边界元法与无网格法-无网格法概论

合集下载

自适应无网格及网格和无网格混合算法

自适应无网格及网格和无网格混合算法

在地质工程领域,自适应无网格及网格和无网格 混合算法可以用于模拟地质体的变形和破坏过程 ,为地质灾害防控提供技术支持。
感谢您的观看
THANKS
由于无网格算法是基于点的计算方法,可 以更好地处理复杂形状和边界条件。
适用于动态问题
无网格算法适用于处理动态问题,例如流 体动力学、结构动力学等。
无网格算法的发展历程
无网格算法的研究始于20世纪90年代,最初是为了解着计算机技术的发展,无网格算法逐渐成为研究的热点,并被广泛应用于工程 和科学领域。
自适应无网格及网格和无网格混合算法在其他领域中的应
用前景
自适应无网格及网格和无网格混合算法也可以应 用于其他领域,如固体物理、生物医学工程、地 质工程等。
在固体物理领域,自适应无网格及网格和无网格 混合算法可以用于研究材料的力学性能和物理性 质,如弹性模量、热导率等。
在生物医学工程领域,自适应无网格及网格和无 网格混合算法可以用于模拟生物组织的力学性能 和药物传递过程,为药物开发和组织工程提供有 效的工具。
广泛的应用前景。
网格与无网格混合算法在流体动力学中的应用
在流体动力学领域,网格与无网格混合算法结合了传统有限元素法和无 网格法的优点,能够更好地处理流场的运动和变化。
网格与无网格混合算法可以有效地解决边界层流动、分离流动和湍流等 复杂流动问题,提高计算精度和效率。
网格与无网格混合算法在航空航天、汽车和船舶等领域具有广泛的应用 前景,可以用于气动性能评估、流体控制和流体传动等方面的研究。
与传统的网格算法不同,无网格算法不需要对计算域进行网 格划分,因此可以避免网格生成、更新和修复等繁琐过程, 提高了计算效率。
无网格算法的优点
无需网格生成
无网格算法的最大优点是无需进行繁琐的 网格生成,节省了大量时间和人力。

无网格法的理论及应用

无网格法的理论及应用

为了验证该方法的有效性和可行性,我们进行了一系列实验。实验过程中采 用了某稠油油田的实际数据集,包括地层压力、温度、渗透率等参数。同时,采 用了可视化评估指标,以便直观地评估计算结果的准确性。实验结果表明,该方 法在稠油热采数值模拟过程中具有较高的计算精度和计算效率,可为稠油热采技 术的优化提供有力支持。
1、算法开发:针对稠油热采的物理化学过程,开发相应的数值模拟算法, 如有限元法、有限差分法等。
2、软件架构:设计并实现数值模拟软件的架构,包括前后处理、求解器等 模块,以便用户进行快速高效的计算。
3、数据处理:针对稠油热采数值模拟过程中产生的大量数据,开发相应的 数据处理技术,如数据压缩、可视化等。
无网格法的数值积分采用移动最小二乘法(Moving Least Squares,MLS) 来实现。该方法通过对节点进行加权,构造一个局部近似函数来逼近真实的解。 数值积分通过在节点上建立局部近似函数,然后对该函数进行求导和积分来计算。 无网格法的数值积分具有高精度和高效性,同时避免了传统网格法中的网格生成 和数据处理问题。
1、结构分析
无网格法在结构分析中具有广泛的应用,可以处理各种复杂形状和材料属性 的结构。例如,桥梁、建筑物和飞机等结构分析中,无网格法能够适应复杂的几 何形状和非均匀的材料属性,同时提高计算效率和精度。此外,无网格法在疲劳 分析和振动分析中也得到了广泛应用。
2、流体分析
无网格法在流体分析中也有着广泛的应用,可以处理各种复杂的流体流动问 题。例如,无网格法可以应用于计算流体动力学(CFD)中的复杂流场模拟、燃 烧模拟以及噪声辐射模拟等。无网格法能够适应复杂的几何形状和流场特性,提 高计算精度和效率。
参考内容
稠油热采是一种重要的石油开采方法,具有提高采收率、降低开采成本等优 势。随着计算机技术的不断发展,数值模拟已成为稠油热采领域的重要工具。本 次演示旨在探讨稠油热采数值模拟自适应网格法计算软件的开发研究及实例应用。

地震波模拟中的边界元法应用研究

地震波模拟中的边界元法应用研究

地震波模拟中的边界元法应用研究地震波模拟是地震工程领域研究的重要内容之一,它可以用于预测地震波在地下传播的路径、振幅和速度等参数,对于地震灾害的预测和防控具有重要意义。

边界元法是一种常用的地震波模拟方法,本文将从其原理、应用和研究进展三个方面进行探讨。

边界元法,又称边界积分方程法,是一种基于边界条件的动态数值计算方法。

它的原理是将问题的边界分割成若干小面元,通过面元上的边界条件推导波动方程的边界积分方程,然后利用边界积分方程求解问题的边界上的波动场。

与有限差分法等传统数值计算方法相比,边界元法更适用于复杂边界形状和大规模问题。

在地震波模拟中,边界元法的应用主要包括三个方面。

首先,边界元法可以用于计算地面运动的传播特性。

通过在地面边界上设置小面元,可以计算出地震波在地下的传播路径和振幅分布,进而预测地震波对建筑物和结构物的影响。

其次,边界元法可以用于评估地震波对地下水的影响。

地震波传播会引起地下水位的变化,导致地下水的流动和压力变化,边界元法可以用于计算地震波对地下水位和水流速度的影响。

最后,边界元法还可以用于地震波的反演和早期预警。

通过将实测地震波记录与边界元法模拟的地震波进行对比,可以对地震源参数和地下介质进行反演,从而实现地震预警和灾害评估。

目前,边界元法在地震波模拟中的应用研究已取得一些进展。

一方面,研究人员通过改进边界元法的数值算法,提高了计算效率和精度。

例如,引入高效的积分方法和优化的网格划分算法,可以减少计算量和提高计算精度。

另一方面,研究人员还开展了与其他方法的比较研究。

与有限差分法、有限元法等传统方法相比,边界元法在计算非均匀介质和复杂边界条件时更具优势。

此外,研究人员还将边界元法与其他地震波模拟方法进行耦合,形成多尺度、多物理场耦合的综合模拟方法,提高了地震波模拟的全面性和准确性。

然而,边界元法在地震波模拟中仍面临一些挑战和问题。

首先,边界元法需要对地震源和地下介质进行较为准确地描述,但地震源和地下介质的复杂性导致模型参数估计的难度增加。

无网格法介绍

无网格法介绍

无网格法是在建立问题域的系统代数方程时,不需要利用预定义的 无网格法是在建立问题域的系统代数方程时, 网格信息,或者只利用更容易生成的更灵活、 网格信息,或者只利用更容易生成的更灵活、更自由的网格进行域 离散的方法。(刘桂荣,2009) 离散的方法。(刘桂荣,2009) 。(刘桂荣
无网格法概述
无网格法求解过程 FEM对比 对比) (与FEM对比)
导出无网格法公式
基于弱强式的无网格法
• MFree弱-强式法 弱 强式法 强式法(NWS)的核心思想是针对某一问题同时采用强式和 的核心思想是针对某一问题同时采用强式和 局部弱式建立起离散系统方程式,即对不同组别的节点根据其不同 局部弱式建立起离散系统方程式, 条件分别形成不同类型的方程,其中局部弱式被用于位于或接近导 条件分别形成不同类型的方程, 数边界条件的所有节点,强式被用于除此之外的其他节点。 数边界条件的所有节点,强式被用于除此之外的其他节点。 • 代表方法:MWS 代表方法: • MWS特点。MWS法使用最少数量的背景网格用于积分,对各类力学 特点。 法使用最少数量的背景网格用于积分, 特点 法使用最少数量的背景网格用于积分 问题均可得到稳定而精确的解,是目前近乎理想的无网格法。 问题均可得到稳定而精确的解,是目前近乎理想的无网格法。
构造无网格形函数
PIM形函数性质
• 一致性 如果单项式的完备阶数是p,则该形函数具有 C p 一致性 如果单项式的完备阶数是 , • 再生性 PIM基函数可再生包含在其基函数当中的任意函数。 基函数可再生包含在其基函数当中的任意函数。 基函数可再生包含在其基函数当中的任意函数 • 线形独立性 PIM基函数在支持域上是线性独立的 基函数在支持域上是线性独立的 • δ 函数性

无网格方法的研究现状和发展

无网格方法的研究现状和发展

无 网格 方 法 的研 究 现 状 和 发 展


媛戴木Leabharlann 香 要: 通过有限元法和无 网格法的对比分析 , 总结 出无 网格方法 的特 点及优势 , 讲述 了无网格方法的发展 历史, 在此基
础上介绍 了无 网格方法在 国内外 的研 究现状 , 并对 无网格方法 中的难 点和存在 的问题进 行 了探讨。 关键词 : 无网格方法, 限元法 , 有 数值模拟 , 研究现状
维普资讯
第3 4卷 第 2 7期 20 08 年 9 月
山 西 建 筑
S HANXI ARCHI TE rU=E R
Vo . 4 NO. 7 13 2
Sp 2 0 e. 08
・17 ・ 1
文章 编 号 :0 96 2 (0 8 2 —170 1 0 —8 5 2 0 )70 1—2
1对 2无 动 模拟分析 方法对 网格 的依赖性 , 底或部 分地 消除 网格 , 彻 抛开 网 向 : ) 无 网 格 法 理 论 方 面 的进 一 步 研 究 ; ) 网 格 法 在 碰 撞 、 金属 加工成 型等领域 中的应用 。根 据选取基 函数 和 格的初始划分 和网格 重构 的一种 很有发 展前 途 的数 值模 拟分 析 态裂纹扩展 、
中图 分 类 号 : U3 1 T 1 文 献标 识 码 : A
0 引言
常见的数值模拟分析方法按其适 用范围可 以分为 两大类 : 一
类方法才开始引起众 多学者 和研究 人员 的重视 和研 究兴趣 。无
网格发展 至今 已有 十余 种 , 国外 , 早提 出的一种 无 网格方法 在 最
就可以得 到不同的无 网格 方法 。 方 法 。 因此 , 网格 法 在 涉 及 网格 畸 变 、 格 移 动 等 问题 中显 示 权函数 以及积分方式的不 同, 无 网 B lt h o等提出的无 单元 G l kn法 , 出了误差 分析 , e s k yc a ri e 给 并 出了明显的优 势 , 目前 国内外计算力学界 的热点研究领域。 是 掀起 了无 网 无网格方法和有限元法 的主要区别是 : 它在 建立近似 函数 时 成功地应用于动态裂纹 扩展数值 以及三 维撞击分析 , 同时 ,e t h o B l s k 等也 对无单 元 Ga r n法 中 yc ll ed 不需要网格 、 于函数逼近近似而非插值 、 基 采用不 同的形 函数等 。 格法的研究新 高潮 , 的数值积分方案以及近似函数的计算方法 进行 了深入 的研究 , 并 无网格方法 和经典加权残值法 的主要 区别是 : 采用定 义在离散节 克服 了有 限元方法在模拟裂 点上( 通常具有紧支特性 ) 的一组权 函数 和基 函数来构 造 近似 函 重新 用于动态 裂纹 扩展的数值模拟 , Lu等将 无单 元 数, 而不用定义在全域上的级数展开形式 。无 网格方法 的特点 与 纹扩展时 需 要不 断进 行 网格 重新 划 分 的缺 点 ; i a r i法和边界 元 法相耦 合 , 于 固体 的应 力 分析 ; d t h o e 用 B ys k c 优势 主要表现在 : ) 近似函数对 网格没 有依赖 。2 其基 函数可 G l kn 1其 ) 以包含能够反映奇异性 等特 殊性质 的 函数系列 。3 与有 限元法 和 D 等将无单元 Ga r n ) u l l 法用 于三 维撞 击和流体 晃动分析 。 ed 类似 , 采用 紧支 函数 的无 网格 方 法具 有 带状 稀疏 系数 矩 阵 的特 析 。5前 处理简单等。 ) B bsa auk 等将单位分解 与 有限元相 结合 , 出 了单 位分解 有 提 够反 映待求边值 问题特性 的函数 , 并将这 些特殊 函数 与单位分解 该法在标准 有限元空 问中加 入一系列能 点, 适用 于求解大 型的科学 与工 程问题 。4 适合 进行 自适 应性 分 限元法 和广义 有限元法 , ) 因此无 网格方法 已在众 多领域获得 了应用 , 如水下爆 炸仿 真 函数相乘后和原有 的有 限元 形 函数一起 构成 了新 的增广协 调有 模拟 、 高速碰撞等材料 动态 响应 的数值 模拟 、 动态 裂纹扩 展数 值 限元空 间。用该方法求解动态裂纹 扩展 问题 时 , 可以处理任意裂 模拟 、 三维撞击分析和大变形等 问题 中。下面让我们 回顾一下 无 纹状态 , 并且不需 要重新划分 网格 。刘欣 等将单位分解 法用于求

无网格方法的研究应用与进展

无网格方法的研究应用与进展

第24卷第4期(总第109期)机械管理开发2009年8月Vol.24No.4(SUM No.109)MECHANICAL MANAGEMENT AND DEVELOPMENT Aug.20090引言有限元法(FEA)是随着电子计算机的发展而迅速发展起来的一种现代计算方法,但FEA是基于网格的数值方法,在分析涉及特大变形(如加工成型、高速碰撞、流固耦合)、奇异性或裂纹动态扩展等问题时遇到了许多困难。

同时,复杂的三维结构的网格生成和重分也是相当困难和费时的。

近年来,无网格得到了迅速的发展,受到了国际力学界的高度重视。

与有限元的显著特点是无网格法不需要划分网格,只需要具体的节点信息,采用一种权函数(或核函数)有关的近似,用权函数表征节点信息。

克服了有限元对网格的依赖性,在涉及网格畸变、网格移动等问题中显示出明显的优势。

1无网格方法的概述无网格方法(Meshless Method)是为有效解决有限元法在数值模拟分析时网格带来的重大问题而产生的,其基本思想是将有限元法中的网格结构去除,完全用一系列的节点排列来代之,摆脱了网格的初始化和网格重构对问题的束缚,保证了求解的精度[1]。

是一种很有发展的数值模拟分析方法。

目前发展的无网格方法有:光滑质点流体动力学法(SPH)、无网格枷辽金法(EFGM)、无网格局部枷辽金法(MLPGM)、扩散单元法(DEM)、Hp-clouds无网格方法;有限点法(FPM)、无网格局部Petrov-Galerkin 方法(MLPG)、多尺度重构核粒子方法(MRKP)、小波粒子方法(WPM)、径向基函数法(RBF)、无网格有限元法(MPFEM)、边界积分方程的无网格方法等。

这些方法的基本思想都是在问题域内布置一系列的离散节点,然后采用一种与权函数或核函数有关的近似,使得某个域上的节点可以影响研究对象上的任何一点的力学特性,进而求得问题的解。

2无网格方法国内外研究的进展无网格法起源于20世纪70年代。

边界元法课件

边界元法课件

模拟算例
耦合轧制接触模型-边界元法
陈一鸣在肖宏和黄庆学等人基础上 给出3维弹塑性摩擦接触边界元法及滚动轧
制FORTRAN源程序 将板带的弹塑性变形同轧辊弹性变形耦联
起来,“同时”、“并行”模拟轧制过 程 给出了9组不同轧制参数、宽厚比为200板 带冷轧过程数值模拟结果 带材边部出现了明显的“猫耳”形凸峰
弹塑性BEM
陈政清博士给出弹塑性大变形边界元法 完成了拉伸试件颈缩定量数值模拟
肖宏博士建立三维弹塑性有限形变边界元 法和轧制过程模拟边界元法源程序
给出板带轧制过程变形-面力-应力场 很好的处理奇异问题
规模局限性
典型边界元法计算结构(边界积分方程-影响系 数数值积分-矩阵方程及消去法求解)局限性
系数积分计算和方程组的求解时间长,占用大量 的计算机内存和主机CPU的时间
裂纹的生成及扩展 流体运动 骨骼生长
接触问题等研究领域
Байду номын сангаас
国内简史
在国内,1978年起步 杜庆华院士
率先推动工程中边界元法
冯康、胡海昌、何广乾院士等 加入到边界元法的研究者行列
我国边界元法研究得到了迅速的发展
研究起点和热点
我国大部分工程中边界元法 固体力学方面开始
后迅速转入非线性问题领域 出版自然边界元法1993
户泽-石川轧制模型
柳本-木内轧制模型
20世纪90年代初 柳本潤和木内学给出拉格朗日乘数3维刚塑性有
限元法和流线速度接触弹性有限元法耦合计算 宽厚比为15和238 给出变形区内三维6个应力分量分布 单位轧制压力分布图中看到 “猫耳”形凸峰趋
势 显出变形区入口和出口单位轧制压力不等于零 (刚塑性有限元法模拟带钢变形的结果)

流体仿真知识点总结

流体仿真知识点总结

流体仿真知识点总结流体仿真是指利用计算机模拟流体力学问题,通过数值方法研究流体的运动规律和流场性质。

它是一种重要的科学计算手段,广泛应用于航空航天、水利工程、环境工程、汽车工程、海洋工程等领域。

本文将对流体仿真的基本概念、数值方法、常见模型以及实际应用进行总结,以帮助读者全面了解流体仿真的知识体系。

一、基本概念1. 流体的基本性质流体是一种特殊的物质状态,具有不固定的形状和容易流动的特性。

其主要物理性质包括密度、压力、温度、速度、粘度等。

在流体力学中,通常将流体分为不可压缩流体和可压缩流体两种类型,分别对应于马赫数小于0.3和大于0.3的情况。

2. 流体力学基本方程流体力学基本方程包括连续方程、动量方程和能量方程。

其中连续方程描述了流体的质量守恒,动量方程描述了流体的动量守恒,能量方程描述了流体的能量守恒。

这些方程是描述流体运动规律的基础,也是流体仿真的数学模型基础。

3. 边界条件和初值条件流体力学问题的边界条件和初值条件对解的精度和稳定性有着重要影响。

边界条件指流场与固体边界的交界处的物理条件,通常包括速度、压力、温度等。

初值条件指初始时刻各物理量的数值分布。

确定合适的边界条件和初值条件是流体仿真的关键步骤之一。

二、数值方法1. 有限差分法有限差分法是一种基本的离散数值方法,它将求解区域分割成有限个离散点,通过差分逼近连续微分方程,将微分方程转化为代数方程组进而进行数值求解。

有限差分法在流体力学中得到了广泛应用,如Navier-Stokes方程、能量方程和扩散方程等都可以通过有限差分法进行离散求解。

2. 有限体积法有限体积法是将求解区域分割成有限个控制体,通过对控制体内部进行积分得到平均值,进而将微分方程转化为代数方程组。

有限体积法在流体力学中得到了广泛应用,特别适用于非结构网格和复杂流场的数值模拟。

3. 有限元法有限元法是一种通过拟合局部基函数的方法,将微分方程转化为代数方程组进而进行数值求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N
a (x ) u
J 1 J J I
N
I
( I 1,2,
, N)
Aa u
a A1u
N ( x1 ) N ( x2 )
T ( x1 ) 1 ( x1 ) 2 ( x1 ) T ( x2 ) 1 ( x2 ) 2 ( x2 ) A T ( xN ) 1 ( x N ) 2 ( x N )
无网格法概论


无网格法的研究历史 全域插值函数 典型无网格法
点插值法
函数逼近:
u ( x ) ai pi ( x ) { p( x )}T {a}
h i 1
m
线性函数: pT ( x ) [1, x, y, z], m 4
T 2 2 2 二次函数: p ( x ) [1, x, y, z, x , xy, y , yz, z , xz], m 10
径向基函数

一类以点x到节点xI的距离dI为自变量的函数,也称为距离 函数
( x xI ) — 中心位于节点xI的距离基函数
MQ: RMQ: TPS:
I ( x) (c2 dI2 )1/ 2
I ( x) (c2 dI2 )1/ 2
I ( x) dI2 log dI
网格法 (有限元法、边界元)
无网格法
对某些特殊问题,无网格法很有效。
无网格法概论



无网格法的研究历史 全域插值函数 典型无网格法
无网格法的研究历史

七十年代:非规则网格有限差分法 1977年:Smoothed particle hydrodynamics SPH 归一化光滑函数算法 — 分片试验 不稳定的起因及稳定化方案 克服零能模态的具体方案 MLSPH 水下爆炸仿真模拟、高速碰撞等
N I ( x ) w( x xI )
w( x x )
I 1 I
N


如果在MLS近似中将权函数在域内取为1,在域外取为0, 则MLS近似退化为标准的最小二乘近似 MLS近似可以精确重构包含在基底中的任何函数pi(x),即
N ( x) p ( x ) p ( x)
I 1 I i I i
I
a ( x ) b p ( x ) u
J 1 N J J I i 1 i i I
N
m
I 1,2,
,N
a
J 1
J
pi ( x J ) 0 i 1,2,
,m


如果p中包含常数基和线性基,则插值具有一阶一性; Wang等采用局部形式 — 径向基点插值法
Hermite型径向基函数插值 Nb N k ( x) h u ( x) akk ( x) bk x k 1 k 1
n
对于裂纹扩展问题,基函数可以取为 pT ( x) [1, x, y, r cos , r sin , r sin sin , r cos sin ]
2 2 2 2
移动最小二乘近似

近似函数
u ( x, x ) pi ( x )ai ( x) pT ( x )a( x)
h i 1
m
pi ( x ) — 基函数(多项式或其它已知函数)
ai ( x ) — 待定系数
线性基: pT ( x ) [1, x, y, z], m 4 二次基: pT ( x ) [1, x, y, z, x2 , xy, y 2 , yz, z 2 , xz], m 10
移动最小二乘近似 — 待定系数的确定


有限元法 — 令uh(x)在单元节点i处等于函数u(x)在该节点 处的函数值ui 待定系数的个数必须等于单元自由度 uh(xi) = u(xi) — 具有插值特性 依赖于网格 MLS — 使uh(x)在节点处的误差在加权最小二乘意义下取 极小值 精度高,并且可具有高阶连续性 能够精确重构基中的任何函数 计算量大 uh(xi) ≠ u(xi) — 不具有插值特性 (拟合)
2003年:伽辽金配点无网格法
2004年:边界弱形式配点法 2005年:物质点有限元法


2006年:质点积分无网格伽辽金法
2009年:冲击爆炸三维物质点法数值仿真软件MPM3D®
无网格法活动




1996年 Computer Methods in Engineering Mechanics and Engineering 出版了无网格法专辑(139卷) 2000年 Computational Mechanics 出版了无网格法专辑 (25卷,2-3期) 近年来许多著名数值方法国际会议都设置了无网格法的主 题会。 许多著名有限元专家,如Zienkiewicz、Belytscho、Atluri、 WK Liu、KJ Bathe等都对无网格法进行了深入研究。
u ( x ) u h ( x ) u h ( x, x )
xx
N ( x )u
N ( x ) N ( x, x ) x x = p T ( x ) A1 ( x ) B ( x )
移动最小二乘近似

当基函数中最高阶完备多项式的阶数k = 0时,MLS形函数 退化为为Shepard函数
移动最小二乘近似
h J wI ( x ) u ( x, xI ) u ( xI ) wI ( x ) pi ( xI ) ai ( x ) uI I 1 I 1 i 1
N 2 N m 2
N J m 2 wI ( x) pi ( xI ) ai ( x) uI p j ( xI ) 0 a j ( x) I 1 i 1
无网格法的研究历史


1992年:Diffuse element (Nayroles等) 1994年:Element Free Galerkin (Belytschko) 动态裂纹扩展数值模拟 三维撞击、流体晃动分析 板壳分析 节理岩体 2000 EFG和有限元、边界元法耦合 边界条件 2001 相变问题;扩散问题 质点积分 2006 1995年:Reproducing Kernel Particle Method (W K Liu) 多尺度分析、自适应分析 结构动力学、流体动力学 动态断裂和局部化 金属加工成形 中厚梁板、微电子机械系统 纳米管起皱
A( x)a( x) B( x)u
N I 1
a( x) A1 ( x) B( x)u
A( x ) wI ( x ) p( xI ) pT ( x I ) B [ w1 ( x ) p( x1 ) w2 ( x ) p( x2 ) wN ( x ) p( x N )]
u h ( x, x) pT ( x) A1 ( x) B( x)u = N ( x, x )u N ( x, x ) = pT ( x ) A1 ( x) B( x)
实质上与EFG等价!
无网格法的研究历史




1996年:Finite Point Method(Onate等) 流体动力学 弹塑性分析 1996年:Hp Clouds (Oden等) 铁摩辛柯梁问题 厚板的弯曲问题 基于云团法的新型hp有限元 Hp无网格云团法 1996年:PUFEM和GFEM(Babuska等) 动态裂纹扩展问题 1998年:Local boundary integral equation method (LBIE) 和 Meshless local Petrov-Galerkin法(MLPG) (Atluri, Sladek)
无网格法的研究历史

将无网格法的思想引入有限元法中 PUFEM — Babuska,1996 动态裂纹扩展 GFEM — Duarte 节理岩体 XFEM — Belytschko 应变局部化 流形元法(石根华)
网格连续 近似函数不连续
无网格法类型

2000年:紧支径向基函数配点法 2001年:最小二乘配点无网格法 2001年:加权最小二乘无网格法 2003年:伽辽金最小二乘无网格法
cd I2
Gaussians: ( x ) e I
4th order spline radial basis function:
I ( x) 1 6d I2 8d I3 3d I4
紧支性: I ( x) 0 当
dI R / SA 1
径向基函数
T 1 u h ( x ) aJ J ( x ) T ( x ) a ( x ) A u J 1 N ( x )u uh ( xI ) uI N ( x) T ( x) A1


有限元法存在的某些困难

冲压成型:网格畸变 裂纹动态扩展:网格重分 高速碰撞:网格畸变 奇异性问题:解析函数 自适应问题:网格重分(h)、近似函数(p) 应变局部化:网格重分 薄壳问题:近似函数高阶连续性问题 复杂三维结构有限元网格的生成
无网格法

直接利用分布在求解域中的离散点来构造近似函数的一种 求解偏微分方程的数值方法。不需要借助于网格。
无网格法概论
Introduction to Meshless Methods
高效伟 大连理工大学 航空航天学院
参考文献

张雄,刘岩. 无网格法,清华大学出版社,2004 刘更,刘天祥,谢琴. 无网格法及其应用. 西北工业大学出 版社,2005 . G.R.Liu, Y.T. Gu (王建明、周学军). 无网格法理论及程序 设计, 山东大学出版社,2007. S.N. Atluri, S.P.Shen. The Meshless Local Petrov-Galerkin Method, Tech Science Press, 2002.
相关文档
最新文档