的无网 格方法研究进展
第9章流体-结构相互作用的无网 格方法研究进展
9.1流体-结构相互作用的计算研究 概述 9.2流体-结构相互作用模型描述 9.3FSI问题的扩展有限元方法求解 9.4浸入粒子方法 9.5气动弹性计算中的径向基函数法
第9章流体-结构相互作用的无网格方法研究进展
5.4增强型单位分解有限元方法
5.4.1增强 型覆盖函数 的实现
5.4.2数值 计算
第5章单位分解 有限元方法
5.5单位分解有限元在断裂力学中 的应用
1
5.5.1裂纹尖端附近的渐近解
2
5.5.2平面裂纹的单位分解有限 元计算
第5章单位分 解有限元方法
5.6单位分解有限元在界面问题中 的应用
5.6.2界面问 题的增强方 式
7.6.3数值求解
09
ONE
第8章自适应无网格方法
第8章自适应无网 格方法
8.1自适应无网格Galerkin法 8.2结构动力问题的自适应无网 格计算 8.3hp自适应无网格方法
第8章自适应无网格方法
8.1自适应无网格Galerkin法
8.1.1后验误差估计
8.1.2背景网格重构 算法
8.1.3自适无网格静 力分析
无网格方法(刘欣著 )
无网格法的理论及应用

为了验证该方法的有效性和可行性,我们进行了一系列实验。实验过程中采 用了某稠油油田的实际数据集,包括地层压力、温度、渗透率等参数。同时,采 用了可视化评估指标,以便直观地评估计算结果的准确性。实验结果表明,该方 法在稠油热采数值模拟过程中具有较高的计算精度和计算效率,可为稠油热采技 术的优化提供有力支持。
1、算法开发:针对稠油热采的物理化学过程,开发相应的数值模拟算法, 如有限元法、有限差分法等。
2、软件架构:设计并实现数值模拟软件的架构,包括前后处理、求解器等 模块,以便用户进行快速高效的计算。
3、数据处理:针对稠油热采数值模拟过程中产生的大量数据,开发相应的 数据处理技术,如数据压缩、可视化等。
无网格法的数值积分采用移动最小二乘法(Moving Least Squares,MLS) 来实现。该方法通过对节点进行加权,构造一个局部近似函数来逼近真实的解。 数值积分通过在节点上建立局部近似函数,然后对该函数进行求导和积分来计算。 无网格法的数值积分具有高精度和高效性,同时避免了传统网格法中的网格生成 和数据处理问题。
1、结构分析
无网格法在结构分析中具有广泛的应用,可以处理各种复杂形状和材料属性 的结构。例如,桥梁、建筑物和飞机等结构分析中,无网格法能够适应复杂的几 何形状和非均匀的材料属性,同时提高计算效率和精度。此外,无网格法在疲劳 分析和振动分析中也得到了广泛应用。
2、流体分析
无网格法在流体分析中也有着广泛的应用,可以处理各种复杂的流体流动问 题。例如,无网格法可以应用于计算流体动力学(CFD)中的复杂流场模拟、燃 烧模拟以及噪声辐射模拟等。无网格法能够适应复杂的几何形状和流场特性,提 高计算精度和效率。
参考内容
稠油热采是一种重要的石油开采方法,具有提高采收率、降低开采成本等优 势。随着计算机技术的不断发展,数值模拟已成为稠油热采领域的重要工具。本 次演示旨在探讨稠油热采数值模拟自适应网格法计算软件的开发研究及实例应用。
无网格法

无网格法(Mesh-less method)无网格方法(Mesh-less method)是在数值计算中不需要生成网格,而是按照一些任意分布的坐标点构造插值函数离散控制方程,就可方便地模拟各种复杂形状的流场。
该法大致可分成两类:一类是以Lagrange方法为基础的粒子法(Particle method),如光滑粒子流体动力学(Smoothed particle hydrodynamics,简称SPH)法,和在其基础上发展的运动粒子半隐式(Moving-particle semi-implicit,简称MPS)法等;另一类是以Euler方法为基础的无格子法(Gridless methods),如无格子Euler/N—S算法(Gridless Euler/Navier-Stokes solution algorithm)和无单元Galerkin法(Element free Galerkin,简称EFG)等。
无网格方法可以方便地利用坐标点计算模拟复杂形状流场计算,但不足之处是在高雷诺数流动时提高数值计算精度较困难。
无网格方法中比较常见的还有径向基函数方法(Radious Basis Function),主要使用某径向基函数(如(MQ)f(r)=r^5)的组合,来逼近原函数。
吴忠敏院士在这方面有比较突出的工作。
最近在了解有限元法和无网格法,介绍中知道它们都是数值计算方法,主要区别一个是基于网格的,一个是无需借助于网格的。
但从有关数值计算方法的书和其他资料中,基本上没有见提到有限元法和无网格法,数值计算方法的书中基本上主要内容都包括:插值和拟合、数值微分和数值积分、求解线性方程组的直接法和迭代法、计算矩阵特征值和特征向量和常微分方程数值解等等。
而在有限元法和无网格法的具体算法计算过程中也都会用到上述数值计算方法中的某些。
无网格方法的研究现状和发展

无 网格 方 法 的研 究 现 状 和 发 展
曾
摘
媛戴木Leabharlann 香 要: 通过有限元法和无 网格法的对比分析 , 总结 出无 网格方法 的特 点及优势 , 讲述 了无网格方法的发展 历史, 在此基
础上介绍 了无 网格方法在 国内外 的研 究现状 , 并对 无网格方法 中的难 点和存在 的问题进 行 了探讨。 关键词 : 无网格方法, 限元法 , 有 数值模拟 , 研究现状
维普资讯
第3 4卷 第 2 7期 20 08 年 9 月
山 西 建 筑
S HANXI ARCHI TE rU=E R
Vo . 4 NO. 7 13 2
Sp 2 0 e. 08
・17 ・ 1
文章 编 号 :0 96 2 (0 8 2 —170 1 0 —8 5 2 0 )70 1—2
1对 2无 动 模拟分析 方法对 网格 的依赖性 , 底或部 分地 消除 网格 , 彻 抛开 网 向 : ) 无 网 格 法 理 论 方 面 的进 一 步 研 究 ; ) 网 格 法 在 碰 撞 、 金属 加工成 型等领域 中的应用 。根 据选取基 函数 和 格的初始划分 和网格 重构 的一种 很有发 展前 途 的数 值模 拟分 析 态裂纹扩展 、
中图 分 类 号 : U3 1 T 1 文 献标 识 码 : A
0 引言
常见的数值模拟分析方法按其适 用范围可 以分为 两大类 : 一
类方法才开始引起众 多学者 和研究 人员 的重视 和研 究兴趣 。无
网格发展 至今 已有 十余 种 , 国外 , 早提 出的一种 无 网格方法 在 最
就可以得 到不同的无 网格 方法 。 方 法 。 因此 , 网格 法 在 涉 及 网格 畸 变 、 格 移 动 等 问题 中显 示 权函数 以及积分方式的不 同, 无 网 B lt h o等提出的无 单元 G l kn法 , 出了误差 分析 , e s k yc a ri e 给 并 出了明显的优 势 , 目前 国内外计算力学界 的热点研究领域。 是 掀起 了无 网 无网格方法和有限元法 的主要区别是 : 它在 建立近似 函数 时 成功地应用于动态裂纹 扩展数值 以及三 维撞击分析 , 同时 ,e t h o B l s k 等也 对无单 元 Ga r n法 中 yc ll ed 不需要网格 、 于函数逼近近似而非插值 、 基 采用不 同的形 函数等 。 格法的研究新 高潮 , 的数值积分方案以及近似函数的计算方法 进行 了深入 的研究 , 并 无网格方法 和经典加权残值法 的主要 区别是 : 采用定 义在离散节 克服 了有 限元方法在模拟裂 点上( 通常具有紧支特性 ) 的一组权 函数 和基 函数来构 造 近似 函 重新 用于动态 裂纹 扩展的数值模拟 , Lu等将 无单 元 数, 而不用定义在全域上的级数展开形式 。无 网格方法 的特点 与 纹扩展时 需 要不 断进 行 网格 重新 划 分 的缺 点 ; i a r i法和边界 元 法相耦 合 , 于 固体 的应 力 分析 ; d t h o e 用 B ys k c 优势 主要表现在 : ) 近似函数对 网格没 有依赖 。2 其基 函数可 G l kn 1其 ) 以包含能够反映奇异性 等特 殊性质 的 函数系列 。3 与有 限元法 和 D 等将无单元 Ga r n ) u l l 法用 于三 维撞 击和流体 晃动分析 。 ed 类似 , 采用 紧支 函数 的无 网格 方 法具 有 带状 稀疏 系数 矩 阵 的特 析 。5前 处理简单等。 ) B bsa auk 等将单位分解 与 有限元相 结合 , 出 了单 位分解 有 提 够反 映待求边值 问题特性 的函数 , 并将这 些特殊 函数 与单位分解 该法在标准 有限元空 问中加 入一系列能 点, 适用 于求解大 型的科学 与工 程问题 。4 适合 进行 自适 应性 分 限元法 和广义 有限元法 , ) 因此无 网格方法 已在众 多领域获得 了应用 , 如水下爆 炸仿 真 函数相乘后和原有 的有 限元 形 函数一起 构成 了新 的增广协 调有 模拟 、 高速碰撞等材料 动态 响应 的数值 模拟 、 动态 裂纹扩 展数 值 限元空 间。用该方法求解动态裂纹 扩展 问题 时 , 可以处理任意裂 模拟 、 三维撞击分析和大变形等 问题 中。下面让我们 回顾一下 无 纹状态 , 并且不需 要重新划分 网格 。刘欣 等将单位分解 法用于求
无网格方法的研究应用与进展

第24卷第4期(总第109期)机械管理开发2009年8月Vol.24No.4(SUM No.109)MECHANICAL MANAGEMENT AND DEVELOPMENT Aug.20090引言有限元法(FEA)是随着电子计算机的发展而迅速发展起来的一种现代计算方法,但FEA是基于网格的数值方法,在分析涉及特大变形(如加工成型、高速碰撞、流固耦合)、奇异性或裂纹动态扩展等问题时遇到了许多困难。
同时,复杂的三维结构的网格生成和重分也是相当困难和费时的。
近年来,无网格得到了迅速的发展,受到了国际力学界的高度重视。
与有限元的显著特点是无网格法不需要划分网格,只需要具体的节点信息,采用一种权函数(或核函数)有关的近似,用权函数表征节点信息。
克服了有限元对网格的依赖性,在涉及网格畸变、网格移动等问题中显示出明显的优势。
1无网格方法的概述无网格方法(Meshless Method)是为有效解决有限元法在数值模拟分析时网格带来的重大问题而产生的,其基本思想是将有限元法中的网格结构去除,完全用一系列的节点排列来代之,摆脱了网格的初始化和网格重构对问题的束缚,保证了求解的精度[1]。
是一种很有发展的数值模拟分析方法。
目前发展的无网格方法有:光滑质点流体动力学法(SPH)、无网格枷辽金法(EFGM)、无网格局部枷辽金法(MLPGM)、扩散单元法(DEM)、Hp-clouds无网格方法;有限点法(FPM)、无网格局部Petrov-Galerkin 方法(MLPG)、多尺度重构核粒子方法(MRKP)、小波粒子方法(WPM)、径向基函数法(RBF)、无网格有限元法(MPFEM)、边界积分方程的无网格方法等。
这些方法的基本思想都是在问题域内布置一系列的离散节点,然后采用一种与权函数或核函数有关的近似,使得某个域上的节点可以影响研究对象上的任何一点的力学特性,进而求得问题的解。
2无网格方法国内外研究的进展无网格法起源于20世纪70年代。
无网格流形方法在固体力学中的应用研究

无网格流形方法在固体力学中的应用研究摘要:在原有的无网格类方法中,为了克服位移场中不连续的问题,通常使用通视准则、绕射准则以及透明准则等方法,但是这些方法并不能完全解决问题。
为了弥补不足,无网格流形方法中引入了有限覆盖技术,该技术可以在无网格类方法处理不连续问题的过程中提供准确的数学依据。
但是,当节点形成的覆盖没有和不连续连接在一起时,不连续会把覆盖分割成不规则的子覆盖,造成计算结果的不准确。
为了克服有限覆盖技术的这一缺点,无网格方法采用强化分析法,目的是通过裂纹尖端位移场中的奇异项使无网格流行方法中的基函数得到扩展,对于无网格方法是种强化和扩展。
关键词:无网格;固体力学;流行方法;有限覆盖1 引言无网格方法是一种计算精度高、前处理简单的新兴数值方法。
由于无网格方法成功摆脱了网格的束缚,只需节点信息,因此,在处理复杂的工程问题和科学问题中发挥了重要作用。
无网格方法的发展时间短,其性质和方法还需进一步的研究和完善。
无网格流形方法就是把数值流形方法植入无网格方法中得到的,是对无网格方法的一种扩展[1]。
无网格流形方法是无网格方法中的其中一种,该方法无需设立流形单元,在模拟不连续问题是发挥着无可替代的作用[2]。
无网格流形方法没有诞生之前,无网格方法在处理不连续问题时通常使用透明准则、通视准则以及绕射准则等数值经验方法。
透明准则把裂纹当做不完全的阻隔体,具有一定的穿透能力;在通视准则和绕射准则中,裂纹则被视为阻隔体,区别在于在通视准则中,受阻隔的节点之间互不影响;在绕射准则中,影响线在裂纹尖端则会发生绕射现象[3]。
受数值经验方法的限制,这些方法在处理不连续问题的过程中还会产生新的不连续,试函数的建立也因此受到影响。
为了弥补数值经验方法的不足,在无网格流形方法中引入了有限覆盖技术,该技术为无网格方法在处理不连续问题的过程中提供了良好的数学支撑,避免了对试函数的影响。
但是,有限覆盖技术也有不足,当节点形成的覆盖没有穿过不连续时,不连续则会把覆盖分割成为不规则的子覆盖,影响了计算精度。
有限元、边界元、无网格法的比较

首先,从五个方面进行有限元和无网格方法比较,分别是网格划分、形函数的产生、边界条件、系统离散方案、系统方程的求解:1、网格划分有限元方法:连续体被划分成由有限个称作单元的小网格组合而成的离散结构。
单元划分是前处理过程中非常重要的部分, 通常占整个分析过程中大部分时间。
由于单元能按不同的联结方式进行组合,且单元本身又可以有不同的形状,因此可以模拟几何形状复杂的求解域。
无网格方法:问题域由一系列任意分布的节点来代替, 不需要用单元或网格来进行场变量插值, 也无须描述节点之间的关系。
节点的生成可完全由计算机自动完成, 这大大节省了分析人员的时间, 也相对较容易在分析过程中对节点进行重新划分。
几何体边界是由节点替代(而非离散) , 如图1所示,两个节点之间的任意一点可由近似函数插值。
(a)有限元法中光滑曲线边界由三角形直线边代替(b)无网格法中光滑边界由节点替代图1 网格-节点示意图2、形函数的产生:有限元法和无网格法都可从哈密尔顿原理推出, 它们之间最关键的区别是形函数的构造。
有限元法:形函数是定义于单元的局部近似函数,因此函数的连续性、光滑性在网格的分界处必然受到限制,计算后还需要进一步的后处理。
形函数可以直接插值得到,故相对较容易构造且相同类型的单元具有相同的形函数。
无网格方法:形函数是围绕每一个节点建立插值函数构成的,不同的点具有不同的形函数,形函数定义于全域,具有较好的连续性和光滑性,不需要后处理过程。
3、边界条件有限元法:施加边界条件并不很困难, 通常在网格划分时使网格形式满足边界条件特点, 本质边界条件可直接加在节点上。
无网格方法:本质边界条件不仅依赖边界点,而且也与内部点有关,无网格法不能直接施加本质边界条件都是用离散的点来代替连续的边界值,这样会给本质边界条件的精确实现造成困难。
,拉格朗日乘子法和罚函数法是两种基本的方法。
4、系统离散方案有限元法是建立在虚功原理上的。
若给出控制微分方程,对于固体结构或流体, 都可以从加权残值法推出更普遍意义上的有限元公式,其可以得到一个对称的刚度矩阵。